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Abstract

The local time-dependent surface heat transfer coefficients for plate finned-tube heat exchangers are esti-

mated in a three-dimensional inverse heat conduction problem. The inverse algorithm utilizing the steepest

descent method (SDM) and a general purpose commercial code CFX4.4 is applied successfully in this study
in accordance with the simulated measured temperature distributions on fin surface by infrared thermo-

graphy. Two different heat transfer coefficients for staggered as well as in-line tube arrangements with

different measurement errors are determined. Results of the numerical simulation show that the reliable

estimated heat transfer coefficients can be obtained by using the present inverse algorithm.

� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Heat exchangers are the workhorse of industry. Variously known as condensers, coolers, evap-
orators, heaters, vaporizers, and so forth. Finned surfaces of the plate finned-tube heat exchangers
have been in use over a long period of time for dissipation of heat by convection. Applications for
finned surfaces are widely seen in air-conditioning, electrical, chemical, refrigeration, cryogenics
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Nomenclature

J[h(Si, t)] functional defined by Eq. (3)
J 0[h(Si, t)] gradient of functional defined by Eq. (15)
k thermal conductivity
Pn(Si, t) direction of descent defined by Eq. (5)
T(X, t) estimated temperature
DT(X, t) sensitivity function defined by Eq. (6)
Y(Si, t) measured temperature

Greek symbols
b search step size
k(X, t) Lagrange multiplier defined by Eq. (12)
e convergence criteria

Superscripts
n iteration index

ˆ estimated value
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and many cooling systems in industrial. Kays and London [1] introduced various types of heat
transfer surfaces.

With the current awareness and concern about energy and resource conservation as well as effi-
cient operation of plants, it is imperative that the heat exchangers be designed and operated opti-
mally. To achieve this goal the estimation of local convective heat transfer coefficients for fin
surface becomes very important in designing the high-performance heat exchangers. Unfortu-
nately, the estimation of the convective heat transfer coefficient is more difficult to perform than
other common thermo-fluid-dynamic quantities, especially in case of non-uniform distributions
and/or of conduction–convection problem.

Ay et al. [2] applied a control volume based finite difference formulation and an infrared ther-
mography based temperature measurements to estimate the local heat transfer coefficients of plate
fin in a 2-D inverse heat conduction problem. Recently, Huang et al. [3] used the technique of
steepest descent method (SDM) and commercial code CFX4.4 [4] to estimate the local convective
heat transfer coefficients over fin surface in a steady-state 3-D inverse heat conduction problem
based on the simulated temperature measurements by infrared thermography. The steepest des-
cent method has great potential in solving the 3-D inverse problem. However the 3-D inverse heat
conduction problem in estimating the time-dependent local convective heat transfer coefficients on
fin surface has never been examined.

The technique of utilizing the inverse algorithms together with the commercial code CFX4.2
has been developed successfully by Huang and Wang [5], they applied the algorithm to estimate
the unknown surface heat fluxes in a 3-D solid. By following similar technique, Huang and Chen
[6] estimated successfully the unknown boundary heat flux in a 3-D inverse heat convection prob-
lem. Huang and Cheng [7] estimated the heat generation rate of chips on a PC board. More
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recently, Huang and Li [8] applied the algorithm to an optimal heating problem in determining the
optimal surface heat fluxes for a three-dimensional forced convection problem.

It should be noted that all of the above applications are 3-D inverse problems, this implies that
the algorithm is powerful since the 3-D inverse problems are still very limited in the open
literature.

The present iterative algorithm can also be found in many works. For instance, Loulou and
Artioukhine [9] determined the optimal choice of vectorial descent parameter for used in the iter-
ative regularization method and showed a considerable increase in the convergence rate. Louah-
lia-Gualous et al. [10] determined the local heat transfer for nucleate pool boiling around the
cylinder using the iterative regularization method. Loulou and Scott [11] used an iterative regu-
larization method to a 3-D heat flux from surface temperature measurements.

The objective of this study is to extend a 3-D steady-state inverse problem [3] to a transient 3-D
inverse problem in estimating the time-dependent local convective heat transfer coefficients of
finned surfaces for the plate finned-tube heat exchangers. The number of unknown heat transfer
coefficients will increase tremendously under present consideration and this will also increase the
difficulty in solving the present inverse problem.

The steepest descent method derives basis from the perturbational principle [12] and transforms
the inverse problem to the solution of three problems, namely, the direct problem, the sensitivity
problem and the adjoint problem, which will be discussed in detail in the text.
2. Direct problem

A typical plate finned-tube heat exchanger is shown in Fig. 1. The plate fins of staggered and
in-line arrangements with domain X(x,y,z) are illustrated in Fig. 2a and b, respectively. The grid
Fig. 1. A typical plate finned-tube heat exchanger.



Fig. 2. (a) The geometry of plate fin in staggered arrangement for use in test case 1. (b) The geometry of plate fin in in-

line arrangement for use in test case 2.

Fig. 3. (a) The grid system for staggered arrangement for use in test case 1. (b) The grid system for in-line arrangement

for use in test case 2.
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system used in numerical experiments for both arrangements are shown in Fig. 3a and b, respec-
tively. The surface on Si, i = 1–6, are subjected to a convective boundary condition with pre-
scribed heat transfer coefficient h(Si, t), i = 1–6, where i = 1–4 represent the edge boundaries;
while i = 5 and 6 indicate the top and bottom surfaces, respectively. The unknown heat transfer
coefficient h(Si, t) could be function of temperature in the present study. The tube boundary
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surfaces on Si, i = 7 to (I + 6), are subjected to a prescribed temperature condition T = T(Si, t),
where I represents the number of tube.

The formulation of this three-dimensional transient heat conduction problem can be expressed
as:
k
o2T ðX; tÞ

ox2
þ o2T ðX; tÞ

oy2
þ o2T ðX; tÞ

oz2

� �
¼ qCp

oT ðX; tÞ
ot

inðX; tÞ ð1aÞ

�k
oT ðS1; tÞ

ox
¼ hðS1; tÞðT1 � T Þ on fin surface S1 ð1bÞ

�k
oT ðS2; tÞ

ox
¼ hðS2; tÞðT � T1Þ on fin surface S2 ð1cÞ

�k
oT ðS3; tÞ

oy
¼ hðS3; tÞðT1 � T Þ on fin surface S3 ð1dÞ

�k
oT ðS4; tÞ

oy
¼ hðS4; tÞðT � T1Þ on fin surface S4 ð1eÞ

�k
oT ðS5; tÞ

oz
¼ hðS5; tÞðT1 � T Þ on fin surface S5 ð1fÞ

�k
oT ðS6; tÞ

oz
¼ hðS6; tÞðT � T1Þ on fin surface S6 ð1gÞ

T ¼ T ðSi; tÞ on tube surfaces; i ¼ 7 to I þ 6 ð1hÞ

T ¼ T1ðX; tÞ for t ¼ 0 ð1iÞ

Here k is the thermal conductivity of fin, q and Cp are the density and heat capacity of the mate-
rial, respectively.

The edge surface area Si, i = 1–4 is small enough when comparing with top and bottom surfaces
Si, i = 5–6. This implies that the heat transfer rate through Si, i = 1–4 can be neglected. For this
reason we assume that the boundary conditions on surface Si, i = 1–4 are adiabatic conditions.
Meanwhile, the fin thickness is being thin, the temperature distribution on S5 should be very close
to S6 for any time t, therefore it is also reasonable to assume that the heat transfer coefficients on
S5 and S6 are equal to each other, i.e. h(S5, t) = h(S6, t). The direct problem becomes
k
o2T ðX; tÞ

ox2
þ o2T ðX; tÞ

oy2
þ o2T ðX; tÞ

oz2

� �
¼ qCp

oT ðX; tÞ
ot

in Xðx; y; z; tÞ ð2aÞ

oT ðSi; tÞ
on

¼ 0 on fin surface Si; i ¼ 1–4 ð2bÞ

�k
oT ðS5; tÞ

oz
¼ hðS5; tÞðT1 � T Þ on fin surface S5 ð2cÞ
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�k
oT ðS6; tÞ

oz
¼ hðS6; tÞðT � T1Þ on fin surface S6 ð2dÞ

T ðSi; tÞ ¼ T 0 on tube surfaces; i ¼ 7 to I þ 6 ð2eÞ

T ðX; tÞ ¼ T1 for t ¼ 0 ð2fÞ

The direct problem considered here is concerned with calculating the plate fin temperatures

when the heat transfer coefficient h(Si, t), i = 5 and 6, thermal properties as well as the initial
and boundary conditions on tube surfaces are known. The solution for the above 3-D heat con-
duction problem in domain X is solved using CFX4.4 and its Fortran subroutine USRBCS.
3. The inverse problem

For the inverse problem considered here, the local time-dependent heat transfer coefficients
h(Si, t), i = 5 and 6, are regarded as being unknown, but everything else in Eq. (2) is known. In
addition, the simulated temperature readings using infrared thermography on the fin surface S5

and S6 are assume available.
Let the temperature reading taken by infrared scanners on fin surfaces S5 and S6 be denoted by

Y(Si, t) � Y(xm,ym, t) � Ym(Si, t), m = 1 to M and i = 5 and 6, where M represents the number of
measured temperature extracting points. This inverse problem can be stated as follows: by utiliz-
ing above mentioned measured temperature data Ym(Si, t), estimate the unknown local time-
dependent heat transfer coefficients h(Si, t).

The solution of this inverse problem is to be obtained in such a way that the following func-
tional is minimized:
J ½hðSi; tÞ� ¼
Z tf

t¼0

XM
m¼1

½TmðSi; tÞ � Y mðSi; tÞ�2 dt i ¼ 5 and 6 ð3Þ
here, Tm(Si, t) are the estimated or computed temperatures at the measured temperature extracting
locations (xm,ym) and time t. These quantities are determined from the solution of the direct prob-
lem given previously by using the estimated local heat transfer coefficients h(Si, t).
4. Steepest descent method for minimization

An iterative process based on the steepest descent method [12] is now applied for the estimation
of unknown heat transfer coefficients h(Si) by minimizing the functional J[h(Si, t)]
hnþ1ðSi; tÞ ¼ hnðSi; tÞ � bnPnðSi; tÞ for n ¼ 0; 1; 2; . . . and i ¼ 5; 6 ð4Þ

where bn is the search step size in going from iteration n to iteration n + 1, and Pn(Si, t) is the direc-
tion of descent (i.e. search direction) given by
PnðSi; tÞ ¼ J 0nðSi; tÞ i ¼ 5 and 6 ð5Þ
which is the gradient direction J
0n(Si, t) at iteration n.
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To complete the iterations in accordance with Eq. (4), the step size bn and the gradient of the func-
tional J 0n(Si, t) need be computed. In order to develop expressions in determining these two quanti-
ties, a ‘‘sensitivity problem’’ and an ‘‘adjoint problem’’ need be constructed as described below.

4.1. Sensitivity problem and search step size

It is assumed that when h(Si, t) undergoes a variation Dh, T is perturbed by T + DT. Then
replacing in the direct problem h by h + Dh and T by T + DT, subtracting from the resulting
expressions the direct problem and neglecting the second-order terms, the following sensitivity
problem for the sensitivity function DT are obtained.
k
o2DT ðX; tÞ

ox2
þ o2DT ðX; tÞ

oy2
þ o2DT ðX; tÞ

oz2

� �
¼ qCp

oDT ðX; tÞ
ot

in Xðx; y; z; tÞ ð6aÞ

oDT ðSi; tÞ
on

¼ 0 on fin surfaces Si; i ¼ 1–4 ð6bÞ

�hðS5; tÞDT þ k
oDT
oz

¼ DhðS5; tÞðT � T1Þ on fin surface S5 ð6cÞ

hðS6; tÞDT þ k
oDT
oz

¼ DhðS6; tÞðT1 � T Þ on fin surface S6 ð6dÞ

DT ðSi; tÞ ¼ 0 on tube surfaces; i ¼ 7 to I þ 6 ð6eÞ

DT ðX; tÞ ¼ 0 for t ¼ 0 ð6fÞ

CFX4.4 is used to solve the above sensitivity problem.
The functional J[hn+1(Si, t)] for iteration n + 1 is obtained by rewriting Eq. (3) as
J ½hnþ1ðSi; tÞ� ¼
Z tf

t¼0

XM
m¼1

½T mðSi; t; h
n � bnP nÞ � Y mðSi; tÞ�2 dt i ¼ 5 and 6 ð7Þ
where we replaced hn+1 by the expression given by Eq. (4). If temperature Tm(Si, t;h
n � bnPn) is

linearized by a Taylor expansion, Eq. (7) takes the form
J ½hnþ1ðSi; tÞ� ¼
Z tf

t¼0

XM
m¼1

½T mðSi; t; h
nÞ � bnDT mðSi; t; PnÞ � Y mðSi; tÞ�2 dt i ¼ 5 and 6 ð8Þ
where Tm(Si, t;h
n) is the solution of the direct problem by using the estimate heat transfer coeffi-

cients for the exact heat transfer coefficients on Si, i = 5 and 6. The sensitivity functions
DTm(Si, t;P

n) are taken as the solutions of problem (6) at the measured temperature extracting
positions (xm,ym,zm, t) by using Dh = Pn. The search step size bn is determined by minimizing
the functional given by Eq. (8) with respect to bn. The following expression results:
bn ¼
R tf
t¼0

PM
m¼1½T mðSi; tÞ � Y mðSi; tÞ�DT mðSi; tÞdtR tf

t¼0

PM
m¼1½DT mðSi; tÞ�2 dt

i ¼ 5 and 6 ð9Þ
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4.2. Adjoint problem and gradient equation

To obtain the adjoint problem, Eq. (2a) is multiplied by the Lagrange multiplier (or adjoint
function) k(X, t) and the resulting expression is integrated over the correspondent space domain.
Then the result is added to the right hand side of Eq. (3) to yield the following expression for the
functional J[h(Si, t)]:
J ½hðSi; tÞ� ¼
Z tf

t¼0

XM
m¼1

½TmðSi; tÞ � Y mðSi; tÞ�2 dt

þ
Z tf

t¼0

Z
X

kðX; tÞ � r2T � qCp
oT
ot

� �� �
dXdt

¼
Z tf

t¼0

Z
Si

½T ðSi; tÞ � Y ðSi; tÞ�2dðx� xmÞdðy � ymÞdSidt

þ
Z tf

t¼0

Z
X

kðX; tÞ � r2T � qCp
oT
ot

� �� �
dXdt in ðX; tÞ; i ¼ 5 and 6 ð10Þ
where d(�) is the Dirac delta function and (xm,ym, t),m = 1–M, refers to the measured tempera-
ture extracting positions.

The variation DJ can be obtained by perturbing h by Dh and T by DT in Eq. (10), subtracting
from the resulting expression the original equation (10) and neglecting the second-order terms. We
thus find
DJ ½hðSi; tÞ� ¼
Z tf

t¼0

Z
Si

2½T ðSi; tÞ � Y ðSi; tÞ�DT ðSi; tÞdðx� xmÞdðy � ymÞdSi dt

þ
Z tf

t¼0

Z
X

kðX; tÞ � r2DT � qCp
oDT
ot

� �� �
dXdt in ðX; tÞ; i ¼ 5 and 6 ð11Þ
In Eq. (11), the domain integral term is reformulated based on the Green�s second identity; the
boundary conditions of the sensitivity problem given by Eqs. 6(b)–6(e) are utilized and then DJ
is allowed to go to zero. The vanishing of the integrands containing DT leads to the following ad-
joint problem for the determination of k(X, t):
k
o
2kðX; tÞ
ox2

þ o
2kðX; tÞ
oy2

þ o
2kðX; tÞ
oz2

� �
þ qCp

okðX; tÞ
ot

¼ 0 in ðX; tÞ ð12aÞ

okðX; tÞ
on

¼ 0 on fin surfaces Si; i ¼ 1–4 ð12bÞ

�khþ k
ok
on

¼ 2k½T ðS5; tÞ � Y ðS5; tÞ�dðx� xmÞdðy � ymÞ on fin surface S5 ð12cÞ

khþ k
ok
on

¼ 2k½T ðS6; tÞ � Y ðS6; tÞ�dðx� xmÞdðy � ymÞ on fin surface S6 ð12dÞ
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kðSi; tÞ ¼ 0 on tube surfaces; i ¼ 7 to I þ 6 ð12eÞ

kðX; tÞ ¼ 0 for t ¼ tf ð12fÞ

Finally, the following integral term is left
DJ ¼
Z tf

t¼0

Z
S5

kðS5; tÞ
k

½T ðS5; tÞ � T1�DhðS5; tÞdS5 dt

�
Z tf

t¼0

Z
S6

kðS6; tÞ
k

½T ðS6; tÞ � T1�DhðS6; tÞdS6 dt ð13Þ
From definition [9], the functional increment can be presented as
DJ ¼
Z tf

t¼0

Z
S5

J 0ðS5; tÞDhðS5; tÞdS5 dt �
Z tf

t¼0

Z
S6

J 0ðS6; tÞDhðS6; tÞdS6 dt ð14Þ
A comparison of Eqs. (13) and (14) leads to the following expression for the gradient of the
functional J[h(Si, t]:
J 0½hðSi; tÞ� ¼
kðSi; tÞ

k
½T ðSi; tÞ � T1� on surfaces Si; i ¼ 5 and 6 ð15Þ
4.3. Stopping criterion

If the problem contains no measurement errors, the traditional check condition is specified as
J ½hnþ1ðSi; tÞ� < e i ¼ 5 and 6 ð16Þ
where e is a small-specified number. However, the observed temperature data may contain mea-
surement errors. Therefore, we do not expect the functional equation (3) to be equal to zero at the
final iteration step. Following the experiences of the authors [5–8], we used the discrepancy prin-
ciple as the stopping criterion, i.e. we assume that the temperature residuals may be approximated
by
T mðSi; tÞ � Y mðSi; tÞ � r i ¼ 5 and 6 ð17Þ
where r is the standard deviation of the measurements, which is assumed to be a constant. Substi-
tuting Eq. (17) into Eq. (3), the following expression is obtained for stopping criteria e:
e ¼ 2Mr2tf ð18Þ
Then, the stopping criterion is given by Eq. (16) with e determined from Eq. (18).
5. Computational procedure

The computational procedure for the solution of this inverse problem using steepest descent
method may be summarized as follows:
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Suppose hn(Si, t) is available at iteration n.

Step 1. Solve the direct problem given by Eq. (2) for T(X, t).
Step 2. Examine the stopping criterion given by Eq. (16) with e given by Eq. (18). Continue if not

satisfied.
Step 3. Solve the adjoint problem given by Eq. (12) for k(X, t).
Step 4. Compute the gradient of the functional J 0 from Eq. (15).
Step 5. Compute the direction of descent Pn from Eq. (5).
Step 6. Set Dh = Pn, and solve the sensitivity problem given by Eq. (6) for DT(X, t).
Step 7. Compute the search step size bn from Eq. (9).
Step 8. Compute the new estimation for hn+1 from Eq. (4) and return to step 1.
6. Results and discussion

The objective of this study is to show the validity of the SDM in estimating the time-dependent
local surface heat transfer coefficients for a 3-D plate finned-tube heat exchangers with no prior
information on the functional form of the unknown function. The physical model for this prob-
lem is described as follows: The thermal conductivity for plate fin is taken as k = 20 W/(m K),
q = 7850 kg/m3, Cp = 440 J/(kg K); ambient temperature is chosen as T1 = 296 K and the tem-
peratures on all tube surfaces are assumed as T(Si, t) = 353 K, i = 7 to (I + 6).

To illustrate the ability of the SDM in predicting h(Si, t), i = 5 and 6, with inverse analysis from
the knowledge of the simulated measured temperature distributions on fin surface, we consider
two numerical test cases with different variations of h(Si, t).

One of the advantages of using the SDM is that the initial guesses of the unknown heat transfer
coefficients h(Si, t) can be chosen arbitrarily. In all the test cases considered here, the initial guesses
for heat transfer coefficients used to begin the iteration are taken as h(Si, t) = 0.0.

In order to compare the results for situations involving random measurement errors, we assume
normally distributed uncorrelated errors with zero mean and constant standard deviation. The
simulated inexact measurement data Y can be expressed as
Y m ¼ Y m;exact þ xr ð19Þ
where Ym, exact is the solution of the direct problem with an exact heat transfer coefficients; r is the
standard deviation of the measurements; and x is a random variable that generated by subroutine
DRNNOR of the IMSL [13], x is within �2.576 to 2.576 for a 99% confidence bound. In order to
simplify the problem, the measurement errors on surface S5 and S6 are assumed the same.

We now present below two numerical experiments in determining h(Si, t) by the inverse analysis:
6.1. Numerical test case 1

The geometry and grid system for the first test case, i.e. staggered tube arrangement for a fin
plate, are shown in Figs. 2a and 3a, respectively. The dimension for fin in x, y and z directions
is 220 mm, 170 mm and 1 mm, respectively. The radius of tube is taken as 12.7 mm and the
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longitudinal pitch of tube (i.e. the distance between center of two tubes) is 60.7 mm. The number
of grid in z-direction is taken as 5 and the total grid number on x–y plane is 1456. The measured
temperature extracting locations are at the grid points. The measurement time period Dt is 150 s
and total measurement time tf is 3750 s, i.e. there are 25 time steps. Therefore there exist totally of
36,400 unknown discrete heat transfer coefficients in this study.

The simulated exact function of the surface heat transfer coefficients on surfaces S5 and S6 in
this numerical experiment is assigned in the following manner: (a). Firstly, solve Eq. (1a) by
assuming the following boundary and initial conditions
T ðS3; tÞ ¼ 20þ ðymax � yÞ
ymax

� 69 on S3; where ymax ¼ 220 ð20aÞ

T ðS4; tÞ ¼ 20 on S4 ð20bÞ

oT ðSi; tÞ
on

¼ 0 for the rest surfaces ð20cÞ

T ðSi; 0Þ ¼ 20 at t ¼ 0 ð20dÞ
(b) Secondly, the values of the calculated temperature distributions on S5 and S6 are then taken as
the simulated exact heat transfer coefficients for use in test case 1.

The three-dimensional inverse problem is first examined by using exact measurements, i.e.
r = 0.0. By setting stopping criteria e = 1.6 · 106, after 30 iterations the inverse solutions con-
verged. The exact and estimated (or calculated) heat transfer coefficients h(S5, t) at time
t = 2250 s and 3600 s are reported in Figs. 4 and 5, respectively.

The estimated heat transfer coefficients are also close to the exact values. The relative error be-
tween exact and estimated heat transfer coefficients is calculated as ERR1 = 2.92%, where ERR1
is defined as
ERR1 % ¼
XJ

j¼1

XM
m¼1

hmðS5; jÞ � ĥmðS5; jÞ
hmðS5; jÞ

�����
�����

" #
ðM � JÞ � 100%= ð21Þ
here J represents the index of discreted time, M indicates the number of grids and ĥm;jðS5Þ indicate
the estimated values.

The corresponding measured and estimated temperature distributions at time t = 2250 s and
3600 s are shown in Figs. 6 and 7, respectively. By comparing Figs. 6 and 7 we find that the esti-
mated temperatures are almost identical to the measured temperatures since the relative error be-
tween the measured and calculated temperatures is calculated as ERR2 = 0.025%, where ERR2 is
defined as
ERR2 % ¼
XJ

j¼1

XM
m¼1

T mðS5; jÞ � Y mðS5; jÞ
Y mðS5; jÞ

����
����

" #
ðM � JÞ � 100%= ð22Þ
here J represents the index of discreted time and M indicates the number of grids.
The inverse calculation is then proceed to consider the inexact temperature measurements. The

standard deviation of the measurements is first taken as r = 0.1, then it was increased to r = 0.3.



Fig. 4. The plots for (a) exact and (b) estimated heat transfer coefficients at t = 2250 s in test case 1 with r = 0.0.

Fig. 5. The plots for (a) exact and (b) estimated heat transfer coefficients at t = 3600 s in test case 1 with r = 0.0.
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For r = 0.1, 10 iterations are needed to satisfy the stopping criteria based on the discrepancy
principle, the estimated heat transfer coefficients at time = 2250 s and 3600 s are shown in Fig.
8. The relative errors for heat transfer coefficients and temperatures are calculated as



Fig. 6. The plots for (a) measured and (b) estimated temperatures at t = 2250 s in test case 1 with r = 0.0.

Fig. 7. The plots for (a) measured and (b) estimated temperatures at t = 3600 s in test case 1 with r = 0.0.
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ERR1 = 7.80% and ERR2 = 0.036%. For r = 0.3, the number of iterations to satisfy the stopping
criteria is only 8, the estimated heat transfer coefficients at time t = 2250 s and 3600 s are shown in
Fig. 9, and the relative errors for heat transfer coefficients and temperatures are calculated as
ERR1 = 11.6% and ERR2 = 0.068%.



Fig. 8. The plots for the estimated heat transfer coefficients at (a) t = 2250 s and (b) t = 3600 s in test case 1 with r = 0.1.

Fig. 9. The plots for the estimated heat transfer coefficients at (a) t = 2250 s and (b) t = 3600 s in test case 1 with r = 0.3.
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Based on above numerical results we learned that the estimated heat transfer coefficients are
sensitive to the measurement errors, for this reason an accurate measurement technique is re-
quired for such kind of problem.
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6.2. Numerical test case 2

In order to show the potential of the present algorithm for use in a transient three-dimensional
inverse problem, we consider the second numerical test case. The geometry and grid systems for
the second test case, i.e. in-line tube arrangement for a fin plate, are shown in Figs. 2b and 3b,
respectively. The dimension for fin in x, y and z directions is 167 mm, 167 mm and 1 mm, respec-
tively. The radius of tube is taken as 12.7 mm and the longitudinal pitch of tube (i.e. the distance
between center of two tubes) is 60.7 mm. The number of grid in z-direction is taken as 5 and the
total grid number on x–y plane is 1800. The measurement time period, total measurement time
and thermal properties are taken the same as in case 1. Therefore there are totally of 45,000 un-
known discrete heat transfer coefficients grids in this test case.

The exact function of the surface heat transfer coefficients on surfaces S5 and S6 in this numer-
ical experiment is obtained in the following manner:

(a) Firstly, solve Eq. (1a) by assuming the following boundary and initial conditions
Fig.
T ðS3; tÞ ¼ 70 on S3 ð23aÞ

T ðS4; tÞ ¼ 20 on S4 ð23bÞ

oT ðSi; tÞ
on

¼ 0 for the rest surfaces ð23cÞ

T ðSi; 0Þ ¼ 20 at t ¼ 0 ð23dÞ

(b) Secondly, the values of the calculated temperature distributions on S5 and S6 are then re-

garded as the exact heat transfer coefficients for use in test case 2.
When assuming r = 0.0 and setting e = 2.4 · 106, after 30 iterations the estimated heat transfer

coefficients can be obtained. The exact and estimated (or calculated) heat transfer coefficients
10. The plots for (a) exact and (b) estimated heat transfer coefficients at t = 2250 s in test case 2 with r = 0.0.



Fig. 11. The plots for (a) exact and (b) estimated heat transfer coefficients at t = 3600 s in test case 2 with r = 0.0.

Fig. 12. The plots for (a) measured and (b) estimated temperatures at t = 2250 s in test case 2 with r = 0.0.
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h(S5, t) at time t = 2250 s and 3600 s are reported in Figs. 10 and 11, respectively. The measured
and estimated temperature distributions at time t = 2250 s are shown in Fig. 12. ERR1 and ERR2
are calculated as 2.12% and 0.012%, respectively. The accuracy of the present algorithm is thus
ensured.

Next, the inverse calculation is examined when the inexact temperature measurements are con-
sidered. The standard deviation of the measurements is taken as r = 0.3. Seven iterations are
needed to satisfy the stopping criteria based on the discrepancy principle, the estimated heat trans-
fer coefficients at time t = 2250s are shown in Fig. 13. The relative errors for heat transfer coef-
ficients and temperatures are calculated as ERR1 = 12.3% and ERR2 = 0.057%, respectively.



Fig. 13. The plots for the estimated heat transfer coefficients at (a) t = 2250 s and (b) t = 3600 s in test case 2 with

r = 0.3.
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From above two numerical test cases we concluded that the SDM is now applied successfully in
this 3-D inverse heat conduction problem for predicting the time-dependent surface heat transfer
coefficients of plate fins.
7. Conclusions

The SDM with adjoint equation was successfully applied in determining the time-dependent lo-
cal heat transfer coefficients for plate finned-tube heat exchangers for a 3-D inverse heat conduc-
tion problem. Two test cases involving different arrangement for fins, different type of heat
transfer coefficients and different measurement errors were considered. The results show that
the SDM does not require a priori information for the functional form of the unknown functions
and the reliable estimated values can always be obtained.
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