
A combined heuristic optimization technique

H. Schmidt1,*, G. Thierauf

Department of Civil Engineering, Institute of Structural Mechanics, University of Essen, Essen, Germany

Received 1 November 2002; accepted 2 October 2003

Available online 19 August 2004

Abstract

Realistic problems of structural optimization are characterized by non-linearity, non-convexity and by continuous and/or discrete design

variables. There are non-linear dependencies between the optimised parameters. Real-world problems are rarely decomposable or separable.

In this contribution a combined heuristic algorithm is described which is well suited for problems, for which the application-requirements of

gradient-based algorithms are not fulfilled. The present contribution describes a combination of the Threshold Accepting Algorithm with

Differential Evolution with particular emphasis on structural optimization, it can be classified as a Hybrid Evolutionary Algorithm. The

Threshold Accepting Algorithm is similar to Simulated Annealing. Differential Evolution is based on Genetic Algorithms.

q 2004 Civil-Comp Ltd and Elsevier Ltd. All rights reserved.

Keywords: Structural optimization; Heuristic algorithms; Non-linearity; Non-convexity; Threshold accepting algorithm; Differential evolution; Hybrid

evolutionary algorithms
1. Introduction

Techniques of stochastic search are widely used for

structural optimization. An approach for combinatorial

optimization is to embed local search into the framework

of evolutionary algorithms or the combinations of various

techniques.

Burke and Smith [6b] incorporated a local search

operator into a genetic algorithm. The resulting algorithm

from this hybrid approach has been termed a Memetic

Algorithm. The paper investigates the use of a memetic

algorithm in solving a thermal generator maintenance

scheduling problem. The main purpose is to discover

whether a memetic approach can be advanced.

Burke et al. [6a] presented a hybrid population-based

metaheuristic algorithm for the space allocation problem in

academic institutions. The proposed approach performs

an automatic selection of the parameters according to the

problem characteristics, the solution quality is evaluated

with a penalty function and includes: local search,
0965-9978/$ - see front matter q 2004 Civil-Comp Ltd and Elsevier Ltd. All rig

doi:10.1016/j.advengsoft.2003.12.001

* Corresponding author. Tel.: C49-201-183-2654; fax: C49-201-183-

2675.

E-mail address: holger_schmidt@uni-essen.de (H. Schmidt).
1 URL: http://www.statik.uni-essen.de.
heuristics, adaptive cooling schedules and population-

based techniques.

Magoulas et al. [12] introduced a new hybrid evolution-

ary approach for improving the performance of neural

network classifiers in slowly varying environments. They

investigated a combination of Differential Evolution

Strategy and Stochastic Gradient Descent. The use of a

Differential Evolution Strategy is based on the concept of

evolution of a number of individuals from generation to

generation, the on-line gradient descent refers to the concept

of adaptation to the environment by learning.

Galinier and Hao presented [8] a Hybrid Evolutionary

Algorithm for graph coloring. They embedded local search

into the framework of population-based Evolutionary

Algorithms, leading to Hybrid Evolutionary Algorithms.

The basic idea consists of using the crossover-operator

(Greedy Partition Crossover) to create new and potentially

interesting configurations, which are then improved by the

local search operator (Tabu Search).

Botello et al. [1] combined the search-operators selec-

tion, crossover, mutation of genetic algorithms with

the acceptance operator of the Simulated Annealing and

calls this the General Stochastic Search Algorithm. The

unmodified individuals of a population (before variation by

recombination and mutation) are compared with the varied
Advances in Engineering Software 36 (2005) 11–19
www.elsevier.com/locate/advengsoft
hts reserved.

http://www.elsevier.com/locate/advengsoft
http://www.statik.uni-essen.de


H. Schmidt, G. Thierauf / Advances in Engineering Software 36 (2005) 11–1912
ones. The acceptance operator selects solutions to be carried

over to the next generation.

Mahfoud and Goldberg [13] presented the Parallel

Recombinative Simulated Annealing. After initialization

of a population and choice of a system temperature T,

parents are chosen selected. The offsprings are produced by

recombination and mutation, followed by a comparison

between parents and their offsprings. This is carried out, e.g.

by a comparison between solutions i and j, where i is the

winner with a chance of 1=ð1CexpðEi KEjÞ=TÞ: Sub-

sequently, the parents are replaced by the winners and T is

reduced. This process is repeated for the complete

population in every iteration.

In this paper, the combination with the Threshold

Accepting Algorithm (TA), which computes the functionals

in every cycle of the iteration, is essential for the increased

performance. The Differential Evolution (DE) helps to

avoid local optima. By application of penalty functions even

inadmissible solutions are allowed, whereby the approxi-

mation of the global optimum is possible either from the

admissible direction as well as from the inadmissible

direction. Admissible results are stored and treated similar

to the elite individual in the Genetic Algorithms.
2. The mixed discrete–continuous optimization

A mixed discrete–continuous problem can be expressed

as follows:

Find :

X Z fx1; x2; x3;.; xng Z ½XðdÞ;XðcÞ�T

to minimize

f ðXÞ

subject to constraints

gjðXÞR0 j Z 1;.;m

and subject to boundary constraints

xðLÞi %xi%xðUÞ
i i Z 1;.; n

where

XðdÞ 2<d; XðcÞ 2<c;

(1)

X(d) and X(c) denote feasible subsets of discrete and

continuous variables, respectively.
3. The threshold accepting algorithm

The TA was developed by Dueck and Scheuer [7a,b]. TA

can be classified as a simplified simulated annealing

algorithm. The formal process of a TA is:
(1)
 Initialize first solution xð0Þj and compute f ðxjÞ
ð0Þ:
(2)
 Generate new solution x
ðgC1Þ
j by local modification of x

ðgÞ
j :
(3)
 Compute positive threshold of tolerance T.
(4)
 Compute new solution f ðxjÞ
ðgC1Þ:
(5)
 If f ðxjÞ
ðgC1Þ% f ðxjÞ

ðgÞC f ðxjÞ
ðgÞT :

(a) YES: Replace x
ðgÞ
j by x

ðgC1Þ
j ;

(b) NO: Reduce threshold of tolerance T.
(6)
 Criterion of termination.
(a) If satisfactory go to (7),

(b) If not satisfactory go back to (2).
(7)
 End of optimization.
Handling of discrete and integer variables is to be

explained later. The aim of the optimization is to minimize

the objective function f(x)

minðf ðxÞÞ; (2)

by optimization of its parameters

X Z ðx1;.; xnparam
Þ x2<; (3)

where X denotes a vector composed of nparam objective

function parameters. The parameters of the objective

function are also subject to lower and upper boundary

constraints x(L) and x(U), respectively

xðLÞj %xj%xðUÞ
j j2nparam: (4)

The first step for the TA is to create an arbitrary initial

solution. For continuous variables it reads

xð0Þj Z rjðx
ðUÞ
j KxðLÞj ÞCxðLÞj j Z 1;.; nparam; (5)

where r denotes to a uniformly distributed random value

within the range [0.0,1.0]. A new solution is generated by a

local modification of the actual solution

x
ðgC1Þ
j Z x

ðgÞ
j CDx

ðgÞ
j j2nparam; g Z 1;.; gmax; (6)

where

Dx
ðgÞ
j Z

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 lnðr1Þ

p
cosð2pr2Þ or

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 lnðr1Þ

p
sinð2pr2Þ;

(
(7)

and r1 and r2 are uniformly distributed random values

within the range [0.0,1.0]. The Box–Mueller-method [2]

calculates two normaly distributed random values with

the deviation s and the average value x
ðgÞ
j from two

uniformly distributed random values. The objective

function f ðxjÞ
ðgC1Þ is computed. By means of a threshold

of tolerance T, even realizations f ðxjÞ
ðgC1Þ; which result in

a deterioration of the objective function f ðx
gC1
j Þ; are

accepted. Searching for a minimum of f(x), a new

realization x
gC1
j is accepted if f ðx

gC1
j Þ% f ðx

g
j ÞC f ðx

g
j ÞT ;

where TO0 is the tolerance. The initially high tolerance

is continuously reduced (Fig. 2), which corresponds to a

reduction of the probability, that deteriorations of the

objective function are accepted.



H. Schmidt, G. Thierauf / Advances in Engineering Software 36 (2005) 11–19 13
4. The differential evolution

Storn and Price [17] first introduced the DE algorithm a

few years ago. DE can be classified as an evolutionary

optimization algorithm. At present, the best known
Fig. 1. Differential evolution works directly with the floating-point valued variables

illustrated here for the case of a simple objective function f(x)Zx1Cx2Cx3Cx4C
representatives of this class are genetic algorithms by

Goldberg [10] and evolution strategies by Schwefel [16].

The formal process of a DE is shown in Fig. 1. The DE uses

the search-operators mutation, recombination and selection.

A detailed compilation of publications in this field can be
of the objective function, not with binary encoding. The functioning of DE is

x5 (variables bounded within the range [0.0,1.0]) [11a].



H. Schmidt, G. Thierauf / Advances in Engineering Software 36 (2005) 11–1914
found in Ref. [11b]. The aim of the optimization, the

parameters of the objective function and the lower and

upper boundary constraints are the same as in Section 3,

formulas (2)–(4), respectively. DE operates on a population

P of a generation G that contains npop candidate solutions

(individuals). Each vector represents one solution for the

optimization problem:

PðGÞ Z XðGÞ
i Z xðGÞ

i;j i Z 1;.; npop;

j Z 1;.; nparam; G Z 1;.;Gmax:
(8)

The first step of the DE is to create an arbitrary initial

population P(0)

Pð0Þ Z xð0Þi;j Z ri;jðx
ðUÞ
j KxðLÞj ÞCxðLÞj

i Z 1;.; npop; j Z 1;.; nparam;
(9)

where r denotes to a uniformly distributed random value

within range [0.0,1.0]. From the first generation forward,

the population of the following generation P(GC1) (‘trial

vectors’) is created on the basis of the current population

P(G). The population of ‘trial’ vectors P(GC1) is generated

as follows (mutation and recombination)

xðGC1Þ
i;j Z

xðGÞ
Ci;j

CFðxðGÞ
Ai;j

KxðGÞ
Bi;j

Þ if ri;j%Cr n j Z Di

xðGÞ
i;j otherwise;

(

(10)

where
iZ1,.,npop, jZ1,.,nparam,
DZ1,.,nparam,
AZ1,.,npop, BZ1,.,npop, CZ1,.,npop,

A1sBisCisi,
Cr2[0,1], F2[0,1], r2[0,1].

The population of the next generation P(GC1) is created

as follows (selection):

XðGC1Þ
i Z

XðGC1Þ
i if f ðXðGC1Þ

i Þ% f ðXðGÞ
i Þ

XðGÞ
i otherwise:

(
(11)

In this paper, the parameter F is taken according to

Zaharie [19]

F Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=npop KCr=ð2npopÞ

q
; (12)

with npop as the size of population and the parameter Cr

which weights the ‘differential perturbation’ Cr2[0,1]. The

values of the parameters which satisfy 2F2K2/npopC
Cr/npopZ0 can be considered critical [19].
5. Combination of algorithms

The combined Threshold Accepting-Differential Evol-

ution Algorithm (TADE) can be explained as follows:
(1)
 Initialize original population P(0).
(2)
 Execute TA for each individual of P(G).
(3)
 Store the solution after gmax TA-iterations into P(G).
(4)
 Number of runs of TAZsize of population?
(a) YES: Execute DE and build P(GC1) and store the

solution into P(G),

(b) NO: go back to (2).
(5)
 Criterion of convergence.
(a) If satisfactory go to (6),

(b) If not satisfactory go back to (2).
(6)
 End of optimization.
TADE starts with an arbitrary initial population P(0); the

TA is started sequentially for every individual. The generated

solution at the end of TA is stored in population P(G). After

completing population P(G), the DE is started and P(GC1) is

created. The result is stored in P(G). The worst individual is

replaced by the global best admissible result. This procedure

is repeated until the termination criteria are fulfilled. This

quasi-elite strategy insures the presence of admissible and

good results at the end of the optimization. The size of

the population and the number of TA-iterations are

depending on the specific problem. The threshold T is

defined according to Eq. (13)

T ¼ aK1 exp Ksin
g þ G

gmax þ Gmax

� �� �
; (13)

where
aZgG: for continuous or discrete problems.
aZ1C2g: for mixed continuous–discrete problems.
g: counter of TA-runs.
gmax: maximum number of TA-runs per process.
G: counter of DE-runs.
Gmax: maximum number of DE-runs per optimization

circle.

After each DE cycle the starting amplitude of T, which is

operating currently the TA only, is reduced. Fig. 2 shows

the reduction of the threshold for gmaxZ40, GmaxZ40 and

aZ1C2g as an example. The convergence velocity is

depending on the reduction of T. Similarly the standard

deviation s (decrease of increments) is reduced in formula

(7) (aZ1C2g for continuous variables, aZ2 for discrete

variables).
6. Scaling of variables and constraints

The variables and the constraints are scaled for the

operators of TADE, e.g. variation of variables, calculation



Fig. 2. Threshold of tolerance T.

H. Schmidt, G. Thierauf / Advances in Engineering Software 36 (2005) 11–19 15
of penalty-terms. The original floating-point values or

discrete values are necessary in order to evaluate the

objective function

xj;s Z
xj KxðLÞj

xðUÞ
j KxðLÞj

j Z 1;.; nparam

gj;sðXÞ Z 1 K
gj ðXÞKgjðXÞ

ðLÞ

gjðXÞ
ðUÞ KgjðXÞ

ðLÞ
j Z 1;.;m;

(14)

where xj,s and gj,s(X) have the range [0.0,1.0].
7. Constraint handling

7.1. Boundary constraints

In boundary constrained problems it is essential to

ensure that parameter values do not exceed their

allowed ranges after reproduction. In this work this is

guaranteed by replacing parameter values, which violate

boundaries with boundary values generated within the

feasible range

xðGC1Þ
i;j Z

xðGC1Þ
i;j Z xðLÞj if xðGC1Þ

i;j !xðLÞj ;

xðGC1Þ
i;j Z xðUÞ

j if xðGC1Þ
i;j OxðUÞ

j ;

xðGC1Þ
i;j otherwise;

8>>><
>>>:

(15)

where

i Z 1;.; npop; j Z 1;.; nparam:
7.2. Constraint functions

In this investigation an adaptive penalty function was

applied for handling of the constraints according to Coit

and Smith [5a,b]. A Survey of Constraint Handling

Techniques is found in Ref. [4]. An individual is
evaluated by

f ðXÞðgpÞ Z f ðXÞðgÞ C ðf ðXÞfeas K f ðXÞallÞ
Xm

jZ1

gjðXÞ

NFTðgÞ

� �k

:

(16)

The adaptive term (f(X)feasKf(X)all) in Eq. (16) calculates

the difference between the non-penalized solution value of

the best solution yet found (which will probably be

infeasible) and the value of the best feasible solution yet

found. f(X)(gp) is the penalized objective function value of

solution g, f(X)(g) is the unpenalized objective function value

for the solution g, f(X)all denotes the unpenalized value of the

best solution yet found and f(X)feas denotes the value of the

best feasible solution yet found. The exponent k is a constant,

which adjusts the ‘severity’ of the penalty (a value of kZ2

has been previously suggested in Ref. [5a] and was taken in

this paper). The NTF(g) is the so-called Near Feasibility

Threshold, which is defined as the threshold distance from

the feasible region at which the user would consider that the

search is ‘reasonably’ close to the feasible region. The

NTF(g) is defined as follows

NFTðgÞ Z
NFT0

lG
G Z 1;.;Gmax; (17)

where NFT0 is the upper boundary for NFT. In this paper

lGZ1C ðG=npopÞ
2 and NFT0Z1. The factor f(X)feasKf(X)all

has some critical potential: if f(X)feas is much higher than

f(X)all, the penalty would be quite large for all individuals of

the population. In this work, f(X)feas is calculated by the

initial vector and f(X)allZf(X)feas/1.5 after each circle of DE.

Of course, one needs a feasible starting point of optimization.

On the other hand, if those are identical, the penalty would be

zero and all infeasible solutions would pass unpenalized into

the next generation.
8. Termination criterion

After each circle of DE the average standard deviation of

the individuals/population is calculated. The standard

deviation for one variable is

Sdðxi;jÞ
ðGþnÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ðnpop K1Þ

Xnpop

i¼1

ðxj K �xÞ2

 !vuut ; (18)

where iZ1,.,npop, jZ1,.,nparam, nZ1,.,GmaxK1.

The average standard deviation for the population is:

hSdðxi;jÞ
ðGþnÞi Z

Xnparam

jZ1

ðSdðxi;jÞ
ðGþnÞ=nparamÞ: (19)

Based on the average standard deviation the following

termination criterion is used:

hSdðxi;jÞ
ðGþnÞi%3: (20)



Fig. 3. Example 10.1—pressure vessel [11a].

H. Schmidt, G. Thierauf / Advances in Engineering Software 36 (2005) 11–1916
9. Handling of integer and discrete variables

The TA and DE are only capable of handling

continuous variables in the presented form. To extend

it for optimization of discrete variables, a couple of

modifications are required. Both DE and TA may

still work internally with continuous floating-point

values. For the evaluation of the cost-function the

discrete values will be used. Thus a function for

converting a real value to an integer (discrete) value is

used. That means, e.g. a continuous value 1.56 is

rounded to the integer value 2. Discrete values can be

handled in a straightforward manner. Suppose that the

subset of discrete variables X(d) contains l elements that

can be assigned to variable x:

xðdÞ Z xðdÞi i Z 1;.; l where xðdÞi !xðdÞiC1: (21)

Instead of the discrete value xi itself, we may assign

its index i to x. The discrete variable can be handled as

an integer variable, which is boundary constrained to the

range 1,.,l. To evaluate the objective function, the

discrete value xi is used instead of its index i.
Table 1

Comparison of result-test example 10.1

Solution in

Ref. [11a]

Solution in

Ref. [18]

Solution by

TADE

f(X) 7006.358 7006.9 7006.51

x1 1.000 1.000 1.000

x2 0.625 0.625 0.625

x3 51.81347 51.812 51.8131

x4 84.57853 84.591 84.5851

g1 0.000 0.000 0.000

g2 0.131 0.131 0.131

g3 K0.064 15.000 18.581

g4 155.421 155.409 155.406

Fct. calls 10,000 4800 10,000/stop
10. Test examples

10.1. Designing a pressure vessel

The first example is the design of a compressed air

storage tank, Fig. 3. Variables L and R are both

continuous while Ts and Th are both discrete. The

thickness of the shell Ts and the head Th, are both to be

taken from a set of standard sizes. The control

parameters are: npopZ5, F (see formula (12)), CrZ0.5,

gZ40, GZ40, 3Z10K4, function callsZ10,000 or

termination criterion (see Section 8). For this example,

the steel plate was available in different thicknesses,

which were multiples of 0.0625 in. The problem can be

formulated as follows:
Find

X Z ðx1; x2; x3; x4Þ Z ðTs; Th;R;LÞ

to minimize

f ðXÞ Z 0:6224x1x3x4 C1:7781x2x2
3 C3:1611x2

1x4

C19:84x2
1x3

subject to

g1ðXÞ ZK0:0193x3 Cx1R0;

g2ðXÞ ZK0:00954x3 Cx2R0;

g3ðXÞ ZK750:0!1728:0 Cpx2
3x4 C 4

3
px3

3 R0;

g4ðXÞ ZKx4 C240:0R0;

g5ðXÞ : 1:0%x1 %12:5;

g6ðXÞ : 0:6%x2 %12:5;

g7ðXÞ : 0:0%x3 %240:0 : non 
 negative value of x3;

g8ðXÞ : 0:0%x4 %240:0 : non 
 negative value of x4:

(22)

The results were compared with Refs. [11a,18] in Table 1.

The average results exceeding 100 runs are: f(X)avZ
7011.66. The optimum was first encountered at cav

1thZ
7580:07 and the total function calls until the termination

criterion stopped the search at cav
tot Z9908:42: These results



Fig. 4. Example 10.2—steel column [14].

Table 2

Variables-test example 10.2

Var. Eval.

Yield

stress

fsZ25.0v1C500.0

Load 1 P1Z1.5!105v2C8.0!105

Load 2 P2Z1.5!105v3C8.0!105

Load 3
p3Zexp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log 1C 1

16

� �q
v4Clogð8:0!105ÞKlog 1C 1

16

� �
=2

� �
Web

thickness

tZ0.5v5C10.0

Flange

width
bZexpð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logð1C10K4Þ

p
v6 C logð300:0ÞK logð1C10K4Þ=2Þ

Flange

thickness
dZexp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log 1C 1

400

� �q
v7 C logð20ÞK log 1C 1

400

� �
=2

� �
Profile

height
hZexp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log 1C 1

3600

� �q
v8Clogð300:0ÞKlog 1C 1

3600

� �
=2

� �
Initial

eccentricity

F0Z21.09v9C25.98

Young’s

modulus

EZ4200.0v10C2.1!105

Length sZ9500

H. Schmidt, G. Thierauf / Advances in Engineering Software 36 (2005) 11–19 17
are in good accordance with Refs. [11a,18], where for the

latter the function g3(X) is slightly violated.
Fig. 5. Example 10.3—ten-bar Truss [9].
10.2. Steel column

As the second example the safety coefficient of a slender

steel column with initial excentricity under compression

force taken from Ref. [14] was analysed, Fig. 4. The same

control parameters as in example 10.1 were used. The

problem has 10 uncertain variables with different distri-

bution functions, which are assumed to be stochastically

independent. The convergence of the safety coefficients b

can be considered as an optimization problem. The

objective function and the constraints are defined as

f ðXÞ Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXnparamZ10

iZ1

ðv2
i Þ

vuut i Z 1;.; nparam; (23)

and

g1ðXÞ : K36:9%36:9;

g2ðXÞ ZKfs CP
1

A
C

F0

W

e

e KP

� �
R0;

where

P Z P1 CP2 CP3 total load;

A Z 2bd C th area;

W Z bdh C
th2

6
section modulus;

I Z
1

2
bdh2 C

th3

12
moment of inertia;

e Z
p2EI

s2
Eulerian buckling load:

(24)

The average results exceeding 100 runs are: f(X)avZ3.652.

The optimum was first encountered at cav
1thZ6233:07
and the total function calls until the termination criterion

stopped the search cav
1thZ6731:66: These results are in good

accordance with Ref. [14] (f(X)Z3.626), where different

optimization algorithms were tested: Adaptive Sampling:

5400 functions calls, Simulated Annealing: 8600 functions

calls and Genetic-Evolutionary Search Techniques: 15,000

functions calls. The described algorithm needed approxi-

mately the same number of function calls than the fastest

heuristic search algorithm tested and it was considerably

faster than the Simulated Annealing algorithm tested therein

(Table 2).
10.3. Ten-bar truss

The third example is the ten-bar truss. The same control

parameters as in example 10.1 were used. For comparability

imperial units were used. The objective function is:

min f ðXÞ Z
XnparamZ10

iZ1

ðliAirÞ: (25)



Table 3

Comparison of result-test example 10.3

Solution in

Ref. [15]

Solution in

Ref. [9]

Solution in

Ref. [3]

Solution by

TADE

f(X) 5613.8 5458.3 5490.75 5490.75

A1 33.5 33.5 33.5 33.5

A2 1.62 1.62 1.62 1.62

A3 22.0 22.0 22.9 22.9

A4 15.5 14.2 14.2 14.2

A5 1.62 1.62 1.62 1.62

A6 1.62 1.62 1.62 1.62

A7 14.2 7.97 7.97 7.97

A8 19.9 22.9 22.9 22.9

A9 19.9 22.0 22.0 22.0

A10 2.62 1.62 1.62 1.62

Const. 2.0007 2.0123 1.9989 1.9989

H. Schmidt, G. Thierauf / Advances in Engineering Software 36 (2005) 11–1918
In Fig. 5, the truss topology and the two vertically

downward loads of FZ100.0 Kips at joints 2 and 4 are

applied. A maximum displacement of 2.00 in. is allowed in

these joints. The assumed data are

r Z 0:1 lb=in3 specific weight;

E Z 104 Ksi modulus of elasticity;

smax ZG25 Ksi maximum stress:

(26)

The list of discrete values is taken from the American

Institute of Steel Construction (1989), double angle profiles;

sZ(1.62, 1.80, 1.99, 2.13, 2.38, 2.62, 2.63, 2.88, 2.93, 3.09,

3.13, 3.38, 3.47, 3.55, 3.63, 3.84, 3.87, 3.88, 4.18, 4.22,

4.49, 4.59, 4.80, 4.97, 5.12, 5.74, 7.22, 7.97, 11.5, 13.5,

13.9, 14.2, 15.5, 16.0, 16.9, 18.8, 19.9, 22.0, 22.9, 26.5,

30.0, 33.5) (in.2).

The results were compared with Refs. [3,9,15] in

Table 3. The average results exceeding 100 runs are:

f(X)avZ5510.65 lb. The optimum was first encountered at

cav
1th Z4985:43 and the total function calls until the

termination criterion stopped the search at cav
tot Z5989:6:

These results are in good accordance with Refs. [3,9],

where for the latter the displacement boundary is lightly

violated.
11. Conclusion

Besides the examples presented in this contribution the

algorithm was tested on several other convex and non-

convex problems known from optimization literature and

problems arising from structural optimization. As far as

the problem was constrained the algorithm turned out to

be quite effective. It was robust in case the strategy

parameters were varied, but the effectiveness and the

probability of finding the changed optimum were only

moderate.

The combined TADE is a heuristic optimization

technique, which is well suited for optimization problems,

which are characterized by non-linearity, non-convexity
and by continuous and/or discrete design variables.

The proposed combination and modification of two

known heuristic algorithms has shown good convergence

velocity and reliability, and seems to be particularly well

suited for realistic problems in structural engineering.

These conclusions are based on a limited number of test

problems.

The analysis of realistic structures is usually based on

finite element computations. Therefore, the fairly simple

structure of the algorithms is an advantage for their

implementation into existing finite element codes.
References

[1] Botello S, Marraquin JL, Oñate E, Van Horebeek J. Solving structural

optimization problems with genetic algorithms and simulated

annealing. Int J Numer Methods Eng 1999;45:1069–84.

[2] Box GEP, Mueller ME. A note on the generation of random normal

deviates. Ann Math Stat 1958;29:610–1.

[3] Cai J. Diskrete Optimierung dynamisch belasteter Tragwerke mit

sequentiellen und parallelen Evolutionsstrategien, Dissertation an der

Universitt-Gesamthochschule-Essen, Essen; 1995.

[4] Coello CAC. A survey of constraint handling techniques used with

evolutionary algorithms 1999. Technical Report Lania-RI-99-04,

Laboratorio Nacional de Informtica Avanzada, 1999, a.v.I.: http://

www.cs.cinvestav.mx/constraint.

[5] Coit DW, Smith AE. Penalty guided genetic search for reliability

design optimization. Comput Ind Eng 1996;30(4):895–904. Special

Issue on Genetic Algorithms. a.v.I.: http://www.cs.cinvestav.mx/

constraint. Coit DW, Smith AE, Tate DM. Adaptive penalty

methods for genetic optimization of constrained combinatorial

problems. IN-FORMS J Comput 1996;8(2):173–82.

[6] Burke EK, Cowling P, Landa Silva EK. Hybrid population-based

metaheuristic approaches for the space allocation problem. Proceed-

ings of the 2001 Congress on Evolutionary Computation CEC2001

a.v.I 2001; http//citeseer.nj.nec.com/burke01hybrid.html. Burke EK,

Smith AJ. Hybrid evolutionary techniques for the maintenance

scheduling problem. IEEE Trans Power Syst 2000;15(1):122–8.

ISSN 0885-8950. a.v.I.: http://www.asap.cs.nott.ac.uk/publications/

pdf/ajs99_ieee.pdf.

[7] Dueck G, Scheuer T. Threshold accepting: a general purpose

optimization algorithm appearing superior to simulated

annealing. J Comput Phys 1990;90:161–75. Dueck G, Scheuer T,

Wallmeier H-M. Toleranzschwelle und Sintflut: neue Ideen zur

Optimierung. Spektrum der Wissenschaft 1993;3:42–51.

[8] Galinier P, Hao JK. Hybrid evolutionary algorithms for graph

coloring. J Comb Optim 1999;3(4):379–97 a.v.I.: http://www.info.

univ-angers.fr/pub/hao/papers/JOCO99.pdf.

[9] Galante M. Genetic algorithms as an approach to optimize real-world

trusses. Int J Numer Methods Eng 1996;39:361–82.

[10] Goldberg DE. Genetic algorithms in search, optimization and machine

learning. Reading, MA: Addison-Wesley; 1989.

[11] Lampinen J, Zelinka I. Mechanical engineering design optimization

by differential evolution. In: David C, Marco D, Fred G, editors.

New ideas in optimization. London: McGraw-Hill; 1999, p. 127–

46. ISBN 007-709506-5. Lampinen J. A bibliography of differen-

tial evolution algorithm. Technical Report. Lappeenranta Univer-

sity of Technology, Department of Information Technology,

Laboratory of Information Processing a.v.I.: http://www.lut.fi/

jlampine/debiblio.htm.

[12] Magoulas GD, Plagianakos VP, Vrahatis MN. Hybrid methods using

evolutionary algorithms for on-line training. In: Proceedings of the

INNS-IEEE International Joint Conference on Neural Networks,

http://www.statik.uni-essen.de
http://www.statik.uni-essen.de
http://www.statik.uni-essen.de
http://www.statik.uni-essen.de
http://www.statik.uni-essen.de
http://www.statik.uni-essen.de
http://www.statik.uni-essen.de
http://www.statik.uni-essen.de
http://www.statik.uni-essen.de
http://www.statik.uni-essen.de
http://www.statik.uni-essen.de


H. Schmidt, G. Thierauf / Advances in Engineering Software 36 (2005) 11–19 19
Washington DC; 14–19 July 2001, USA. a.v.I.: http://www.info.univ-

angers.fr/pub/hao/papers/JOCO99.pdf.

[13] Mahfoud WS, Goldberg DE. Parallel recombinative simulated

annealing: a genetic algorithm IlliGAL Report No. 93006, Depart-

ment of Computer Science, University of Illinois 1994.

[14] Rackwitz R. Comparison of gradient-free optimizers in structural

reliability analysis. In: Marti K, editor. Stochastic optimization

techniques: numerical methods and technical applications. Berlin:

Springer; 2002, p. 309–19.

[15] Rajeev S, Krishnamoorthy CS. Discrete optimization of structures

using genetic algorithm. J Struct Eng 1992;118:1233–50.
[16] Schwefel H-P. Evolution and optimum seeking. New York: Wiley;

1995.

[17] Storn R, Price K. Differential evolution—a simple and efficient

adaptive scheme for global optimization over continuous spaces 1995.

Technical Report TR-95-012, ICSI, March 1995, a.v.I.: http://www.

icsi.berkeley.edu/techreports/1995.abstracts/tr-95-012.html.

[18] Thierauf G, Cai J. Parallel evolution strategy for solving structural

optimization. Eng Struct 1997;19(4):318–24.

[19] Zaharie D. Critical values for the control parameters of differential

evolution algorithms Proceedings of MENDEL 2002, 8th Inter-

national Conference on Soft Computing 2002.

http://www.statik.uni-essen.de
http://www.statik.uni-essen.de
http://www.statik.uni-essen.de
http://www.statik.uni-essen.de

	A combined heuristic optimization technique
	Introduction
	The mixed discrete-continuous optimization
	The threshold accepting algorithm
	The differential evolution
	Combination of algorithms
	Scaling of variables and constraints
	Constraint handling
	Boundary constraints
	Constraint functions

	Termination criterion
	Handling of integer and discrete variables
	Test examples
	Designing a pressure vessel
	Steel column
	Ten-bar truss

	Conclusion
	References


