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Abstract

In this paper, we use a hierarchical identification principle to study identification problems for multivariable discrete-time systems. We
propose a hierarchical gradient iterative algorithm and a hierarchical stochastic gradient algorithm and prove that the parameter estimation
errors given by the algorithms converge to zero for any initial values under persistent excitation. The proposed algorithms can be applied
to identification of systems involving non-stationary signals and have significant computational advantage over existing identification
algorithms. Finally, we test the proposed algorithms by simulation and show their effectiveness.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

For decades, a great deal of work has been published
on the identification of multivariable, or multi-input multi-
output (MIMO), systems (see, e.g.,Gauthier & Lan-
dau, 1978; El-Sherief & Sinha, 1979; Sinha & Kwong,
1979; El-Sherief, 1981; Verhaegen & Dewilde, 1992a,b;
Verhaegen, 1993, 1994; Overshee & De Moor, 1994, 1996;
Chou & Verhaegen, 1997; McKelvey, Akcay, & Ljung,
1996; Pintelon, 2002); however, further research in this area
is still required for the following reasons:

• In the area of MIMO system identification based
on difference equations, most existing identification

� This paper was not presented at any IFAC meeting. This paper was
recommended for publication in revised form by Associate Editor B.
Ninness under the direction of Editor T. Soederstrorm. This research was
supported by the Natural Sciences and Engineering Research Council of
Canada.

∗ Corresponding author. Tel.: +7804923940; fax: +7804921811.
E-mail addresses:fding@sytu.edu.cn(F. Ding),tchen@ece.ualberta.ca

(T. Chen).
1 Feng Ding is currently a Research Associate at the University of

Alberta, Edmonton, Canada.

0005-1098/$ - see front matter� 2004 Elsevier Ltd. All rights reserved.
doi:10.1016/j.automatica.2004.10.010

algorithms using transfer matrices employ the idea of
decomposing a MIMO system into several subsystems,
depending on the number of outputs, and then of estimat-
ing parameters of the subsystems one by one (Gauthier &
Landau, 1978; El-Sherief & Sinha, 1979; Sinha & Kwong,
1979; El-Sherief, 1981). Since such identification algo-
rithms require computing many covariance matrices (one
for each subsystem), they have the drawback of having
heavy computational load. The simultaneous identifica-
tion of all parameters of a system can reduce the compu-
tational burden, e.g.,Sen and Sinha (1976)suggested to
use a matrix pseudo-inverse approach; however, the com-
putational load is large due to large number of zero entries
in the information matrix in the estimation algorithm.
Moreover, the algorithm inSen and Sinha (1976)handles
noise-free data only. Recently,Pintelon (2002)studied
the stochastic properties (strong convergence, asymptotic
normality, strong consistency) of the frequency-domain
subspace algorithms described inMcKelvey et al. (1996)
andVan Overschee and De Moor (1996), where the true
noise covariance matrix was replaced by the sample
noise covariance matrix obtained from a small number of
independent repeated experiments.
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• In the off-line state-space model identification literature,
subspace state-space identification (4SID for short) meth-
ods based on the RQ factorization and singular value de-
composition (SVD) have been developed for MIMO sys-
tems (Verhaegen & Dewilde, 1992a,b; Verhaegen, 1993,
1994; Overshee & De Moor, 1994, 1996; Chou & Verhae-
gen, 1997). The basic idea is to determine the extended
observability matrix from the SVD or RQ factorization
of an information matrix consisting of given input/output
(I/O) data, and then to compute the system parameter ma-
trices. But, as the size of the information matrix grows,
the difficulty and complexity in computation increase.

• In the recursive 4SID area, some methods (e.g.,
Gustafsson, 1998; Oku & Kimura, 2002) are based on
the idea of directly updating an estimate of the extended
observability matrix by using subspace tracking; other
methods (e.g.,Verhaegen & Deprettere, 1991; Lovera,
Gustafsson, & Verhaegen, 2000) are based on subspace
tracking ideas for the recursive update of the RQ fac-
torizations or the SVD by using array signal processing
algorithms; seeComon and Golub (1990)for a review of
subspace tracking algorithms andYang (1995, 1996)for
projection approximation subspace tracking. Finally,Cho,
Xu, and Kailath (1994)presented a recursive identification
method of state-space models using the generalized Schur
algorithm for updating the noise covariance matrix. How-
ever, in order to obtain system parameter estimates, these
4SID methods also require some additional computation,
e.g., computing theA-matrix using the shift invariant
structure of the extended observability matrix (obtained
by use of SVD) and computingB- andD-matrices using
least squares methods (Lovera et al., 2000). Our approach
in this work is to updatedirectlyparameter estimates as in
the prediction error method based on difference equation
descriptions (Ljung, 1999); moreover, we do not assume
that the problems are stationary and/or ergodic, which
is different from those mentioned above. The algorithms
proposed are simple and easy to implement, and have less
computational effort than existing algorithms.

Therefore, developing computationally efficient and re-
cursive system identification algorithms is the goal in this
paper. We will frame our study in the identification of trans-
fer matrix models. The key idea is the so-calledhierarchi-
cal identification, and is inspired by the hierarchical control
based on the decomposition-coordination principle for large-
scale systems (Singh, 1980; Tamura & Yoshikawa, 1990;
Drouin, Abou-Kandil, & Mariton, 1991). Hierarchical iden-
tification uses subsystem decomposition in identification,
and is also calledbootstrap identification.
The principle of hierarchical identification is as follows.A

system is decomposed into several subsystems with smaller
dimension and fewer variables, and then the parameter
vector and/or parameter matrix of each subsystem is
identified, respectively. Because of such decomposition,
difficulties arise in that there exist common unknown

parameters/quantities among subsystems, which normally
requires difficult iterative calculation. In order to overcome
such difficulties, when recursively computing the parameter
estimate of theith subsystem, the hierarchical identifi-
cation principle implies that the unknown parameters of
other subsystems which appeared in theith subsystem are
replaced with their estimates. Using this idea, we present
the hierarchical gradient iterative algorithm and hierarchi-
cal stochastic gradient algorithm for MIMO systems. The
main advantage of such algorithms is that they require less
computational effort than existing identification algorithms,
e.g., the Sen and Sinha’s algorithm and the 4SID methods
mentioned above.
The hierarchical identification methods have important

applications in parameter identification of multirate systems
(Chen & Qiu, 1994; Qiu & Chen, 1994, 1999; Li, Shah, &
Chen, 2001, 2002; Li, Shah, Chen, & Qi, 2003; Tangirala,
Li, Patwardhan, Shah, & Chen, 2001; Sheng, Chen, & Shah,
2002), because lifting converts a multirate time-varying sys-
tem into a time-invariant MIMO system.
The paper is organized as follows. In Section 2, we discuss

modeling issues related to MIMO systems. In Sections 3 and
4, we develop the hierarchical gradient iterative algorithm
and hierarchical stochastic gradient identification algorithm,
and analyze the performance of the proposed algorithms.
In Section 5, we compare computational efficiency of our
algorithm with several existing ones, establishing a clear
advantage. Section 6 presents an illustrative example for the
results in this paper. Finally, concluding remarks are given
in Section 7.

2. The problem formulation

Consider a linear discrete-time, multivariable system de-
scribed by the following state-space model:

x(t + 1) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t),

whose input/output relationship can be represented as

y(t) = G(z)u(t). (1)

Here, x(t) ∈ Rn is the state vector,u(t) ∈ Rr the sys-
tem input vector,y(t) ∈ Rm the system output vector,
(A,B,C,D) the system matrices of appropriate sizes, and
G(z) ∈ Rm×r the transfer matrix (TM) which relates to the
state-space data as follows:

G(z) = C(zI − A)−1B + D = C adj[zI − A]B
det[zI − A] + D

= C adj[I − Az−1]B
z−n det[zI − A] + D =: Q(z)

�(z)

with �(z) the characteristic polynomial in the unit delay
operatorz−1 [z−1y(t) = y(t − 1)] of degreen, defined as
the least common denominator ofG(z),Q(z) a polynomial
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matrix in z−1, and both represented as

�(z) = 1+ �1z−1 + �2z−2 + · · · + �nz−n, �i ∈ R1,

Q(z) = Q0 + Q1z
−1 + Q2z

−2 + · · · + Qnz
−n,

Qi ∈ Rm×r .

The identification of the characteristic polynomial�(z) is
very important for, e.g., pole placement in control design.
Also, for systems with unknown parameters, it is unreason-
able to assume that some entries of the TM have some com-
mon known divisor.
Eq. (1) can also be expressed as

�(z)y(t) = Q(z)u(t) or

y(t) +
n∑

i=1

�iy(t − i) =
n∑

i=0

Qiu(t − i). (2)

Define the parameter matrix�, parameter vector�, informa-
tion vector�(t) and information matrix�(t) as

�T = [Q0 Q1 · · · Qn] ∈ Rm×n0, n0 := (n + 1)r,

� =




�1
�2
...

�n


 ∈ Rn, �(t) =




u(t)

u(t − 1)
...

u(t − n)


 ∈ Rn0,

�(t) = [y(t − 1) y(t − 2) · · · y(t − n)] ∈ Rm×n.

Hence, from (2), we obtain the following identification
model:

y(t) + �(t)� = �T�(t). (3)

The system parameters to be identified in (3) include two
parts: one parameter vector� consisting of the coefficients
of the characteristic polynomial of the system, and one pa-
rameter matrix� consisting of the coefficients of the numer-
ator polynomial matrix of the TM. Due to the presence of an
unknown parameter vector� ∈ Rn and an unknown param-
eter matrix�T ∈ Rm×n0 in (3), we can use the Kronecker
product to transform the parameter matrix�T into a stacked
vector vec(�T), then the model in (3) may be rewritten as

y(t) = [−�(t), (�T(t) ⊗ Im)]
[

�
vec(�T)

]
=: H(t)�s , H(t) ∈ Rm×(mn0+n), �s ∈ Rmn0+n, (4)

whereIm is anm×m identity matrix. Although this model
may be identified by the recursive least squares algorithm
(in fact, this is the Sen and Sinha’s matrix pseudo-inverse
approach), as we have pointed out in the introduction that it
requires computing large covariance matrices of dimensions
(mn0 + n) × (mn0 + n) and anm × m matrix inversion
at each step. A comparison of computational efficiency of
several algorithms is given in Section 5.
Therefore, the objectives of this paper are two-fold:

first, by means of the hierarchical identification principle,

present new algorithms to estimate the unknown parameters
(�i , Qi) in (2) from the given input–output measurement
data{u(t), y(t) : t = 1,2, . . .}, or equivalently, to estimate
(�, �) in (3) from {y(t),�(t),�(t) : t = 1,2, . . .}; and
second, study convergence performance issues of the new
algorithms presented.

3. The hierarchical gradient iterative algorithm

In this section, according to the hierarchical identification
principle, we decompose the MIMO system in (3) into two
subsystems: one containing the parameter vector�, and the
other containing the parameter matrix�; and then the itera-
tive solutions of the parameter vector and parameter matrix
of the two subsystems are established by application of the
steepest descent principle. The details are as follows.
Define two vectors

b1(t) := −y(t) + �T�(t),
b2(t) := y(t) + �(t)�.

Then, we can decompose the system in (3) into the following
two fictitious subsystems:

S1: �(t)� = b1(t),

S2: �T�(t) = b2(t).

Supposet � mn0 + n. Define

�(t) :=




�(1)
�(2)
...

�(t)


 ,

B1(t) :=



b1(1)
b1(2)
...

b1(t)


=




−y(1) + �T�(1)
−y(2) + �T�(2)

...

−y(t) + �T�(t)


 , (5)

�(t) := [�(1) �(2) · · · �(t)],
B2(t) := [b2(1) b2(2) · · · b2(t)]

= [y(1) + �(1)� y(2) + �(2)� · · · y(t)

+ �(t)�]. (6)

So, we have

S1: �(t)� = B1(t), (7)

S2: �T�(t) = B2(t) or �T(t)� = BT
2 (t). (8)

Using the negative gradient search, we may obtain the itera-
tive solutions�k and�k of � and�, respectively, as follows:

�k = �k−1 + ��T(t)[B1(t) − �(t)�k−1], (9)

�Tk = �Tk−1 + �[B2(t) − �Tk−1�(t)]�T(t),

k = 1,2, . . . , (10)
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where�>0 is called the iterative step-size or convergence
factor to be given later. SubstitutingB1(t) in (5) into (9),
B2(t) in (6) into (10) gives

�k = �k−1 + ��T(t)

×







−y(1) + �T�(1)
−y(2) + �T�(2)

...

−y(t) + �T�(t)


− �(t)�k−1


 , (11)

�Tk = �Tk−1 + �{[y(1) + �(1)� y(2) + �(2)�

· · · y(t) + �(t)�] − �Tk−1�(t)}�T(t). (12)

Here, a difficulty arises in the expressions on the right-hand
sides of (11) and (12) contain the unknown parameter ma-
trix � and unknown parameter vector�, respectively; so it
is impossible to realize the iterative algorithm in (11) and
(12). Our approach is based on the hierarchical identifica-
tion principle: the unknown variables� and� in (11) and
(12) are replaced with their corresponding estimates at time
k − 1. Hence, we have the hierarchical gradient iterative
(HGI) algorithm

�k = �k−1 + ��T(t)

×







−y(1) + �Tk−1�(1)
−y(2) + �Tk−1�(2)

...

−y(t) + �Tk−1�(t)


− �(t)�k−1



,

�Tk = �Tk−1 + �{[y(1) + �(1)�k−1 y(2) + �(2)�k−1

· · · y(t) + �(t)�k−1] − �Tk−1�(t)}�T(t).

or

�k = �k−1 − �
t∑

i=1

�T (i)[y(i) + �(i)�k−1 − �Tk−1�(i)],

(13)

�Tk = �Tk−1 + �
t∑

i=1

[y(i) + �(i)�k−1 − �Tk−1�(i)]�T(i). (14)

The convergence factor can be taken as

� =
(

t∑
i=1

[‖�(i)‖2 + ‖�(i)‖2]
)−1

=: �0. (15)

Here, the norm of thematrixX is defined by‖X‖2=tr[XXT].
To initialize the algorithm in (13)–(15), we take�0 = 0 or
some small real vector, e.g.,�0 = 10−61n×1, and�T0 = 0 or
some small real matrix, e.g.,�T0 = 10−61m×n0 with 1m×n0

being anm × n0 matrix whose elements are all 1.
The HGI algorithm employs the iterative update of the

estimates�̂ and �̂ using a fixed data batch with a finite
length t. In this paper, in order to distinguish on-line from

Table 1
The dimensions of the HGI algorithm variables

Item Variables Dimensions

1 Output variable y(t) ∈ Rm

2 Parameter vector � ∈ Rn

3 Information matrix �(t) ∈ Rm×n

4 Stacked information matrix �(t) ∈ R(mt)×n

5 Parameter matrix �T ∈ Rm×n0

6 Information vector �(t) ∈ Rn0

7 Stacked information matrix �(t) ∈ Rn0×t

off-line calculation, we useiterativewith subscriptk, e.g.,
�̂k, for off-line algorithms, andrecursivewith no subscript,
e.g.,�̂(t) in the next section, for on-line ones. We imply that
a recursive algorithm can be on-line implemented, but an
iterative one cannot.
If two different convergence factors (�1 and�2) are used

for iterations (9) and (10), then the algorithm obtained will
be more general, but the convergence proof may be more
difficult.
The dimensions of the HGI algorithm variables are listed

in Table 1for convenience. For the convergence analysis,
we need a preliminary result.

Lemma 1. Assume that there exist vector sequencesx(k) ∈
Rn and�(i) ∈ Rn satisfying

�T(i)x(k) = 0, as k → ∞,

for each i ∈ [1, t] (t � n), and that the vector�(i) is
sufficiently rich, i.e., there exist a positive constant c and
an integerN�n such that, for any i�N , the following
inequality holds:

(A1) 1
N

∑N
l=1�(i + l)�T(i + l)�cI .

Thenlimk→∞ x(k) = 0.

Proof. Lettingε(k, i)=�T(i)x(k), we have limk→∞ ε(k, i)=
0. Since�T(i + l)x(k) = ε(k, i + l), after taking the norm
‖ · ‖2 of both sides of the above equation, the summation
from l = 1 toN is

xT(k)

[
N∑
l=1

�(i + l)�T(i + l)

]
x(k)

=
N∑
l=1

ε2(k, i + l).

By using condition (A1), it follows that

0�cN‖x(k)‖2�
N∑
i=1

ε2(k, i + l).

Taking the limit of both sides of the above inequality will
obtain the conclusion of Lemma 1 based on properties of
the limiting process. �
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Theorem 1. For the system in(3) and the HGI algorithm
in (13)–(15),for any given initial values�0 and�0, then the
parameter estimation error given by the HGI algorithm is
bounded, i.e.,

‖�k − �‖2 + ‖�k − �‖2�	0, f or any k�1.

Here, 	0 = ‖�0 − �‖2 + ‖�0 − �‖2<∞.

Proof. Define the parameter estimation error vector�̃k and
the parameter estimation error matrix�̃k as

�̃k = �k − � and �̃k = �k − �.

Using (13), (14) and (3), we have

�̃k = �̃k−1 − �
t∑

i=1

�T(i)[�(i)�̃k−1 − �̃
T
k−1�(i)],

�̃
T
k = �̃

T
k−1 + �

t∑
i=1

[�(i)�̃k−1 − �̃
T
k−1�(i)]�T(i).

Using the formulae‖x+y‖2=‖x‖2+2tr[xTy]+‖y‖2 and
‖xTy‖2�‖x‖2‖y‖2, it is easy to obtain

‖�̃k‖2 = �̃Tk �̃k = ‖�̃k−1‖2

− 2�
t∑

i=1

�̃Tk−1�
T(i)[�(i)�̃k−1 − �̃

T
k−1�(i)]

+ �2
∣∣∣∣∣
∣∣∣∣∣

t∑
i=1

�T(i)[�(i)�̃k−1 − �̃
T
k−1�(i)]

∣∣∣∣∣
∣∣∣∣∣
2

�‖�̃k−1‖2 − 2�
t∑

i=1

[�(i)�̃k−1]T[�(i)�̃k−1 − �̃
T
k−1�(i)]

+ �2
t∑

i=1

‖�(i)‖2

×
t∑

i=1

‖�(i)�̃k−1 − �̃
T
k−1�(i)‖2, (16)

‖�̃k‖2 = tr[�̃Tk �̃k] = ‖�̃k−1‖2 + 2�tr{
t∑

i=1

[�(i)�̃k−1 − �̃
T
k−1�(i)]�T(i)�̃k−1

}

+ �2
∣∣∣∣∣
∣∣∣∣∣

t∑
i=1

[�(i)�̃k−1 − �̃
T
k−1�(i)]�T(i)

∣∣∣∣∣
∣∣∣∣∣
2

�‖�̃k−1‖2 + 2�
t∑

i=1

[�̃Tk−1�(i)]T[�(i)�̃k−1 − �̃
T
k−1�(i)]

+ �2
t∑

i=1

‖�(i)‖2

×
t∑

i=1

‖�(i)�̃k−1 − �̃
T
k−1�(i)‖2. (17)

Define a non-negative definite function

V (k) = ‖�̃k‖2 + ‖�̃k‖2.
Using (16) and (17) gives

V (k)�V (k − 1) − 2�
t∑

i=1

‖�(i)�̃k−1 − �̃
T
k−1�(i)‖2

+ �2
t∑

i=1

[‖�(i)‖2 + ‖�(i)‖2]

×
t∑

i=1

‖�(i)�̃k−1 − �̃
T
k−1�(i)‖2

= V (k − 1) − �

{
2− �

t∑
i=1

[‖�(i)‖2 + ‖�(i)‖2]
}

×
t∑

i=1

‖�(i)�̃k−1 − �̃
T
k−1�(i)‖2

= V (0) − �

{
2− �

t∑
i=1

[‖�(i)‖2 + ‖�(i)‖2]
}

×
k−1∑
j=0

t∑
i=1

‖�(i)�̃j − �̃
T
j �(i)‖2.

If the convergence factor� is chosen to satisfy

0<�<2�0,

thenV (k)�V (0) = 	0. This proves Theorem 1.�

Furthermore, from the above proof we also have

∞∑
k=0

t∑
i=1

‖�(i)�̃k − �̃
T
k�(i)‖2<∞.

It follows that ask → ∞,

t∑
i=1

‖�(i)�̃k − �̃
T
k�(i)‖2 = 0 or

�(i)�̃k − �̃
T
k�(i) = 0 for any i ∈ [1, t]. (18)

According to this equation, we can obtain the consistent
parameter estimates from the following theorem.

Theorem 2. For the system in(3) and the HGI algorithm
in (13)–(15),if the input–output data vectors

�j (i) :=
[
�T
j (i)

�(i)

]
, j = 1,2, . . . , m
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are sufficiently rich, where�j (i) is the jth row of�(i), then
the parameter estimation error given by the HGI algorithm
converges to zero for any finite initial values, i.e.,

lim
k→∞ ‖�k − �‖2 + ‖�k − �‖2 = 0 or

lim
k→∞ �k = � and lim

k→∞ �k = �.

Proof. Let (�̃
T
k )j represent thejth row of �̃

T
k , and

xj (k) :=
[

�̃k
−(�̃

T
k )

T
j

]
.

Then (18) may be decomposed into the followingm equa-
tions:

�T
j (i)xj (k) = 0, j = 1,2, . . . , m ask → ∞.

Since�j (i) (j = 1,2, . . . , m) is sufficiently rich, according
to Lemma 1, we have

lim
k→∞ xj (k) = 0, j = 1,2, . . . , m.

This proves Theorem 2.�

The off-line HGI algorithm here is developed for deter-
ministic MIMO systems; so the convergence results of these
two theorems are obvious. The HGI algorithm can be ex-
tended to stochastic cases.

4. The hierarchical stochastic gradient algorithm

In this section, we derive a hierarchical gradient parameter
estimation algorithm based on the model discussed in (3)
in the stochastic framework, and establish the convergence
properties of the algorithm.
Based on the model in (3) and introducing a noise term

w(t), we have

y(t) + �(t)� = �T�(t) + w(t). (19)

We assume that{w(t),Ft } is a martingale difference vector
sequence defined on a probability space{
,F,P}, where
{Ft } is the� algebra sequence generated by{w(t)}, i.e.,
Ft = �(w(t), w(t − 1), w(t − 2), . . .) or

Ft = �(y(t), y(t − 1), y(t − 2), . . .)

for the deterministic sequence{u(t)}. The sequence{w(t)}
satisfies (Goodwin & Sin, 1984):

(A2) E[w(t)|Ft−1] = 0 a.s.;
(A3) E[‖w(t)‖2|Ft−1] = �2w(t)��2w <∞ a.s.;
(A4) lim supt→∞ 1

t

∑t
i=1‖w(i)‖2��2w <∞ a.s.

That is,w(t) is a noise vector with zero mean and time-
varying variances. Thus, the system in (19) may involve
non-stationary signals.

In order to derive the hierarchical gradient algorithm,
which can be on-line implemented, we need to introduce
two intermediate vectorsY (t) andZ(t) as follows:

Y (t) := y(t) − �T�(t), (20)

Z(t) := y(t) + �(t)�. (21)

According to the hierarchical identification principle, we can
decompose the system in (19) into the following two ficti-
tious subsystems:

S3: Y (t) = −�(t)� + w(t), (22)

S4: Z(t) = �T�(t) + w(t). (23)

Here,Y (t) ∈ Rm, �(t) ∈ Rm×n and� ∈ Rn in (22) can
be regarded as the output vector, information matrix and
parameter vector of subsystemS3, respectively. Similarly,
Z(t) ∈ Rm,�(t) ∈ Rn0 and �T ∈ Rm×n0 in (23) as the
output vector, information vector and parameter matrix of
subsystemS4, respectively. Then, for the subsystemsS3 in
(22) andS4 in (23), we can form two prediction error criteria
(Ljung, 1999; Söderström & Stoica, 1988)

J1(�) = ‖Y (t) + �(t)�‖2 and

J2(�) = ‖Z(t) − �T�(t)‖2.
Let �̂(t) and �̂(t) be the estimates of� and � at time t.
Using the steepest descent gradient method, we obtain the
estimates of� in subsystemS3 and� in subsystemS4 by
minimizing J1(�) andJ2(�), respectively, as follows:

�̂(t) = �̂(t − 1) − �T(t)

r(t)
[Y (t) + �(t)�̂(t − 1)], (24)

�̂(t) = �̂(t − 1) + �(t)
r(t)

[Z(t) − �̂
T
(t − 1)�(t)]T. (25)

Here, 1/r(t) represents a time-varying convergence factor
to be given later. Substituting (20) into (24), (21) into (25)
gives

�̂(t) = �̂(t − 1) − �T(t)

r(t)

× [y(t) − �T�(t) + �(t)�̂(t − 1)], (26)

�̂(t) = �̂(t − 1) + �(t)
r(t)

× [y(t) + �(t)� − �̂
T
(t − 1)�(t)]T. (27)

Here, we can see that the expressions on the right-hand sides
of (26) and (27) contain the unknown� and unknown�, re-
spectively. As in the preceding section, by using hierarchical
identification principle, we replace these unknown variables
� in (26) and� in (27) with their corresponding estimates�̂
and�̂ at time(t − 1). Hence, we have

�̂(t) = �̂(t − 1) − �T(t)

r(t)

× [y(t) + �(t)�̂(t − 1) − �̂
T
(t − 1)�(t)], (28)
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�̂(t) = �̂(t − 1) + �(t)
r(t)

× [y(t) + �(t)�̂(t − 1) − �̂
T
(t − 1)�(t)]T. (29)

As in Goodwin and Sin (1984), we taker(t) to be

r(t) = r(t − 1) + ‖�(t)‖2 + ‖�(t)‖2, r(0) = 1. (30)

Then we obtain the hierarchical stochastic gradient (HSG)
algorithm in (28)–(30). The choice of the initial values of
the HSG algorithm is as in the HGI algorithm.
The standard least squares (LS) algorithm may be applied

to generate the parameter estimate of models of form:y(t)=
�T�(t)+w(t),� representing a parameter vector or matrix,
�(t) the information vector. In general, the estimate can be
expressed as (Ljung, 1999)

�̂(t) = �̂(t − 1) + L(t)[yT(t) − �T(t)�̂(t − 1)]
= �̂(t − 1) + E(t),

whereE(t) = L(t)[yT(t) − �T(t)�̂(t − 1)] is the innova-
tion vector,L(t) denotes the gain vector. The LS algorithm
employs the idea of the innovation modification, i.e., the es-
timate�̂(t) at time t equals the estimatê�(t − 1) at time
t − 1 plus the innovationE(t). But the hierarchical identi-
fication produce two estimates: a vector�̂(t) and a matrix
�̂(t). The estimatê�(t) at timet depends not only on̂�(t−1)
but also on�̂(t − 1); similarly, the estimatê�(t) at time t
depends not only on̂�(t − 1) but also on�̂(t − 1).
The following is to prove the convergence of the HSG

algorithm by formulating a martingale process and by us-
ing the martingale convergence theorem in (Goodwin &
Sin, 1984, Lemma D.5.3) rather than the martingale hyper-
convergence theorem (Ding, Yang, & Xu, 2000).

Lemma 2. Assume that the vector sequencesx(t) ∈ Rn and
�(t) ∈ Rn satisfy the following equations:

�T(t)x(t) = 0 as t → ∞;
lim
t→∞[x(t) − x(t − j)] = 0,

f or any 0<j <∞ a.s.;
and the vector�(t) is persistently exciting, i.e., there exist
a positive constantc, c1 and an integerN�n such that the
following persistent excitation condition holds:

(A5) cI � 1

N

N∑
i=1

�(t + i)�T(t + i)�c1I

a.s. f or any t�0.

Thenlim t→∞ x(t) = 0.

Proof. Letting ε(t + j) = x(t + j) − x(t) or x(t + j) =
x(t)+ ε(t + j), we have limt→∞ ε(t)=0. In the same way,

let ε1(t) = �T(t)x(t), we have limt→∞ ε1(t) = 0. So

�T(t + i)x(t + i) = ε1(t + i), or

�T(t + i)x(t) = −�T(t + i)ε(t + i) + ε1(t + i).

After taking the norm‖ · ‖2 of both sides of the above equa-
tion, the summation fromi = 1 toN is

xT(t)

[
N∑
i=1

�(t + i)�T(t + i)

]
x(t)

=
N∑
i=1

‖ − �T(t + i)ε(t + i) + ε1(t + i)‖2

�2
N∑
i=1

[‖�(t + i)‖2ε2(t + i) + ε21(t + i)].

Taking the trace of condition (A5) will lead to

‖�(t)‖2�nNc1 =: 	m <∞.

Using condition (A5), we have

0�cN‖x(t)‖2�2
N∑
i=1

[	mε2(t + i) + ε21(t + i)].

Taking the limit of both sides of the above inequality will
give the conclusion of Lemma 2 according to limit existence
criterion. �

Lemma 3. For the HSG algorithm in(28)–(30),the follow-
ing inequality holds:

s :=
∞∑
t=1

‖�(t)‖2 + ‖�(t)‖2
r2(t)

<∞ a.s.

Proof. According to the definition ofr(t), we have

s�
∞∑
t=1

‖�(t)‖2 + ‖�(t)‖2
r(t − 1)r(t)

=
∞∑
t=1

[
1

r(t − 1)
− 1

r(t)

]

= 1

r(0)
− 1

r(∞)
<∞, a.s.

This completes the proof of Lemma 3.�

Theorem 3. For the system in(19) and the HSG algorithm
in (28)–(30),if Assumptions(A2)–(A4) hold, then the pa-
rameter estimation error given by the HSG algorithm is con-
sistently bounded, i.e.,

‖�̂(t) − �‖2 + ‖�̂(t) − �‖2 → W0<∞
a.s. as t → ∞.

Here, E[W0]�‖�̂(0) − �‖2 + ‖�̂(0) − �‖2 + �2w
r(0) <∞.
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Proof. Define the parameter estimation error vector�̃(t) and
the parameter estimation error matrix�̃(t) as

�̃(t) = �̂(t) − �, (31)

�̃(t) = �̂(t) − �. (32)

Substituting (19) and (28) into (31) gives

�̃(t) = �̃(t − 1) − �T(t)

r(t)
[−�(t)� + �T�(t)

+ w(t) + �(t)�̂(t − 1) − �̂
T
(t − 1)�(t)]

= �̃(t − 1) − �T(t)

r(t)
[(t) − �(t) + w(t)], (33)

where

(t) = �(t)�̂(t − 1) − �(t)� = �(t)�̃(t − 1),

�(t) = �̂
T
(t − 1)�(t) − �T�(t) = �̃

T
(t − 1)�(t).

Substituting (19) and (29) into (32) gives

�̃(t) = �̃(t − 1) + �(t)
r(t)

[(t) − �(t) + w(t)]T. (34)

Define the stochastic Lyapunov function

W(t) = ‖�̃(t)‖2 + ‖�̃(t)‖2.
Using (33) and (34) gives

W(t) = W(t − 1) − 2

r(t)

× [‖(t) − �(t)‖2 + ((t) − �(t))Tw(t)]
+ [(t) − �(t) + w(t)]T�(t)�T(t) + ‖�(t)‖2I

r2(t)

× [(t) − �(t) + w(t)]
�W(t − 1) − 2

r(t)
‖(t) − �(t)‖2

− 2

r(t)
((t) − �(t))Tw(t)

+ ‖�(t)‖2 + ‖�(t)‖2
r2(t)

[‖(t) − �(t)‖2 + ‖w(t)‖2]

+ 2[(t) − �(t)]T�(t)�T(t) + ‖�(t)‖2I
r2(t)

w(t)

�W(t − 1) − 1

r(t)
‖(t) − �(t)‖2

+ ‖�(t)‖2 + ‖�(t)‖2
r2(t)

‖w(t)‖2 − 2[(t) − �(t)]T

× [r(t) − ‖�(t)‖2]I − �(t)�T(t)

r2(t)
w(t). (35)

Since(t)−�(t), r(t),�(t),�(t) are uncorrelated withw(t),
and areFt−1 measurable, taking the conditional expecta-
tion of both sides of (35) with respect toFt−1 and using

assumptions (A2)–(A4) give

E[W(t)|Ft−1]�W(t − 1) − 1

r(t)
‖(t) − �(t)‖2

+ ‖�(t)‖2 + ‖�(t)‖2
r2(t)

�2w. (36)

Since the sum of the last term on the right-hand side from
t=1 to∞ is finite (from Lemma 3), applying the martingale
convergence theorem to (36) shows thatW(t) converges a.s.
to a finite random variableW0. This proves Theorem 3.�

Furthermore, suppose thatr(t) = O(t) → ∞ and
‖�(t)‖2 + ‖�(t)‖2<∞, by referring to Lai and Ying
(1991), it can be proved thatW(t)−W(t−1) converges a.s.
to zero at the rate of(1/t2), and‖(t) − �(t)‖2 converges
a.s. to zero at the rate of(1/t), i.e.,

‖(t) − �(t)‖2 = 0, a.s. as t → ∞. (37)

Theorem 4. For the system in(19) and the HSG algorithm
in (28)–(30),if the conditions of Theorem3 hold, and the
input–output data vectors

�i (t) :=
[
�T
i (t)

�(t)

]
, i = 1,2, . . . , m

are persistently exciting, where�i (t) is the ith row of�(t),
then the parameter estimation error given by the HSG algo-
rithm consistently converges to zero, i.e.,

lim
t→∞ ‖�̂(t) − �‖2 + ‖�̂(t) − �‖2 = 0 a.s.,

or lim
t→∞ �̂(t) = � a.s., and lim

t→∞ �̂(t) = � a.s.

Proof. Since�i (t), i = 1,2, . . . , m, are persistently excit-
ing, then

r(t) = O(t) → ∞ ast → ∞. (38)

From (37), we have

(t) = �(t) ast → ∞,

or

�(t)�̃(t − 1) = �̃
T
(t − 1)�(t), ast → ∞. (39)

Let �̃
T
i (t − 1) represent theith row of �̃

T
(t − 1), and

xi(t) :=
[

�̃(t − 1)
−�̃i (t − 1)

]
.

Then (39) can be decomposed into the followingm equa-
tions:

�T
i (t)xi(t) = 0, i = 1,2, . . . , m, ast → ∞. (40)

From (A4), (37), (38), (33) and (34), it is very easy to obtain

lim
t→∞ [xi(t) − xi(t − j)] = 0, for any 0<j <∞. (41)
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According to Lemma 2, (40) and (41) give the conclusions
of Theorem 4. �

The HSG algorithm has low computational effort, but its
convergence is slow, just like the stochastic gradient algo-
rithm of scalar systems inGoodwin and Sin (1984). In order
to improve the convergence rate and tracking performance
of the HSG algorithms, we introduce a forgetting factor�
in (30) to get

r(t) = �r(t − 1) + ‖�(t)‖2 + ‖�(t)‖2,
0���1, r(0) = 1, (42)

and obtain theHSGalgorithmwith forgetting factor (FFHSG
algorithm for short) in (28), (29) and (42). When� = 1,
the FFHSG algorithm reduces to the HSG algorithm; when
� = 0, the FFHSG algorithm is the hierarchical projection
algorithm.

5. Comparing computational efficiency

In this section, we compare in detail the computational
efficiency of our HSG algorithm with several existing ones:
the recursive LS and stochastic gradient algorithms based
on the model in (4), the stochastic gradient algorithm based
onm subsystems.
The LS algorithm of identifying�s in (4), in the stochastic

framework, namely, the Sen and Sinha’s algorithm, can be
expressed as

I:




�̂s(t) = �̂s(t − 1) + L(t)[y(t) − H(t)�̂s(t − 1)],
�̂s(t) ∈ Rmn0+n,

L(t) = P(t)HT(t)

= P(t − 1)HT(t)[Im + H(t)P (t − 1)
×HT(t)]−1,

P (t) = [Imn0+n − L(t)H(t)]P(t − 1).

The stochastic gradient algorithm of identifying�s in (4) is
given by

II :



�̂s(t) = �̂s(t − 1) + HT(t)
R(t)

×[y(t) − H(t)�̂s(t − 1)],
R(t) = R(t − 1) + ‖H(t)‖2, R(0) = 1.

Introducing a noise vectorw(t), the model in (2) may be
decomposed intom subsystems,

�(z)yj (t) = Qj(z)u(t) + wj(t), j = 1,2, . . . , m, (43)

whereQj(z) represents thejth row of Q(z), yj (t) the jth
element ofy(t); then each subsystem contains the same
parameters for�(z). Any identification method applied to
each subsystemwould generatemdifferent estimates of�(z),
which is certainly undesirable, because it leads to increased
computation, although one may take their average as the
estimate of�. This is also a motivation for us to develop the
hierarchical identification algorithm.

Eq. (43) can be written as a vector form

yj (t) = [−�j (t) �T(t)]
[

�
�j

]
+ wj(t),[

�
�j

]
∈ Rn+n0, (44)

where�j (t) and�Tj represent thejth row of �(t) and�T,
respectively.
Based on the model in (44), a comparable stochastic gra-

dient algorithm with the HSG algorithm is as follows:

III :




[
�̂(t)
�̂j (t)

]

=
[

�̂(t − 1)
�̂j (t − 1)

]
+ 1

rj (t)

[−�T
j (t)

�(t)

]

×
(
yj (t) − [−�j (t) �T(t)]

[
�̂(t − 1)
�̂j (t − 1)

])
,

rj (t) = rj (t − 1) + ‖�j (t)‖2 + ‖�(t)‖2,
rj (0) = 1, j = 1,2, . . . , m.

(45)

From here, we can see that for a MISO system, i.e.,m= 1,
the hierarchical algorithm in (28)–(30) reduces to a non-
hierarchical one in (45). This is also the reason why we take
the same step-size� in the HGI algorithm or 1/r(t) in the
HSG algorithm.
The computation loads of the four algorithms are listed

in Table 2, where numbers of multiplications and additions
are for each iteration step, and the numbers in the brackets
in Table 2denote the recorded numbers for a 10-input, 10-
output and 10th-order system at each step. FromTable 2,
it is clear that the HSG algorithm is computationally more
efficient than other algorithms.

6. Example

In this section, we present an example to illustrate the
performance of the proposed algorithms.
Consider the following simulated plant:

�(z)y(t) = Q(z)u(t) + w(t),

where

�(z) = 1+ �1z−1 + �2z−2 + �3z−3,

Q(z) = Q1z
−1 + Q2z

−2 + Q3z
−3,

� = [�1 �2 �3]T
= [−1.15 0.425 − 0.05]T,

�T = [Q1 Q2 Q3]
=
[
1 1 −0.9 −0.75 0.2 0.125
1.2 1.2 −1.08 −0.78 0.24 0.12

]
.

Here u(t) = [u1(t), u2(t)]T is taken as a persistent exci-
tation vector sequence with zero mean and unit variances,
and w(t) = [w1(t), w2(t)]T as a white noise vector se-
quence with zero mean and variances[�2w(1), �2w(2)], and
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Table 2
Comparing computational efficiency

Algorithms Number of multiplications Number of additions

Ia 2m(mn0 + n)2 + 2m(m + 1)(mn0 + n) 2m(mn0 + n + m)(mn0 + n) − m2 + m

[24886200] [24863910]
II 3m(mn0 + n) + m [33310] 3m(mn0 + n) [33300]
III 3m(n + n0) + m [3610] 3m(n + n0) [3600]
HSG 2mn0 + 3mn + n0 [2610] 2mn0 + 3mn + n0 [2610]

aThis does not contain computing the inverse of them × m matrix in the gain matrixL(t).
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Fig. 1. The estimation errors	 vs. t with different forgetting factors.

w1(t) is uncorrelated withw2(t). Taking the initial values,
�̂(0) = 10−613×1 and �̂(0) = 10−612×6, we apply the HSG
algorithm with forgetting factor to estimate the parameters
of this system. The estimation errors	 with different forget-
ting factors versust are shown inFig. 1, where

	 =
√

‖�̂(t) − �‖2 + ‖�̂(t) − �‖2
‖�‖2 + ‖�‖2

is the relative parameter estimation error,	ns(1) and	ns(2)
are the noise-to-signal ratios of two output channels,
respectively.
FromFig. 1, we can see that as the forgetting factor� is

increased, the rate of change of the parameter estimates (or
the estimation error) becomes more stationary, but the esti-
mation error gets larger. In other words, if we decrease the
forgetting factor�, the convergence rate of the parameter
estimation is faster initially, but the variance of the estima-
tion error becomes larger. Therefore, a compromise/tradeoff
is to choose a smaller forgetting factor at the initial period
of the operation, and then let the forgetting factor gradually
increase witht, and finally approach 1 so that more accu-
rate parameter estimates are obtained. For example, in the
bottom curve inFig. 1, if we take

� =
{
0.3 t <2300,
0.9, t�2300,

we can obtain good convergence rate as well as acceptable
stationarity in the estimation error. FromFig. 1, it is clear
that as long as we choose appropriate forgetting factors,	

is becoming smaller (in general) ast increases, this verifies
the theorems proposed. Moreover, from simulation (not in-
cluded in this paper), we find that the correlation noises will
degrade the estimation accuracy.

7. Conclusions

According to a hierarchical identification principle, a HGI
algorithm and HSG are developed for MIMO systems. The
analysis indicates that the algorithms proposed can achieve
good performance properties (i.e., the parameter estimation
errors are uniformly bounded, and consistently converges to
zero under persistent excitation), and require less computa-
tional efforts than the existing algorithms.
Although the algorithms are proposed for MIMO stochas-

tic systems with an additive white noise disturbance, the
methods developed can be easily extended to study stochas-
tic systems with colored noises. The estimation error bound
analysis of the HGI algorithm with noise and the HSG al-
gorithm with forgetting factors are currently being studied
in the stochastic framework. Finally, the simulated results
verify the theoretical findings.
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