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Abstract

In this paper, a local theory of non-smooth dynamical systems on connectable and accessible sub-do-

mains is developed. The properties for separation boundaries based on the characteristics of flows are

determined, and the sliding dynamics on a specified separation boundary is introduced. The local singu-
larity and transversality of a flow on the separation boundary from a domain into its adjacent domains are

investigated, and the bouncing and tangency of the flows to the separation boundary for non-smooth

dynamical systems are discussed as well. The sufficient and necessary conditions for the local singularity,

transversality and bouncing of the flows are developed. These conditions are applicable for determining

complicated dynamical behaviors of non-smooth dynamical systems.
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1. Introduction

Consider a smooth dynamical system in space Rn�m
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where the vector function f 2 Rn, and state and input variable vectors are x 2 Rn and u 2 Rm,
respectively. In smooth dynamical systems, the sufficient condition for the existence of a solution
for every initial state xðt0Þ and input vector uðtÞ is that the vector function fðx; u; tÞ is continuous
in a given domain X � Rn. However, this condition cannot guarantee the uniqueness of solution.
Therefore, the following Lipschitz condition is used for guaranteeing the existence and uniqueness
of the solution for the system in Eq. (1)
kfðx; u; tÞ � fð~x; u; tÞk6Kkx� ~xk ð2Þ

for all x and ~x in the domain X � Rn and all time t in a certain interval, where K is a constant and
k 	 k represents a vector norm.

Most of the existing theories in dynamics are based on the Lipschitz condition in Eq. (2). In-
deed, those theories are widely used in science and engineering. However, ones want to develop
the expected dynamic behavior to satisfy specified requirements. Hence discontinuous constraints
destroying the Lipschitz conditions are added to dynamic systems, Because of this, the established
dynamical system theories based on the Lipschitz condition are not adequate for such non-smooth
dynamical systems. For instance, smooth linear dynamical systems with periodic impacting (e.g.,
[1,2]) have complicated dynamical behaviors which are unpredictable from the traditional
dynamical theories. The condition in Eq. (2) is very strong for practical dynamical problems, and
many dynamical systems cannot satisfy such a condition. To overcome this difficulty, a theory for
non-smooth dynamical systems should be developed.

The early investigation of discontinuous systems in mechanical systems can be found in the 30’s
of last century (e.g., [3,4]). In 1966 Masri and Caughey [1] investigated the stability of the sym-
metrical period-1 motion of a discontinuous oscillator, and in 1970, Masri [2] gave the further,
analytical and experimental investigations on the general motion of impact dampers. The
unsymmetrical motion was observed, and the rigorous stability analysis was conducted as well.
Since the discontinuity exists widely in engineering and control systems, in 1978 Utkin [5] pre-
sented sliding modes and the corresponding variable structure systems, and the theory of auto-
matic control systems described with variable structures and sliding motions was also developed
[6] in 1981. Further, in 1988, Filippov [7] developed a geometrical theory of the differential
equations with discontinuous right-hand sides, and the local singularity theory of the discontin-
uous boundary was discussed qualitatively. Ye et al. [8] discussed the stability theory for hybrid
systems in 1998. From geometrical points of view, Broucke et al. [9] investigated structural sta-
bility of piecewise smooth systems in 2001. So far, an efficient method to model such non-smooth
dynamical systems has not been developed yet. For instance, the linear impacting oscillators
cannot be fully understood as one of the simplest discontinuous systems (e.g., [10–15]). Another
typical example in engineering is piecewise smooth linear systems. In 1983, Shaw and Holmes [16]
used mapping techniques to investigate the chaotic motion of a piecewise linear system with a
single discontinuity. In 1989, Natsiavas [17] numerically determined the periodic motion and
stability for a system with a symmetric, tri-linear spring. In 1991, Nordmark [18] introduced the
grazing mapping to investigate non-periodic motion. In 1992, Kleczka et al. [19] investigated the
periodic motion and bifurcations of piecewise linear oscillator motion, and numerically observed
the grazing motion. In 2002, Leine and Van Campen [20] investigated the discontinuous bifur-
cations of periodic solutions through the Floquet multipliers of periodic solutions. The analytical
prediction of periodic responses of piecewise linear systems was presented (e.g., [21,22]). Normal
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formal mapping for piecewise smooth dynamical systems with/without sliding were discussed
(e.g., [23,24]). In 2000, Kunze [25] presented a mathematical background of a non-smooth
dynamical system with friction. In 2000, Popp [26] pointed out: (i) solution methods need to be
improved; (ii) efficient methods for stability and bifurcation are required to develop and (iii) the
attractor characteristics need to be reconstructed. From the aforementioned, brief literature
survey, a local theory for discontinuous dynamical systems should be developed to discuss the
dynamical properties of flows and to find appropriate methods for the corresponding solutions,
stability and bifurcation.

In this paper, accessible and inaccessible sub-domains will be introduced for development of a
theory of non-smooth dynamical systems on connectable and accessible sub-domains. The
boundary sets and singular sets will be developed. The local singularity and transversality of a
flow from a domain to its adjacent domains will be investigated. The bouncing and tangential
flows to the separation boundaries of non-smooth dynamical systems will be discussed. The
necessary and sufficient conditions for such a local singularity, transversality and bouncing mo-
tion will be developed.
2. Connectable and separable domains

Before development of a general theory for non-smooth dynamical systems on a universal
domain X � Rn in phase space, the sub-domains Xi (i ¼ 1; 2; . . .) of the domain X are introduced,
and the dynamics on the sub-domains are defined differently.

Definition 1. A sub-domain in the universal domain X is termed the accessible sub-domain on
which a specific, continuous dynamical system can be defined.

Definition 2. A sub-domain in the universal domain X is termed the inaccessible sub-domain on
which no any dynamical system can be defined.

Since the dynamical system can be defined differently on each accessible sub-domain, the
dynamical behaviors of the system in those accessible sub-domains Xi can be different from each
other in the sense of Newton’s mechanics. These different behaviors cause the complexity of
motion in the universal domain X. Owing to the accessible and inaccessible sub-domains, the
universal domain X is classified into the connectable and separable ones. The connectable domain
is defined as:

Definition 3. A domain X in phase space is termed the connectable domain if all the accessi-
blesub-domains of the universal domain can be connected without any inaccessible sub-do-
main.

Similarly, a definition of the separable domain is:

Definition 4. A domain is termed the separable domain if the accessible sub-domains in the uni-
versal domain are separated by inaccessible domains.



Fig. 1. Phase space: (a) connectable and (b) separable domains.
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The boundary between two adjacent, accessible sub-domains is a bridge of dynamical behaviors
in the two domains for motion continuity. For the connectable domain, it is bounded by the
universal boundary surface S � Rr (r6 n� 1), and each sub-domain is bounded by the sub-do-
main boundary surface Sij � Rr ði; j 2 f1; 2; . . .gÞ with/without the partial universal boundary.
For instance, consider a 2-D connectable domain in phase space, as shown in Fig. 1(a). The
shaded area Xi is a specific sub-domain, and other sub-domains are white. The dark, solid curve
represents the original boundary of the domain X. In the separable domain, there is at least an
inaccessible sub-domain to separate the accessible sub-domains. The union of inaccessible sub-
domains is also called the ‘‘sea’’. The sea is the complement of the accessible sub-domains to the
universal (original) domain X. That is determined by N ¼ X n

S
i Xi. The accessible sub-domains

in the domain X are also called the ‘‘islands’’. For illustration of such a definition, a 2-D separable
domain is shown in Fig. 1(b). The dashed curve is the boundary of the universal domain, and the
gray area is the sea. The white regions are the accessible domains (or islands). The diagonal line
shaded region represents a specific accessible sub-domain (island). From one island to another,
the transport is needed for motion continuity. Because of page limitation, the transport laws will
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be discussed in sequel. Once the sub-domains are determined, a theory for non-smooth dynamics
systems can be developed.
3. Non-smooth dynamical systems

To demonstrate the basic concepts of non-smooth dynamical system theory, the development
of the theory in this article is restricted to a 2-D non-smooth dynamical system. Consider a
planar, dynamic system consisting of n sub-dynamic systems in a universal domain X � R2 that is
divided into n accessible sub-domains Xi, and the union of all the accessible sub-domains

Sn
i¼1 Xi

and the universal domain X ¼
Sn

i¼1 Xi [ N, as shown in Fig. 1. N is the union of the inaccessible
domains. For the connectable domain in Fig. 1(a), N ¼ f;g. In Fig. 1(b), the union of the
inaccessible sub-domains is the sea, N ¼ X n

Sn
i¼1 Xi is the complement of the union of the

accessible sub-domains. On the ith open sub-domain Xi, there is a Cr-continuous system ðrP 1Þ in
a form of
_x � FðiÞðx; t;liÞ 2 R2; x ¼ ðx; yÞT 2 Xi: ð3Þ
The time is t and _x ¼ dx=dt. In all the accessible sub-domains Xi, the vector field FðiÞðx; t; liÞ with
parameter vectors li ¼ ðli1; li2; . . . ; linÞ

T 2 Rn is Cr-continuous ðrP 1Þ in x and for all time t; and
the continuous flow in Eq. (3) xðiÞðtÞ ¼ UðiÞðxðiÞðt0Þ; t;liÞ with xðiÞðt0Þ ¼ UðiÞðxðiÞðt0Þ; t0; liÞ is Crþ1-
continuous for time t.

The non-smooth dynamic theory developed in this paper holds for the following condi-
tions:

A1: The switching between two adjacent sub-systems possesses time-continuity.
A2: For an unbounded, accessible sub-domain Xi, the corresponding vector field and its flow are

bounded, i.e.,
kFðiÞk6K1ðconstÞ on Xi; and kUðiÞk6K2ðconstÞ for t 2 ½0;1Þ: ð4Þ
A3: For a bounded, accessible domain Xi, the corresponding vector field is bounded, but the flow
may be unbounded, i.e.,
kFðiÞk6K1ðconstÞ on Xi; and kUðiÞk <1 for t 2 ½0;1Þ: ð5Þ
4. Boundary sets and singular sets

Since the dynamical systems on the different accessible sub-domains are distinguishing, the
relation between flows in the two sub-domains should be developed herein for flow continuity.
For a sub-domain Xi, there are ki-segment boundaries ðki 6 n� 1Þ. Consider a boundary set of any
two sub-domains, formed by the intersection of the closed sub-domains, i.e., oXij ¼ Xi \ Xj

ði; j 2 f1; 2; . . . ; ng; j 6¼ iÞ, as shown in Fig. 2.



Fig. 2. Sub-domains Xi and Xj, and the corresponding boundary oXij.
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Definition 5. The boundary set in the 2-D phase space is defined as
Sij � oXij ¼ ðx; yÞj8ðx; yÞ 2 Xi \ Xj � R1 satisfying Hijðx; yÞ
�

¼ 0
�
: ð6Þ
Definition 6. The two sub-domains Xi and Xj are disjoint if the boundary set oXij is an empty set
(i.e., oXij ¼ f;g).

The boundary values ðxðiÞ; yðiÞÞ and ðxðjÞ; yðjÞÞ are pertaining to the open domains Xi and Xj,
respectively. Note that the function Hij is Cr-continuous ðrP 1Þ. Based on the boundary defini-
tion, we have oXij ¼ oXji.
Definition 7. If the intersection of the three or more sub-domains,
Ci1i2			ik �
\ik
i¼i1

Xi � R0; ð7Þ
where ik 2 f1; 2; . . . ; ng and k P 3 is non-empty, the sub-domain intersection is termed the singular
set.

The boundary functions relative to the singular points are C0-continuous and the singular
points are also termed the corner points or vertex. In Fig. 3, the singular point set for the three
closed domains fXi;Xj;Xkg is sketched. The circular symbols represent intersection point sets.
The largest solid circular symbol stands for the singular point set Cijk. The corresponding dis-
continuous boundaries are labeled by oXij, oXjk and oXik. The singular point possesses the
hyperbolic or parabolic behavior depending on the properties of the discontinuous boundary set,
which will be discussed later.



Fig. 3. A singular point set for the intersection of three closed domains fXi;Xj;Xkg. The circular circles represent

intersection point sets. The largest solid circular symbol stands for the singular point set Cijk . The corresponding

discontinuous boundaries are marked by oXij, oXjk and oXik .
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Definition 8. For a discontinuous dynamical system in Eq. (3), xðtmÞ � xm 2 oXij at tm. 8e > 0,
9½tm�e; tmÞ and ðtm; tmþe�, suppose xðiÞðtm�Þ ¼ xm ¼ xðjÞðtmþÞ. The non-empty boundary set oXij to a
flow xðaÞðtÞ ða 2 fi; jgÞ is semi-passable from the domain Xi to Xj (expressed by oX

�!
ij) if the flow

xðaÞðtÞ possesses the following properties
either
nT
oXij
	 xðiÞðtm�Þ � xðiÞðtm�eÞ
� �

> 0 and

nT
oXij
	 xðjÞðtmþeÞ � xðjÞðtmþÞ
� �

> 0

)
for oXij convex to Xj;

or
nT
oXij
	 xðiÞðtm�Þ � xðiÞðtm�eÞ
� �

< 0 and

nT
oXij
	 xðjÞðtmþeÞ � xðjÞðtmþÞ
� �

< 0

)
for oXij convex to Xi;

9>>>>>>=>>>>>>;
ð8Þ
where the normal vector of the boundary oXij is
noXij ¼ rHij ¼
oHij

ox
;
oHij

oy

 �T

ðxm;ymÞ
: ð9Þ
Note that notations tm�e ¼ tm � e and tm� ¼ tm � 0 are used. To interpret the geometrical concept
of the semi-passable boundary sets, consider a flow in Eq. (3) from the domain Xi into the domain
Xj through the boundary oXij. For a time tm at which the flow arrives to the boundary oXij, a small
neighborhood ðtm�e; tmþeÞ of the time tm is arbitrarily selected where tm�e ¼ tm � e. As e! 0, the
time increment Dt � e! 0. xðiÞðtm�eÞ � ðxðiÞðtm�eÞ; yðiÞðtm�eÞÞT, xðjÞðtmþeÞ � ðxðjÞðtmþeÞ; yðjÞðtmþeÞÞT
and xm � ðxðtmÞ; yðtmÞÞT. The input and output flow vectors are xðiÞðtmÞ � xðiÞðtm�eÞ
and xðjÞðtmþeÞ � xðjÞðtmÞ, respectively. The process of the flow passing through the convex and



Fig. 4. Semi-passable boundary set oX
�!

ij from the domain Xi to Xj: (a) convex to Xj and (b) convex to Xi.

xðiÞðtm�eÞ � ðxðiÞðtm�eÞ; yðiÞðtm�eÞÞT, xðjÞðtmþeÞ � ðxðjÞðtmþeÞ; yðjÞðtmþeÞÞT and xm � ðxðtmÞ; yðtmÞÞT where tm�e ¼ tm � e for an

arbitrary e > 0. Two vectors noXij and toXij are the normal and tangential vectors of the boundary curve oXij determined

by Hijðx; yÞ ¼ 0.
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non-convex boundary sets from the domain Xi to Xj is shown in Fig. 4. Two vectors noXij and toXij

are the normal and tangential vectors of the boundary curve oXij determined by Hijðx; yÞ ¼ 0.

When a flow xðiÞðtÞ in the domain Xi arrives to the semi-passable boundary oX
�!

ij, the flow can be

tangential to, bouncing on and passing through the semi-passable boundary oX
�!

ij. However, once

a flow xðjÞðtÞ in the domain Xj arrives to the semi-passable boundary oX
�!

ij, the flow cannot pass
through the boundary, but either the tangential or bouncing flow xðjÞðtÞ at the semi-passable

boundary oX
�!

ij exists. The tangential and bouncing flows will be discussed in this paper. Notice
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that no any control and transport laws are defined on the semi-passable boundary. The direct-
ionof toXij � noXij is the positive direction of the coordinate by the right-hand rule.

Theorem 1. For a discontinuous dynamical system in Eq. (3), xðtmÞ � xm 2 oXij for tm. 8e > 0,

9½tm�e; tmÞ and ðtm; tmþe�, suppose xðiÞðtm�Þ ¼ xm ¼ xðjÞðtmþÞ and, both xðiÞðtÞ and xðjÞðtÞ are Cr
½tm�e;tmÞ and

Cr
ðtm;tmþe�-continuous ðrP 2Þ for time t, respectively and kdrxðaÞ=dtrk <1 ða 2 fi; jgÞ. The non-empty

boundary set oXij is semi-passable from the domain Xi to Xj iff
either nT
oXij
	 _xðiÞðtm�Þ > 0 and nT

oXij
	 _xðjÞðtmþÞ > 0 for oXij convex to Xj;

or nT
oXij
	 _xðiÞðtm�Þ < 0 and nT

oXij
	 _xðjÞðtmþÞ < 0 for oXij convex to Xi:

9=; ð10Þ
Proof. For a point xm 2 oXij convex to Xj, suppose xðiÞðtm�Þ ¼ xm ¼ xðjÞðtmþÞ and, both xðiÞðtÞ and
xðjÞðtÞ are Cr

½tm�e;tmÞ and Cr
ðtm;tmþe�-continuous rP 2 for time t, respectively and k drxðaÞ

dtr k <1
ða 2 fi; jgÞ for 0 < e� 1. Consider a 2 ½tm�e; tm�Þ and b 2 ðtm�; tmþe�. Application of the Taylor
series expansion of xðaÞðtm�eÞ with tm�e ¼ tm � e ða 2 fi; jgÞ to xðaÞðaÞ and xðaÞðbÞ gives
xðiÞðtm�eÞ � xðiÞðtm� � eÞ ¼ xðiÞðaÞ þ _xðiÞðaÞðtm� � e� aÞ þ oðtm� � e� aÞ;
xðjÞðtmþeÞ � xðjÞðtmþ þ eÞ ¼ xðjÞðbÞ þ _xðjÞðbÞðtmþ þ e� bÞ þ oðtmþ þ e� bÞ:

)

Let a! tm� and b! tmþ, the limits of the foregoing equations lead to
xðiÞðtm�eÞ � xðiÞðtm� � eÞ ¼ xðiÞðtm�Þ � _xðiÞðtm�Þeþ oðeÞ;
xðjÞðtmþeÞ � xðjÞðtmþ þ eÞ ¼ xðjÞðtmþÞ þ _xðjÞðtmþÞeþ oðeÞ:

)

Because of 0 < e� 1, the e2 and higher order terms of the foregoing equations can be ignored.

Therefore, with the first equation of Eq. (10), the following relations exist:
nT
oXij
	 xðiÞðtm�Þ � xðiÞðtm�eÞ
� �

¼ nT
oXij
	 _xðiÞðtm�Þe > 0 and

nT
oXij
	 xðjÞðtmþeÞ � xðjÞðtmþÞ
� �

¼ nT
oXij
	 _xðiÞðtmþÞe > 0:

9=;

From Definition 8, the boundary oXij convex to Xj is semi-passable under the condition in the

first inequality equations of Eq. (10). In a similar manner, the boundary oXij convex to Xi is semi-
passable under the conditions in the second inequality equation in Eq. (10). h

Theorem 2. For a discontinuous dynamical system in Eq. (3), xðtmÞ � xm 2 oXij for tm. 8e > 0,

9½tm�e; tmÞ and ðtm; tmþe�, suppose xðiÞðtm�Þ ¼ xm ¼ xðjÞðtmþÞ and, both FðiÞðtÞ and FðjÞðtÞ are Cr
½tm�e;tmÞ

and Cr
ðtm;tmþe�-continuous ðrP 1Þ for time t, respectively and kdrþ1xðaÞ=dtrþ1k <1 ða 2 fi; jgÞ. The

non-empty boundary set oXij is semi-passable from the domain Xi to Xj iff
either nT
oXij
	 FðiÞðtm�Þ > 0 and nT

oXij
	 FðjÞðtmþÞ > 0 for oXij convex to Xj;

or nT
oXij
	 FðiÞðtm�Þ < 0 and nT

oXij
	 FðjÞðtmþÞ < 0 for oXij convex to Xi;

)
; ð11Þ
where FðiÞðtm�Þ ¼ FðiÞðx; tm�; liÞ and FðjÞðtmþÞ ¼ FðjÞðx; tmþ; ljÞ.
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Proof. For a point xm 2 oXij convex to Xj, we have xðiÞðtm�Þ ¼ xm ¼ xðjÞðtmþÞ. With Eq. (3), the
first inequality equation of Eq. (11) gives
nT
oXij
	 _xðiÞðtm�Þ ¼ nT

oXij
	 FðiÞðtm�Þ > 0 and nT

oXij
	 _xðjÞðtmþÞ ¼ nT

oXij
	 FðjÞðtmþÞ > 0:
From Theorem 1 and Definition 8, the boundary oXij convex to Xj is semi-passable. In a similar
fashion, the boundary oXij convex to Xi is semi-passable under the condition in the second
inequality equations of Eq. (11). h

Definition 9. For a discontinuous dynamical system in Eq. (3), xðtmÞ � xm 2 oXij for tm. 8e > 0,
9½tm�e; tmÞ, suppose xðiÞðtm�Þ ¼ xm ¼ xðjÞðtm�Þ. The non-empty boundary set oXij is the non-pass-
able boundary of the first kind, foXij (or termed a sink boundary between the sub-domains Xi and
Xj) if the flows xðcÞðtÞ for (c 2 fa;bg 2 fi; jg and a 6¼ b) in the neighborhood of the boundary oXij

possess the following properties
nT
oXij
	 xðaÞðtm�Þ
�n

� xðaÞðtm�eÞ
�o
� nT

oXij
	 xðbÞðtm�Þ
�n

� xðbÞðtm�eÞ
�o

< 0: ð12Þ
Definition 10. For a discontinuous dynamical system in Eq. (3), xðtmÞ � xm 2 oXij for tm. 8e > 0,
9ðtm; tmþe�, suppose xðiÞðtmþÞ ¼ xm ¼ xðjÞðtmþÞ. The non-empty boundary set oXij is the non-pass-
able boundary of the second kind coXij (or termed a source boundary between the sub-domains Xi

and Xj) if the flows xðcÞðtÞ for (c 2 fa;bg 2 fi; jg and a 6¼ b) in the neighborhood of the boundary
oXij possess the following properties.
nT
oXij
	 xðaÞðtmþeÞ
�n

� xðaÞðtmþÞ
�o
� nT

oXij
	 xðbÞðtmþeÞ
�n

� xðbÞðtmþÞ
�o

< 0: ð13Þ
The above two concepts for the sink and source boundaries between the two sub-domains Xi

and Xj are illustrated in Fig. 5(a) and (b), and the flows in the neighborhood of the boundaries are
depicted. When a flow xðaÞðtÞ ða 2 fi; jgÞ in the domain Xa arrives to the non-passable boundary of
the first kind foXij, the flow can be tangential to or sliding on the non-passable boundary foXij. For
the non-passable boundary of the second kind coXij, a flow xðaÞðtÞ ða 2 fi; jgÞ in the domain Xa can

be tangential to or bouncing on the non-passable boundary coXij. The tangential, sliding and
bouncing motion on the non-passable boundary will be discussed later in this paper.

Theorem 3. For a discontinuous dynamical system in Eq. (3), xðtmÞ � xm 2 oXij for tm. 8e > 0,
9½tm�e; tmÞ, suppose xðaÞðtm�Þ ¼ xm ða 2 fi; jgÞ and, xðaÞðtÞ is Cr

½tm�e;tmÞ-continuous ðrP 2Þ for time t
and kdrxðaÞ=dtrk <1. The non-empty boundary set oXij is a non-passable boundary of the first kind

iff
nT
oXij
	 _xðaÞðtm�Þ

h i
� nT

oXij
	 _xðbÞðtm�Þ

h i
< 0 ð14Þ
for fa; bg 2 fi; jg ða 6¼ bÞ.

Proof. Following the procedure of the proof of Theorem 1, the Theorem 3 can be proved. h



Fig. 5. Non-passable boundary set oXij ¼ foXij [ coXij: (a) the sink boundary (or the non-passable boundary of the first

kind, foXij), (b) the source boundary (or the non-passable boundary of the second kind, coXij). xm � ðxðtmÞ; yðtmÞÞT,

xðaÞðtm�eÞ � ðxðaÞðtm�eÞ; yðaÞðtm�eÞÞT and a ¼ fi; jg where tm�e ¼ tm � e for an arbitrary e > 0.
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Theorem 4. For a discontinuous dynamical system in Eq. (3), xðtmÞ � xm 2 oXij for tm. 8e > 0,
9½tm�e; tmÞ, suppose xðaÞðtm�Þ ¼ xm ða 2 fi; jgÞ and, FðaÞðtÞ are Cr

½tm�e;tmÞ-continuous ðrP 1Þ and

kdrþ1xðaÞ=dtrþ1k <1. The non-empty boundary set oXij is a non-passable boundary of the first kind
iff for b 2 fi; jg ða 6¼ bÞ
nT
oXij
	 FðaÞðtm�Þ

h i
� nT

oXij
	 FðbÞðtm�Þ

h i
< 0; ð15Þ
where FðiÞðtm�Þ,FðiÞðx; tm�;liÞ and FðjÞðtm�Þ,FðjÞðx; tm�; ljÞ.

Proof. Following the procedure of the proof of Theorem 2, the Theorem 4 can be proved. h
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Theorem 5. For a discontinuous dynamical system in Eq. (3), xðtmÞ � xm 2 oXij for tm. 8e > 0,

9ðtm; tmþe�, suppose xðaÞðtmþÞ ¼ xm ða 2 fi; jgÞ and, xðaÞðtÞ is Cr
ðtm;tmþe�-continuous ðrP 2Þ for time t

and kdrxðaÞ=dtrk <1. The non-empty boundary set oXij is a non-passable boundary of the second

kind iff
nT
oXij
	 _xðaÞðtmþÞ

h i
� nT

oXij
	 _xðbÞðtmþÞ

h i
< 0 ð16Þ
for b 2 fi; jg ða 6¼ bÞ.

Proof. Following the procedure of the proof of Theorem 1, the Theorem 5 can be proved. h

Theorem 6. For a discontinuous dynamical system in Eq. (3), xðtmÞ � xm 2 oXij for tm. 8e > 0,
9ðtm; tmþe�, suppose xðaÞðtmþÞ ¼ xm ða 2 fi; jgÞ and, FðaÞðtÞ are Cr

½tm�e;tmÞ-continuous ðrP 1Þ and

kdrþ1xðaÞ=dtrþ1k <1. The non-empty boundary set oXij is a non-passable boundary of the second

kind iff for b 2 fi; jg ða 6¼ bÞ
nT
oXij
	 FðaÞðtmþÞ

h i
� nT

oXij
	 FðbÞðtmþÞ

h i
< 0; ð17Þ
where FðiÞðtmþÞ,FðiÞðx; tmþ;liÞ and FðjÞðtmþÞ,FðjÞðx; tmþ; liÞ.

Proof. Following the procedure of the proof of Theorem 2, the Theorem 6 can be proved. h

Definition 11. The non-empty boundary set oXij is passable ðoX
$

ijÞ only if it is not only semi-

passable boundary oX
�!

ij from the domain Xi to Xj but oX
 �

ij from the domain Xj to Xi.

This definition indicates that the C0-flow on the boundary set is invertible. The gradients of the
flow on both sides of the separation boundary are different in the non-smooth dynamical systems.
If the flow is C1-smooth on the boundary without effects of sliding motion, the boundary set
becomes a trivial boundary set, and the two sub-dynamical systems becomes a smooth dynamical
system. For illustration of the passable boundary set, the flow passing through the boundary oXij

from Xi to Xj and from Xj to Xi are presented in Fig. 6. The dashed curves are other boundaries
for the domains Xi and Xj. The thicker solid curve represents the boundary oXij. The thinner solid
curves with arrows are the flow of Eq. (3) in the two domains.
5. Local singularity and tangential bifurcation

Definition 12. For a discontinuous dynamical system in Eq. (3), xðtmÞ � xm 2 oXij for tm. 8e > 0,
9½tm�e; tmÞ and ðtm; tmþe�, suppose xðaÞðtm�Þ ¼ xm ¼ xðbÞðtmþÞ; ðfa; bg 2 fi; jgÞ and, both xðaÞðtÞ and
xðbÞðtÞ are Cr

½tm�e;tmÞ and Cr
ðtm;tmþe�-continuous ðrP 2Þ, respectively. A point xm is critical on the non-

empty boundary set oXij if the following equation exists
nT
oXij
	 _xðaÞðtm�Þ ¼ 0 or nT

oXij
	 _xðbÞðtmþÞ ¼ 0: ð18Þ



Fig. 6. Flow passing through the boundary oXij: (a) from Xi to Xj and (b) from Xj to Xi. The dashed curves are the

other boundaries for the domains Xi and Xj. The thicker solid curve represents the boundary oXij. The thinner solid

curves with arrows are the flow of Eq. (3) in the two domains.
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Theorem 7. For a discontinuous dynamical system in Eq. (3), xðtmÞ � xm 2 oXij for tm. 8e > 0,
9½tm�e; tmÞ and ðtm; tmþe�, suppose xðaÞðtm�Þ ¼ xm ¼ xðbÞðtmþÞðfa; bg 2 fi; jgÞ and, both FðaÞðtÞ and

FðbÞðtÞ are Cr
½tm�e;tmÞ and Cr

ðtm;tmþe�-continuous ðrP 1Þ for time t, respectively and kdrþ1xðaÞ=dtrþ1k <1.

The point xm 2 oXij is critical on the non-empty boundary set oXij iff
nT
oXij
	 FðaÞðtm�Þ ¼ 0 or nT

oXij
	 FðbÞðtmþÞ ¼ 0; ð19Þ
where FðaÞðtm�Þ,FðaÞðx; tm�;laÞ and FðbÞðtmþÞ,FðbÞðx; tmþ; lbÞ.

Proof. Using Eq. (3) and Definition 12, the Theorem 7 can be proved. h
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Since the tangential vector of the input and output flows xðaÞðtm�Þ and xðaÞðtmþÞ on the side of
the domain Xaða 2 fi; jgÞ at the boundary oXij is normal to the normal vector of the boundary, it
implies that the input flow is tangential to the boundary. The mathematical description is given as
follows.

Definition 13. For a discontinuous dynamical system in Eq. (3), xðtmÞ � xm 2 oXij for tm. 8e > 0,
9½tm�e; tmÞ and ðtm; tmþe�, suppose xðaÞðtm�Þ ¼ xm ða 2 fi; jgÞ and xðaÞðtÞ is Cr

½tm�e;tmÞ and Cr
ðtm;tmþe�-

continuous ðrP 1Þ for time t. The flow xðaÞðtÞ in Xa is tangential to the boundary oXij if the
following two conditions hold:

(C1)
nT
oXij
	 _xðaÞðtm�Þ ¼ 0: ð20Þ
(C2) either
nT
oXij
	 xðaÞðtm�Þ � xðaÞðtm�eÞ
� �

> 0

nT
oXij
	 xðaÞðtmþeÞ � xðaÞðtmþÞ
� �

< 0

)
for oXij convex to Xb; ð21Þ
where b 2 fi; jg but a 6¼ b, or
nT
oXij
	 xðaÞðtm�Þ � xðaÞðtm�eÞ
� �

< 0

nT
oXij
	 xðaÞðtmþeÞ � xðaÞðtmþÞ
� �

> 0

)
for oXij convex to Xa: ð22Þ
Since nT
oXij
	 toXij ¼ 0 and toXij ¼ _xm on the boundary oXij, with Eq. (20), we have
nT
oXij
	 _xðaÞðtm�Þ ¼ 0 ¼ nT

oXij
	 _xm or _xðaÞðtm�Þ ¼ _xm ¼ _xðaÞðtmþÞ: ð23Þ
The above equation implies that the flow xðaÞ on the boundary is at least C1-continuous. To
demonstrate the above definition, consider a flow in the domain Xi tangential to the boundary
oXij convex to Xj, as shown in Fig. 7. The gray-filled symbols represent two points

ðxðiÞm�e ¼ xðiÞðtm � eÞÞ on the flow before and after the tangency. The tangential point xm on the
boundary oXij is depicted by a large circular symbol. This tangential bifurcation is also termed the

grazing bifurcation.

Theorem 8. For a discontinuous dynamical system in Eq. (3), xðtmÞ � xm 2 oXij for tm. 8e > 0,

9½tm�e; tmÞ and ðtm; tmþe�, suppose xðaÞðtm�Þ ¼ xm ða 2 fi; jgÞ and xðaÞðtÞ are Cr
½tm�e;tmÞ and Cr

ðtm;tmþe�-
continuous ðrP 2Þ for time t and kdrxðaÞ=dtrk <1. The flow xðaÞðtÞ in Xa is tangential to the

boundary oXij iff
nT
oXij
	 _xðaÞðtm�Þ ¼ 0; ð24Þ

nT
oXij
	 _xðaÞðtm�eÞ

n o
� nT

oXij
	 _xðaÞðtmþeÞ

n o
< 0: ð25Þ



Fig. 7. A flow in the domain Xi tangential to the boundary oXij convex to Xj. The gray-filled symbols represent two

points (xðiÞm�e and x
ðiÞ
mþe) on the flow before and after the tangency. The tangential point xm on the boundary oXij is

depicted by a large circular symbol.
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Proof. Since Eq. (24) is identical to Eq. (20), the first condition in Eq. (20) is satisfied.
xðaÞðtm�Þ � xðaÞðtm� � e� eÞ ¼ xðaÞðtm� � eÞ � e _xðaÞðtm� � eÞ þ oðeÞ
¼ xðaÞðtm�eÞ � e _xðaÞðtm�eÞ þ oðeÞ:
For 0 < e� 1, the higher order terms in the above equation can be ignored. Therefore
nT
oXij
	 xðaÞðtmþÞ � xðaÞðtm�eÞ
� �

¼ enT
oXij
	 _xðaÞðtm�eÞ;

nT
oXij
	 xðaÞðtmþeÞ � xðaÞðtmþÞ
� �

¼ enT
oXij
	 _xðaÞðtmþeÞ:

9=;

From Eq. (25), the first case is:
nT
oXij
	 _xðaÞðtm�eÞ > 0 and nT

oXij
	 _xðaÞðtmþeÞ < 0
with which Eq. (21) holds for oXij convex to Xb ðb 6¼ aÞ. However, the second case is:
nT
oXij
	 _xðaÞðtm�eÞ < 0 and nT

oXij
	 _xðaÞðtmþeÞ > 0
from which Eq. (22) holds for oXij convex to Xa. Therefore, from Definition 13, the flow xðaÞðtÞ for
t 2 Tm in Xa is tangential to the boundary oXij. h

Theorem 9. For a discontinuous dynamical system in Eq. (3), xðtmÞ � xm 2 oXij for tm. 8e > 0,
9½tm�e; tmÞ and ðtm; tmþe�, suppose xðaÞðtm�Þ ¼ xm ða 2 fi; jgÞ and FðaÞðtÞ are Cr

½tm�e;tmÞ and Cr
ðtm;tmþe�-

continuous ðrP 1Þ for time t and kdrþ1xðaÞ=dtrþ1k <1. The flow xðaÞðtÞ for t 2 Tm in Xa is tangential
to the boundary oXij iff
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nT
oXij
	 FðaÞðtm�Þ ¼ 0; ð26Þ

nT
oXij
	 FðaÞðtm�eÞ

n o
� nT

oXij
	 FðaÞðtmþeÞ

n o
< 0: ð27Þ
Proof. Using Eq. (3) and the Theorem 8, the Theorem 9 can be proved. h

Theorem 10. For a discontinuous dynamical system in Eq. (3), xðtmÞ � xm 2 oXij for tm. 8e > 0,
9½tm�e; tmÞ and ðtm; tmþe�, suppose xðaÞðtm�Þ ¼ xm ða 2 fi; jgÞ and FðaÞðtÞ are Cr

½tm�e;tmÞ and Cr
ðtm;tmþe�-

continuous ðrP 3Þ for time t and kdrxðaÞ=dtrk <1. The flow xðaÞðtÞ for t 2 Tm in Xa is tangential to
the boundary oXij iff
nT
oXij
	 _xðaÞðtm�Þ ¼ 0; ð28Þ

either nT
oXij
	 €xðaÞðtm�Þ < 0 for oXij convex to Xbðb 2 fi; jg but b 6¼ aÞ;

or nT
oXij
	 €xðaÞðtm�Þ > 0 for oXij convex to Xa:

9=; ð29Þ
Proof. Eq. (28) is identical to Eq. (20), thus the first condition in Eq. (20) is satisfied.
From Definition 13, consider the boundary oXij convex to Xb ðb 6¼ aÞ first. Suppose

xðaÞðtm�Þ ¼ xm ða 2 fi; jgÞ and xðaÞðtÞ are Cr
½tm�e;tmÞ and Cr

ðtm;tmþe�-continuous ðrP 3Þ for time t and
kdrxðaÞ=dtrk <1 ða 2 fi; jgÞ. Let a 2 ½tm�e; tmÞ or a 2 ðtm; tmþe�. Application of the Taylor series
expansion of xðaÞðtm�eÞ to xðaÞðaÞ up to the third-order term gives
xðaÞðtm�eÞ � xðaÞðtm þ eÞ
¼ xðaÞðaÞ þ _xðaÞðaÞðtm� � e� aÞ þ €xðaÞðaÞðtm� � e� aÞ2 þ oððtm� � e� aÞ2Þ:
As a! tm�, the limit of the foregoing equation leads to
xðaÞðtm�eÞ � xðaÞðtm � eÞ ¼ xðaÞðtm�Þ � _xðaÞðtm�Þeþ €xðaÞðtm�Þe2 þ oðe2Þ:
The ignorance of the e3 and high order terms, the deformation of the above equation and the left
multiplication of noXij gives
nT
oXij
	 xðaÞðtmþeÞ
�

� xðaÞðtmþÞ
�
¼ nT

oXij
	 _xðaÞðtmþÞeþ nT

oXij
	 €xðaÞðtmþÞe2;

nT
oXij
	 xðaÞðtm�Þ
�

� xðaÞðtm�eÞ
�
¼ nT

oXij
	 _xðaÞðtm�Þe� nT

oXij
	 €xðaÞðtm�Þe2:
With Eq. (28), we have
nT
oXij
	 xðaÞðtmþeÞ
�

� xðaÞðtmþÞ
�
¼ nT

oXij
	 €xðaÞðtmþÞe2;

nT
oXij
	 xðaÞðtm�Þ
�

� xðaÞðtm�eÞ
�
¼ �nT

oXij
	 €xðaÞðtm�Þe2:
For the boundary oXij convex to Xb, using the first inequality equation of Eq. (29), the foregoing
two equations lead to
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nT
oXij
	 xðaÞðtm�Þ
�

� xðaÞðtm�eÞ
�
¼ �nT

oXij
	 €xðaÞðtm�Þe2 > 0;

nT
oXij
	 xðaÞðtmþeÞ
�

� xðaÞðtmþÞ
�
¼ nT

oXij
	 €xðaÞðtmþÞe2 < 0:
Similarly, for the boundary oXij convex to Xa, using the second inequality equation of Eq. (29),
the foregoing two equations lead to
nT
oXij
	 xðaÞðtm�Þ
�

� xðaÞðtm�eÞ
�
¼ �nT

oXij
	 €xðaÞðtm�Þe2 < 0;

nT
oXij
	 xðaÞðtmþeÞ
�

� xðaÞðtmþÞ
�
¼ nT

oXij
	 €xðaÞðtmþÞe2 > 0:
Therefore under condition in Eq. (29), the flow xðaÞðtÞ in Xa is tangential to the boundary oXij. h

Theorem 11. For a discontinuous dynamical system in Eq. (3), xðtmÞ � xm 2 oXij for tm. 8e > 0,
9½tm�e; tmÞ and ðtm; tmþe�, suppose xðaÞðtm�Þ ¼ xm ða 2 fi; jgÞ and FðaÞðtÞ are Cr

½tm�e;tmÞ and Cr
ðtm;tmþe�-

continuous ðrP 2Þ for time t and kdrþ1xðaÞ=dtrþ1k <1. The flow xðaÞðtÞ in Xa is tangential to the
boundary oXij iff
nT
oXij
	 FðaÞðtm�Þ ¼ 0; ð30Þ

either nT
oXij
	 DFðaÞðtm�Þ < 0 for oXij convex to Xb ðb 2 fi; jg but b 6¼ aÞ;

or nT
oXij
	 DFðaÞðtm�Þ > 0 for oXij convex to Xa;

9=; ð31Þ
where the total differentiation
DFðaÞðtm�Þ ¼
oF ðaÞp ðtm�Þ

oxq

" #
FðaÞðtm�Þ þ

oFðaÞðtm�Þ
ot

; ðp; q 2 f1; 2g; x1 ¼ x; x2 ¼ yÞ:
Proof. Using Eqs. (3) and (30), thus the first condition in Eq. (20) is satisfied. The derivative of Eq.
(3) with respect to time gives
€x �
oF ðaÞp ðx; t;laÞ

oxq

" #
_xþ o

ot
FðaÞðx; t; laÞ:
For t ¼ tm�, x ¼ xm and FðaÞðxm; tm�;laÞ,FðaÞðtm�Þ, the left multiplication of noXij to the foregoing
equation gives
nT
oXij
	 €xðtm�Þ ¼ nT

oXij
	

oF ðaÞp ðtm�Þ
oxq

" #
_xðtm�Þ

(
þ o

ot
FðaÞðtm�Þ

)
:

Using Eq. (31), the above equation leads to Eq. (29). From Theorem 10, the flow xðaÞðtÞ in Xa is
tangential to the boundary oXij. h
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Definition 14. For a discontinuous dynamical system in Eq. (3), xðtmÞ � xm 2 oXij for tm. 8e > 0,
9½tm�e; tmÞ and ðtm; tmþe�, suppose xðaÞðtm�Þ ¼ xm ða 2 fi; jgÞ and xðaÞðtÞ is Cr

½tm�e;tmÞ and Cr
ðtm;tmþe�-

continuous ðrP 2nÞ for time t. The flow xðaÞðtÞ for t 2 Tm in Xa is the ð2n� 1Þth-order tangential
to the boundary oXij if the three conditions hold:

(C1)
nT
oXij
	 dk

dtk
xðaÞðtm�Þ ¼ 0 for ðk ¼ 1; 2; . . . ; 2n� 1Þ: ð32Þ
(C2)
nT
oXij
	 d2n

dt2n
xðaÞðtm�Þ 6¼ 0: ð33Þ
(C3) either
nT
oXij
	 xðaÞðtm�Þ � xðaÞðtm�eÞ
� �

> 0

nT
oXij
	 xðaÞðtmþeÞ � xðaÞðtmþÞ
� �

< 0

)
for oXij convex to Xb; ð34Þ
where b 2 fi; jg but a 6¼ b, or
nT
oXij
	 xðaÞðtm�Þ � xðaÞðtm�eÞ
� �

< 0

nT
oXij
	 xðaÞðtmþeÞ � xðaÞðtmþÞ
� �

> 0

)
for oXij convex to Xa: ð35Þ
Theorem 12. For a discontinuous dynamical system in Eq. (3), xðtmÞ � xm 2 oXij for tm. 8e > 0,

9½tm�e; tmÞ and ðtm; tmþe�, suppose xðaÞðtm�Þ ¼ xm ða 2 fi; jgÞ and xðaÞðtÞ is Cr
½tm�e;tmÞ and Cr

ðtm;tmþe�-con-
tinuous ðrP 2nÞ for time t and kdrxðaÞ=dtrk <1. The flow xðaÞðtÞ in Xa is the ð2n� 1Þth-order

tangential to the boundary oXij iff
nT
oXij
	 dk

dtk
xðaÞðtm�Þ ¼ 0 for ðk ¼ 1; 2; . . . 2n� 1Þ; ð36Þ

nT
oXij
	 d2n

dt2n
xðaÞðtm�Þ 6¼ 0; ð37Þ

either nT
oXij
	 d2n

dt2n x
ðaÞðtm�Þ < 0 for oXab convex to Xb;

or nT
oXij
	 d2n

dt2n x
ðaÞðtm�Þ > 0 for oXab convex to Xa;

)
ð38Þ
where b 2 fi; jg but a 6¼ b.

Proof. For Eqs. (36) and (37), the first two conditions in Definition 14 are satisfied. Consider the
boundary oXij convex to Xb ðb 6¼ aÞ first. Choose a 2 ½tm�e; tmÞ or a 2 ðtm; tm�e�, and application of
the Taylor series expansion of xðaÞðtm�eÞ to xðaÞðaÞ and up to the 2n-order term gives
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xðaÞðtm�eÞ � xðaÞðtm� � eÞ ¼ xðaÞðaÞ þ
X2n�1

k¼1

dk

dtk
xðaÞðaÞðtm� � e� aÞk þ d2n

dt2n
xðaÞðaÞðtm� � e� aÞ2n

þ oððtm� � e� aÞ2nÞ:
As a! tm�, we have
xðaÞðtm�eÞ � xðaÞðtm� � eÞ ¼ xðaÞðtm�Þ þ
X2n�1

k¼1

dk

dtk
xðaÞðtm�Þð�eÞk þ d2n

dt2n
xðaÞðtm�Þð�eÞ2n þ oð�e2nÞ:
With Eqs. (36) and (37), the deformation of the above equation and let the multiplication of noXij

produces
nT
oXij
	 ½xðaÞðtmþeÞ � xðaÞðtmþÞ� ¼ nT

oXij
	 d2n

dt2n
xðaÞðtmþÞe2n;

nT
oXij
	 ½xðaÞðtm�Þ � xðaÞðtm�eÞ� ¼ �nT

oXij
	 d2n

dt2n
xðaÞðtm�Þe2n:
Under Eq. (38), the condition in Eq. (34) is satisfied. Therefore, the flow xðaÞðtÞ in Xa is the
ð2n� 1Þth-order tangential to the boundary oXab convex to Xb. Similarly, under the condition in
Eq. (38), the flow xðaÞðtÞ in Xa is the ð2n� 1Þth-order tangential to the boundary oXab convex to
Xa. This theorem is proved. h

Theorem 13. For a discontinuous dynamical system in Eq. (3), xðtmÞ � xm 2 oXij for tm. 8e > 0,

9½tm�e; tmÞ and ðtm; tmþe�, suppose xðaÞðtm�Þ ¼ xm ða 2 fi; jgÞ and FðaÞðtÞ is Cr
½tm�e;tmÞ and Cr

ðtm;tmþe�-con-

tinuous ðrP 2n� 1Þ for time t and kdrþ1xðaÞ=dtrþ1k <1. The flow xðaÞðtÞ in Xa is the ð2n� 1Þth-

order tangential to the boundary oXij iff
nT
oXij
	 Dk�1FðaÞðtm�Þ ¼ 0 for ðk ¼ 1; 2; . . . ; 2n� 1Þ; ð39Þ

nT
oXij
	 D2n�1FðaÞðtm�Þ 6¼ 0; ð40Þ

nT
oXij
	 D2n�1FðaÞðtm�Þ < 0 for oXij convex to Xb; or

nT
oXij
	 D2n�1FðaÞðtm�Þ > 0 for oXij convex to Xa;

)
ð41Þ
where the total differentiation
Dk�1FðaÞðtm�Þ ¼ Dk�2
oF ðaÞp ðtm�Þ

oxq

" #
FðaÞðtm�Þ

(
þ oFðaÞðtm�Þ

ot

)
; ð42Þ
ðp; q 2 f1; 2g; x1 ¼ x; x2 ¼ y; k 2 f2; 3; . . . ; 2ngÞ and b 2 fi; jg but a 6¼ b.
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Proof. The derivative of Eq. (3) with respect to time gives
dnxðaÞðtmÞ
dtn

¼ dn�1

dtn�1
_xðaÞðtmÞ ¼

dn�1

dtn�1
FðaÞðxm; tm;laÞ � Dn�1FðaÞðxm; tm; laÞ

¼ Dn�2
oF ðiÞp ðxm; tm;laÞ

oxq

" #
_x

(
þ o

ot
FðaÞðxm; tm;laÞ

)
:

Using the foregoing equation to the conditions in Eqs. (39)–(42), the flow xðaÞðtÞ for t 2 Tm in Xa is
the ð2n� 1Þth-order tangential to the boundary oXij from Theorem 12. Therefore, this theorem is
proved. h

Definition 15. A flow xðaÞðtÞ tangential to oXij (a 2 fi; jg) in Xa is termed the local grazing flow if
xðaÞðtÞ starting from oXij in Xa is not intersected with another boundary before grazing. Suppose

xðaÞðtÞ has x
ðaÞ
m�1 and x

ðaÞ
mþ1 on the noXij-line relative to xm 2 oXij, then the three grazing flows exist:

The local tangential flow xðaÞðtÞ is termed the grazing flow of the first kind if
kxðaÞm�1 � xmk < kx
ðaÞ
mþ1 � xmk: ð43Þ
The tangential flow xðaÞðtÞ is termed the grazing flow of the second kind if
kxðaÞm�1 � xmk > kx
ðaÞ
mþ1 � xmk: ð44Þ
The tangential flow xðaÞðtÞ is termed the grazing flow of the third kind if
kxðaÞm�1 � xmk ¼ kx
ðaÞ
mþ1 � xmk: ð45Þ
From the above definition, the local grazing flows in the domain Xi to the boundary oXij

convex to Xj are sketched in Fig. 8 for interpretation of the local grazing flows. The first, second
and third kinds of grazing flow are arranged in Fig. 8(a)–(c), respectively. The grey-filled symbols

represent two points (x
ðiÞ
m�1 and x

ðiÞ
mþ1) on the normal line relative to tangential point xm on the

boundary oXij depicted by a large circular symbol.
6. Sliding dynamics

From the flows illustrated in Fig. 5, consider a flow xðaÞðtÞ with nT
oXij
	 _xðaÞðtÞ > 0 in the domain

Xa convex to Xb for t 2 ½tm�e; tmþe�, once the flow xðbÞðtÞ in the domain Xb (a 6¼ b) possesses
nT
oXij
	 _xðbÞðtm�Þ6 0 with fnT

oXij
	 _xðaÞðtn�eÞg � fnT

oXij
	 _xðbÞðtn�eÞg6 0, the sliding motion will appear.

Until one of the two flows (i.e., xðcÞðtÞ, c 2 fa; bg) has nT
oXij
	 _xðcÞðtnþÞ ¼ 0 with

fnT
oXij
	 _xðaÞðtnþeÞg � fnT

oXij
	 _xðbÞðtnþeÞg > 0, the sliding motion will end. Before the transverse, tan-

gential bifurcation is discussed, the sliding dynamics on the separatrix will be investigated first
because the sliding motion along the separatrix strongly changes the behavior of post-transverse
motion in non-smooth dynamical systems. As in Filippov [7], consider a differential inclusion of
Eq. (3) on the closed interval [0,1] as



Fig. 8. A classification of local grazing flows in Xi to oXij convex to Xj: (a) first kind of grazing flow, (b) second kind of

grazing flow and (c) third kind of grazing flow. The grey-filled symbols represent two points (x
ðiÞ
m�1 and x

ðiÞ
mþ1) on the

normal line relative to tangential point xm on the boundary oXij depicted by a large circular symbol.
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_x 2 Fðx; t; kÞ x ¼ ðx; yÞT 2 Xi [ Xj [ Sij; ð46Þ

where a set-valued vector field Fðx; t; kÞ is convex and continuous with respect to the parameter k
on the closed interval [0,1]. The following property holds for the convex set of the vector filed.
Fðx; t; kÞ ¼
FðaÞðx; t; laÞ; for input vector filed ðk ¼ 0Þ;
F
ð0Þ
ab ðx; tÞ; on the boundary; 9k 2 ð0; 1Þ;
FðbÞðx; t;lbÞ; for output vector ðk ¼ 1Þ;

8>><>>: ð47Þ
where FðaÞ and FðbÞ ðfa; bg 2 fi; jg; a 6¼ bÞ represent the input and output vector fields, respec-
tively. F

ð0Þ
ab ðx; tÞ is a vector field along the separation boundary Sij. From the convexity of the set-

valued vector field, we have
F
ð0Þ
ab ðx; tÞ ¼ kFðbÞðx; t; lbÞ þ ð1� kÞFðaÞðx; t;laÞ: ð48Þ
The sliding motion is along the separation boundary, it indicates that the vector field is along the
boundary. So nT

oXab
	 Fð0Þab ¼ 0 from which we have
k ¼
nT
oXab
	 FðaÞðx; t;laÞ

nT
oXab
	 ½FðaÞðx; t;laÞ � FðbÞðx; t;lbÞ�

: ð49Þ
The sliding motion along the separated boundary can be investigated as a continuous dynamical
system through _x

ð0Þ
ab ¼ F

ð0Þ
ab ðx; tÞ. For the traveling separation boundary controlled by

uijðx; y; tÞ ¼ 0, we have
k ¼
o
ot uab þ nT

oXab
	 FðaÞðx; t; laÞ

nT
oXab
	 ½FðaÞðx; t;laÞ � FðbÞðx; t;lbÞ�

: ð50Þ
7. Transversal tangential bifurcation

The tangential bifurcation for a flow tangential to the separatrix was discussed. The tangency of
the flow occurs just after the flow passes through the separation boundary. This tangential flow is
termed the transversal tangential flow, and the mathematical definition is given as

Definition 16. For a discontinuous dynamical system in Eq. (3), xðtmÞ � xm 2 oXij for tm. 8e > 0,

9½tm�e; tmÞ and ðtm; tmþe�, suppose xðaÞðtm�Þ ¼ x
ð0Þ
ab ðtmÞ ¼ xðbÞðtmþÞ with fa; bg 2 fi; jg (a 6¼ b) for

x
ð0Þ
ab ðtmÞ ¼ xm and both xðaÞðtÞ and xðbÞðtÞ are Cr�1

½tm�e;tmÞ and Cr
ðtm;tmþe�-continuous (rP 2), respectively.

The transverse flow x ¼ xðaÞðt < tmÞ [ xð0Þab ðtmÞ [ xðbÞðt > tmÞ to the semi-passable boundary oX
�!

ab is
termed a transversal tangential flow of the first kind if the following conditions are satisfied:

(C1)
nT
ab 	 _xðbÞðtmþÞ ¼ 0: ð51Þ
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(C2)
either tToXab
	 ½xðbÞðtmþeÞ � xðbÞðtmþÞ� > 0 for tToXab

	 _xð0Þab > 0;

or tToXab
	 ½xðbÞðtmþeÞ � xðbÞðtmþÞ� < 0 for tToXab

	 _xð0Þab < 0:

9=; ð52Þ
From the above definition, the first condition (C1) gives a necessary condition of a flow tan-
gential to the semi-passable boundary just after the flow passes through the boundary. The second
condition (C2) determines the direction of a flow after the flow passes over the boundary, which is
very strongly influenced by the sliding flow along the separation boundary. The direction of the
component of the transversal tangential flow on the tangential vector of the separatrix oXij has the
same direction of the sliding motion along the separatrix. Therefore, the second condition can be
re-written as
_x
ð0Þ
ab

� �T

	 ½xðbÞðtmþeÞ � xðbÞðtmþÞ� > 0: ð53Þ
However, the computation of Eq. (52) is much easier and more intuitive than Eq. (53) because

the flow x
ð0Þ
ab is determined by _x

ð0Þ
ab ¼ F

ð0Þ
ab ðx; tÞ.

To illustrate the above concept, the geometrical description of the flows passing through a
boundary convex to Xj are presented in Fig. 9, and a pre-transversal-tangential flow, a trans-
versally-tangential flow and post-transversal-tangential flow are included. The tangency of the
transverse flow occurs at the portion of the outflow. Consider a sliding motion along the po-
sitive direction of toXij (i.e., tToXij

	 _xð0Þij > 0). The pre-transversal-tangential flow is a regular
transverse flow from the domain Xi to Xj. The transversal-tangential flow is a flow tangential to
the separation boundary just after the flow passes over the boundary. After the transversal-
tangential bifurcation, a post-transversal-tangential flow exists. For a post-transversal-tangential
flow, there are two intersected points on the separation boundary locally and the bouncing
motion at the first intersected point will appear, as shown in Fig. 9(c). Because this tangential
bifurcation causes the bouncing motion, this tangential bifurcation is also termed ‘‘the bouncing
bifurcation’’.

Theorem 14. For a discontinuous dynamical system in Eq. (3), xðtmÞ � xm 2 oXij for tm. 8 e > 0,
9½tm�e; tmÞ and ðtm; tmþe�, suppose xðaÞðtm�Þ ¼ x

ð0Þ
ab ðtmÞ ¼ xðbÞðtmþÞ with fa;bg 2 fi; jg (a 6¼ b) for

x
ð0Þ
ab ðtmÞ ¼ xm, both xðaÞðtÞ and xðbÞðtÞ are Cr

½tm�e;tmÞ and Cr
ðtm;tmþe�-continuous (rP 2), respectively and

kdrxðcÞ=dtrk <1 (c 2 fi; jg). The transverse flow x ¼ xðaÞðt < tmÞ [ xð0Þab ðtmÞ [ xðbÞðt > tmÞ to the

semi-passable boundary oX
�!

ab is a transversal tangential flow of the first kind iff
either nT
oXab
	 _xðaÞðtm�Þ > 0; nT

oXab
	 _xðbÞðtmþeÞ > 0 for oXij convex to Xb;

or nT
oXab
	 _xðaÞðtm�Þ < 0; nT

oXab
	 _xðbÞðtmþeÞ < 0 for oXij convex to Xa;

9=; ð54Þ

nT
ab 	 _xðbÞðtmþÞ ¼ 0; ð55Þ



Fig. 9. The flows passing through a boundary oXij convex to Xj: (a) pre-transversal-tangential flow, (b) transversal-

tangential flow and (c) post-transversal-tangential flow. The sliding motion is along the positive toXij (i.e., tToXij
	 _xð0Þij > 0).
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either tToXab
	 _xðbÞðtmþeÞ > 0 for tToXab

	 _xð0Þab > 0;

or tToXab
	 _xðbÞðtmþeÞ < 0 for tToXab

	 _xð0Þab < 0:

9=; ð56Þ
Proof. For a point x
ð0Þ
ab 2 oXab convex to Xb, suppose xðaÞðtm�Þ ¼ x

ð0Þ
ab ðtmÞ ¼ xðbÞðtmþÞ with

fa; bg 2 fi; jg (a 6¼ b) for x
ð0Þ
ab ðtmÞ ¼ xm and both xðaÞðtÞ and xðbÞðtÞ are Cr

½tm�e;tmÞ and Cr
ðtm;tmþe�-con-

tinuous (rP 2), respectively and kdrxðcÞ=dtrk <1 (c 2 fi; jg) for 0 < e� 1. As similar to the
proof of Theorem 1, application of the Taylor series expansion of xðaÞðtm�eÞ and xðbÞðtmþeÞ with
tm�e ¼ tm � e (a 2 fi; jg) to xðaÞðtm�Þ and up to the second order term gives
xðaÞðtm�eÞ � xðaÞðtm� � eÞ ¼ xðaÞðtm�Þ � _xðaÞðtm�Þeþ oðeÞ;
xðbÞðtmþÞ � xðbÞðtmþe � eÞ ¼ xðbÞðtmþeÞ � _xðbÞðtmþeÞeþ oðeÞ:

)

Because of 0 < e� 1, the second and higher order terms of the Taylor series expansion can be
ignored in the foregoing equations. Therefore, we have
nT
oXab
	 ½xðaÞðtm�Þ � xðaÞðtm�eÞ� ¼ nT

oXij
	 _xðaÞðtm�Þe > 0 and

nT
oXab
	 ½xðbÞðtmþeÞ � xðbÞðtmþÞ� ¼ nT

oXij
	 _xðbÞðtmþeÞe > 0:

9=;
tToXab
	 ½xðbÞðtmþeÞ � xðbÞðtmþÞ� ¼ tToXab

	 _xðbÞðtmþeÞe > 0 for tToXab
	 _xð0Þab > 0 or

tToXab
	 ½xðbÞðtmþeÞ � xðbÞðtmþÞ� ¼ tToXab

	 _xðbÞðtmþeÞe < 0 for tToXab
	 _xð0Þab < 0:

9=;

From Definitions 8 and 16, the transverse flow x ¼ xðaÞðt < tmÞ [ xð0Þab ðtmÞ [ xðbÞðt > tmÞ on the
semi-passable boundary oX

�!
ab is a transverse, tangential flow of the first kind for the boundary

oXab convex to Xb. In a similar fashion, for the boundary oXab convex to Xa, it can be proved that
the transverse flow x ¼ xðaÞðt < tmÞ [ xð0Þab ðtmÞ [ xðbÞðt > tmÞ on the semi-passable boundary oX

�!
ab is

a transversal tangential flow of the first kind. h

Theorem 15. For a discontinuous dynamical system in Eq. (3), xðtmÞ � xm 2 oXij for tm. 8e > 0,
9½tm�e; tmÞ and ðtm; tmþe�, suppose xðaÞðtm�Þ ¼ x

ð0Þ
ab ðtmÞ ¼ xðbÞðtmþÞ with fa;bg 2 fi; jg (a 6¼ b) for

x
ð0Þ
ab ðtmÞ ¼ xm, both FðaÞðtÞ and FðbÞðtÞ are Cr

½tm�e;tmÞ and Cr
ðtm;tmþe�-continuous (rP 1), respectively.

kdrþ1xðcÞ=dtrþ1k <1 ðc 2 fi; jgÞ. The transverse flow x ¼ xðaÞðt < tmÞ [ xð0Þab ðtmÞ [ xðbÞðt > tmÞ to the

semi-passable boundary oX
�!

ab is a transversal tangential flow of the first kind iff
either nT
oXij
	 FðaÞðtm�Þ > 0; nT

oXij
	 FðbÞðtmþeÞ > 0 for oXij convex to Xb;

or nT
oXij
	 FðaÞðtm�Þ < 0; nT

oXij
	 FðbÞðtmþeÞ < 0 for oXij convex to Xa;

)
ð57Þ

nT
ab 	 FðbÞðtmþÞ ¼ 0; ð58Þ

either tToXab
	 FðbÞðtmþeÞ > 0 for tToXab

	 Fð0Þab > 0;

or tToXab
	 FðbÞðtmþeÞ < 0 for tToXab

	 Fð0Þab < 0:

)
ð59Þ
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Proof. For a point x
ð0Þ
ab 2 oXab convex to Xb, suppose xðaÞðtm�Þ ¼ x

ð0Þ
ab ðtmÞ ¼ xðbÞðtmþÞ with

fa;bg 2 fi; jg (a 6¼ b) for x
ð0Þ
ab ðtmÞ ¼ xm and both FðaÞðtÞ and FðbÞðtÞ are Cr

½tm�e;tmÞ and Cr
ðtm;tmþe�-con-

tinuous (rP 1), respectively and kdrþ1xðcÞ=dtrþ1k <1 (c 2 fi; jg) for 0 < e� 1. With Eq. (3) and
_x
ð0Þ
ab ¼ F

ð0Þ
ab ðx; tÞ, the first set of inequalities of Eq. (57) gives
nT
oXij
	 _xðaÞðtm�Þ ¼ nT

oXij
	 FðaÞðtm�Þ > 0 and nT

oXij
	 _xðbÞðtmþeÞ ¼ nT

oXij
	 FðbÞðtmþeÞ > 0;

nT
ab 	 _xðbÞðtmþÞ ¼ nT

ab 	 FðbÞðtmþÞ ¼ 0;
and
tToXab
	 _xðbÞðtmþÞ ¼ tToXab

	 FðbÞðtmþÞ > 0 for tToXab
	 _xð0Þab ðtmþÞ ¼ tToXab

	 Fð0Þab > 0 or

tToXab
	 _xðbÞðtmþÞ ¼ tToXab

	 FðbÞðtmþÞ < 0 for tToXab
	 _xð0Þab ðtmþÞ ¼ tToXab

	 Fð0Þab < 0:

9=;

From Theorems 1 and 14 and Definitions 8 and 16, it is proved that the transverse flow
x ¼ xðaÞðt < tmÞ [ xð0Þab ðtmÞ [ xðbÞðt > tmÞ on oX

�!
ab is a transverse, tangential flow of the first kind for

oXab convex to Xb. In a similar fashion, the transverse flow x ¼ xðaÞðt < tmÞ [ xð0Þab ðtmÞ [ xðbÞðt > tmÞ
on oX

�!
ab is a transversal, tangential flow of the first kind for oXab convex to Xa. h

Theorem 16. For a discontinuous dynamical system in Eq. (3), xðtmÞ � xm 2 oXij for tm. 8e > 0,

9½tm�e; tmÞ and ðtm; tmþe�, suppose xðaÞðtm�Þ ¼ x
ð0Þ
ab ðtmÞ ¼ xðbÞðtmþÞ with fa; bg 2 fi; jg (a 6¼ b) for

x
ð0Þ
ab ðtmÞ ¼ xm, both xðaÞðtÞ and xðbÞðtÞ are Cr�1

½tm�e;tmÞ and Cr
ðtm;tmþe�-continuous (rP 3), respectively.

kdr�1xðaÞ=dtr�1k <1 and kdrxðbÞ=dtrk <1. The transverse flow x ¼ xðaÞðt < tmÞ [ xð0Þab ðtmÞ [
xðbÞðt > tmÞ on the semi-passable boundary oX

�!
ab is a transversal tangential flow of the first kind iff
either nT
oXij
	 _xðaÞðtm�Þ > 0; nT

oXij
	 €xðbÞðtmþÞ > 0 for oXij convex to Xb;

or nT
oXij
	 _xðaÞðtm�Þ < 0; nT

oXij
	 €xðbÞðtmþÞ < 0 for oXij convex to Xa;

9=; ð60Þ

nT
ab 	 _xðbÞðtmþÞ ¼ 0; ð61Þ

either tToXab
	 _xðbÞðtmþÞ > 0 for tToXab

	 _xð0Þab > 0;

or tToXab
	 _xðbÞðtmþÞ < 0 for tToXab

	 _xð0Þab < 0:

9=; ð62Þ
Proof. Using the procedure of Theorem 1, suppose xðaÞðtm�Þ ¼ x
ð0Þ
ab ðtmÞ ¼ xðbÞðtmþÞ with

fa;bg 2 fi; jg (a 6¼ b) for x
ð0Þ
ab ðtmÞ ¼ xm, both xðaÞðtÞ and xðbÞðtÞ are Cr�1

½tm�e;tmÞ and Cr
ðtm;tmþe�-continuous

(rP 3), respectively. kdr�1xðaÞ=dtr�1k <1 and kdrxðbÞ=dtrk <1. Applying the Taylor series
expansion of xðaÞðtm�eÞ to xðaÞðtm�Þ up to the second term and xðbÞðtmþeÞ to xðbÞðtmþÞ up to the third
term gives
xðaÞðtm�eÞ � xðaÞðtm� � eÞ ¼ xðaÞðtm�Þ � _xðaÞðtm�Þeþ oðeÞ;

xðbÞðtmþeÞ � xðbÞðtmþ þ eÞ ¼ xðbÞðtmþÞ þ _xðbÞðtmþÞeþ €xðbÞðtmþÞe2 þ oðe2Þ:
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Since 0 < e� 1, the higher order terms can be ignored. The deformation of the above equations
and the left multiplication of noXij and toXij leads to
nT
oXab
	 ½xðaÞðtm�Þ � xðaÞðtm�eÞ� ¼ nT

oXab
	 _xðaÞðtm�Þe;

nT
oXab
	 ½xðbÞðtmþeÞ � xðbÞðtmþÞ� ¼ nT

oXab
	 _xðbÞðtmþÞeþ nT

oXab
	 €xðbÞðtmþÞe2;

tToXab
	 ½xðbÞðtmþeÞ � xðbÞðtmþÞ� ¼ tToXab

	 _xðbÞðtmþÞe:
With Eq. (62), we have
nT
oXab
	 ½xðbÞðtmþeÞ � xðbÞðtmþÞ� ¼ nT

oXab
	 €xðbÞðtmþÞe2:
For the boundary oXij convex to Xb, using the first inequality equation of Eq. (60), the foregoing
two equations lead to
nT
oXab
	 ½xðaÞðtm�Þ � xðaÞðtm�eÞ� ¼ nT

oXab
	 _xðaÞðtm�Þe > 0;

nT
oXab
	 ½xðbÞðtmþeÞ � xðbÞðtmþÞ� ¼ nT

oXab
	 €xðbÞðtmþÞe2 > 0:
Similarly, for the boundary oXij convex to Xa, using the second inequality equation of Eq. (60),
the foregoing two equations lead to
nT
oXab
	 ½xðaÞðtm�Þ � xðaÞðtm�eÞ� ¼ nT

oXab
	 _xðaÞðtm�Þe < 0;

nT
oXab
	 ½xðbÞðtmþeÞ � xðbÞðtmþÞ� ¼ nT

oXab
	 €xðbÞðtmþÞe2 < 0:
From Eq. (63), we have
tToXab
	 ½xðbÞðtmþeÞ � xðbÞðtmþÞ� ¼

tToXab
	 _xðbÞðtmþÞe > 0 for tToXab

	 _xð0Þab > 0;

tToXab
	 _xðbÞðtmþÞe < 0 for tToXab

	 _xð0Þab < 0:

8<:

Therefore from Definitions 8 and 16, the flow x ¼ xðaÞðt < tmÞ [ xð0Þab ðtmÞ [ xðbÞðt > tmÞ on the semi-
passable boundary oX

�!
ab is a transversal tangential flow of the first kind. h

Theorem 17. For a discontinuous dynamical system in Eq. (3), xðtmÞ � xm 2 oXij for tm. 8e > 0,

9½tm�e; tmÞ and ðtm; tmþe�, suppose xðaÞðtm�Þ ¼ x
ð0Þ
ab ðtmÞ ¼ xðbÞðtmþÞ with fa;bg 2 fi; jg (a 6¼ b) for

x
ð0Þ
ab ðtmÞ ¼ xm, both FðaÞðtÞ and FðbÞðtÞ are Cr�1

½tm�e;tmÞ and Cr
ðtm;tmþe�-continuous (rP 2), respectively.

kdr�1xðaÞ=dtr�1k <1 and kdrxðbÞ=dtrk <1. If the following conditions are satisfied
either nT
oXij
	 FðaÞðtm�Þ > 0; nT

oXij
	 DFðbÞðtmþÞ > 0 for oXij convex to Xb;

or nT
oXij
	 FðaÞðtm�Þ < 0; nT

oXij
	 DFðbÞðtmþÞ < 0 for oXij convex to Xa;

)
ð63Þ

nT
ab 	 FðbÞðtmþÞ ¼ 0; ð64Þ
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either tToXab
	 FðbÞ ðtmþÞ > 0 for tToXab

	 Fð0Þab > 0;

or tToXab
	 FðbÞðtmþÞ < 0 for tToXab

	 Fð0Þab < 0;

9>=>; ð65Þ
then the transverse flow x ¼ xðaÞðt < tmÞ [ xð0Þab ðtmÞ [ xðbÞðt > tmÞ on the semi-passable boundary oX
�!

ab

is a transversal tangential flow of the first kind.

Proof. Using Eq. (3) and _x
ð0Þ
ab ¼ F

ð0Þ
ab ðx; tÞ, from Theorem 16, the above theorem is proved. h

Definition 17. For a discontinuous dynamical system in Eq. (3), xðtmÞ � xm 2 oXij for tm. 8 e > 0,
9½tm�e; tm) and ðtm; tmþe�, suppose xðaÞðtm�Þ ¼ x

ð0Þ
ab ðtmÞ ¼ xðbÞðtmþÞ with fa;bg 2 fi; jg (a 6¼ b) for

x
ð0Þ
ab ðtmÞ ¼ xm, both xðaÞðtÞ and xðbÞðtÞ are Cr�2nþ2

½tm�e;tmÞ and Cr
ðtm;tmþe� -continuous ðrP 2nÞ, respectively.

The transverse flow x ¼ xðaÞðt < tmÞ [ xð0Þab ðtmÞ [ xðbÞðt > tmÞ on the semi-passable boundary oX
�!

ab

is termed a transversal, ð2n� 1Þth-order tangential flow of the first kind if the following condi-
tions are satisfied

(C1)
nT
ab

dk

dtk
xðbÞðtmþÞ ¼ 0 ðk ¼ 1; 2; . . . ; 2nÞ and nT

ab

dð2nÞ

dtð2nÞ
xðbÞðtmþÞ 6¼ 0: ð66Þ
(C2)
either tToXab
	 ½xðbÞðtmþeÞ � xðbÞðtmþÞ� > 0 for tToXab

	 _xð0Þab > 0;

or tToXab
	 ½xðbÞðtmþeÞ � xðbÞðtmþÞ� < 0 for tToXab

	 _xð0Þab < 0:

9>=>; ð67Þ
Theorem 18. For a discontinuous dynamical system in Eq. (3), xðtmÞ � xm 2 oXij for tm. 8 e > 0,

9½tm�e; tmÞ and ðtm; tmþe�, suppose xðaÞðtm�Þ ¼ x
ð0Þ
ab ðtmÞ ¼ xðbÞðtmþÞ with fa; bg 2 fi; jg (a 6¼ b) for

x
ð0Þ
ab ðtmÞ ¼ xm, both xðaÞðtÞ and xðbÞðtÞ are Cr�2nþ1

½tm�e;tm Þ
and Cr

ðtm;tmþe� -continuous (rP 2n), respectively.

kdr�2nþ2xðaÞ=dtr�2nþ2k <1 and kdrxðbÞ=dtrk <1. The transverse flow x ¼ xðaÞðt < tmÞ [ xð0Þab ðtmÞ [
xðbÞðt > tmÞ on the semi-passable boundary oX

�!
ab is a transversal, ð2n� 1Þth-order tangential flow of

the first kind iff the following conditions hold
either nT
oXab
	 _xðaÞðtm�Þ > 0; nT

oXab
	 _xðbÞðtmþeÞ > 0 for oXij convex to Xb;

or nT
oXab
	 _xðaÞ ðtm�Þ < 0; nT

oXab
	 _xðbÞðtmþeÞ < 0 for oXij convex to Xa;

9=; ð68Þ

nT
ab 	

dk

dtk
xðbÞðtmþÞ ¼ 0 ðk ¼ 1; 2; . . . ; 2nÞ and nT

ab 	
d2n

dt2n
xðbÞðtmþÞ 6¼ 0; ð69Þ
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either tToXab
	 _xðbÞðtmþÞ > 0 for tToXab

	 _xð0Þab > 0;

or tToXab
	 _xðbÞðtmþÞ < 0 for tToXab

	 _xð0Þab < 0:

9=; ð70Þ
Proof. Following the proof procedure of Theorem 8, and using of the Taylor series expansion, the
above theorem can be proved. h

Theorem 19. For a discontinuous dynamical system in Eq. (3), xðtmÞ � xm 2 oXij for tm. 8 e > 0,

9½tm�e; tmÞ and ðtm; tmþe�, suppose xðaÞðtm�Þ ¼ x
ð0Þ
ab ðtmÞ ¼ xðbÞðtmþÞ with fa;bg 2 fi; jg (a 6¼ b) for

x
ð0Þ
ab ðtmÞ ¼ xm, both FðaÞðtÞ and FðbÞðtÞ are Cr�2nþ2

½tm�e;tmÞ and Cr
ðtm;tmþe�-continuous ðrP 2n� 1Þ, respectively.

kdr�2nþ3xðaÞ=dtr�2nþ3k <1 and kdrþ1xðbÞ=dtrþ1k <1. The transverse flow x ¼ xðaÞðt < tmÞ [
x
ð0Þ
ab ðtmÞ [ xðbÞðt > tmÞ on the semi-passable boundary oX

�!
ab is a transversal, ð2n� 1Þth-order tan-

gential flow of the first kind iff
either nT
oXab
	 FðaÞðtm�Þ > 0; nT

oXab
	 FðbÞðtmþeÞ > 0 for oXij convex to Xb;

or nT
oXab
	 FðaÞðtm�Þ < 0; nT

oXab
	 FðbÞðtmþeÞ < 0 for oXij convex to Xa;

)
ð71Þ

nT
ab 	 Dk�1FðbÞðtmþÞ ¼ 0 ðk ¼ 1; 2; . . . ; 2nÞ and nT

ab 	 D2n�1FðbÞðtmþÞ 6¼ 0; ð72Þ

either tToXab
	 FðbÞðtmþÞ > 0 for tToXab

	 Fð0Þab > 0;

or tToXab
	 FðbÞðtmþÞ < 0 for tToXab

	 Fð0Þab < 0:

)
ð73Þ
Proof. Following the proof procedure of Theorem 9 and using of the Taylor series expansion, the
above theorem can be proved. h

Theorem 20. For a discontinuous dynamical system in Eq. (3), xðtmÞ � xm 2 oXij for tm. 8 e > 0,

9½tm�e; tmÞ and ðtm; tmþe�, suppose xðaÞðtm�Þ ¼ x
ð0Þ
ab ðtmÞ ¼ xðbÞðtmþÞ with fa;bg 2 fi; jg (a 6¼ b) for

x
ð0Þ
ab ðtmÞ ¼ xm, both xðaÞðtÞ and xðbÞðtÞ are Cr�2nþ2

½tm�e;tmÞ and Cr
ðtm;tmþe�-continuous (rP 2n), respectively.

kdr�2nþ1xðaÞ=dtr�2nþ2k <1 and kdrxðbÞ=dtrk <1. The transverse flow x ¼ xðaÞðt < tmÞ [ xð0Þab ðtmÞ [
xðbÞðt > tmÞ on the semi-passable boundary oX

�!
ab is a transversal, ð2n� 1Þth-order tangential flow of

the first kind iff
either nT
oXab
	 _xðaÞðtm�Þ > 0; nT

oXab
	 d2n

dt2n x
ðbÞðtmþÞ > 0 for oXij convex to Xb;

or nT
oXab
	 _xðaÞðtm�Þ < 0; nT

oXab
	 d2n

dt2n x
ðbÞðtmþÞ < 0 for oXij convex to Xaa;

9=; ð74Þ

nT
ab 	

dk

dtk
xðbÞðtmþÞ ¼ 0 ðk ¼ 1; 2; . . . ; 2n� 1Þ; ð75Þ

either tToXab
	 _xðbÞðtmþÞ > 0 for tToXab

	 _xð0Þab > 0;

or tToXab
	 _xðbÞðtmþÞ < 0 for tToXab

	 _xð0Þab < 0:

9=; ð76Þ
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Proof. Following the proof procedure of Theorem 10 and using of the Taylor series expansion, the
above theorem can be proved. h

Theorem 21. For a discontinuous dynamical system in Eq. (3), xðtmÞ � xm 2 oXij for tm. 8e > 0,

9½tm�e; tmÞ and ðtm; tmþe�, suppose xðaÞðtm�Þ ¼ x
ð0Þ
ab ðtmÞ ¼ xðbÞðtmþÞ with fa;bg 2 fi; jg ða 6¼ bÞ for

x
ð0Þ
ab ðtmÞ ¼ xm, both FðaÞðtÞ and FðbÞðtÞ are Cr�2nþ2

½tm�e;tmÞ and Cr
ðtm;tmþe�-continuous ðrP 2n� 1Þ, respectively.

kdr�2nþ3xðaÞ=dtr�2nþ3k <1 and kdrþ1xðbÞ=dtrþ1k <1. The transverse flow x ¼ xðaÞðt < tmÞ [
x
ð0Þ
ab ðtmÞ [ xðbÞðt > tmÞ on the semi-passable boundary oX

�!
ab is a transversal, ð2n� 1Þth-order tan-

gential flow of the first kind iff
either nT
oXab
	 FðaÞðtm�Þ > 0; nT

oXab
	 D2n�1FðbÞðtmþÞ > 0 for oXij convex to Xb;

or nT
oXab
	 FðaÞðtm�Þ < 0; nT

oXab
	 D2n�1FðbÞðtmþÞ < 0 for oXij convex to Xa;

)
ð77Þ

nT
ab 	 Dk�1FðbÞðtmþÞ ¼ 0 ðk ¼ 1; 2; . . . ; 2n� 1Þ; ð78Þ

either tToXab
	 FðbÞðtmþÞ > 0 for tToXab

	 Fð0Þab > 0;

or tToXab
	 FðbÞðtmþÞ < 0 for tToXab

	 Fð0Þab < 0:

)
ð79Þ
Proof. Following the proof procedure of Theorem 11 and using of the Taylor series expansion, the
above theorem can be proved. h

Definition 18. For a discontinuous dynamical system in Eq. (3), xðtmÞ � xm 2 oXij for tm. 8e > 0,

9½tm�e; tmÞ and ðtm; tmþe�, suppose xðaÞðtm�Þ ¼ x
ð0Þ
ab ðtmÞ ¼ xðbÞðtmþÞ with fa; bg 2 fi; jg ða 6¼ bÞ for

x
ð0Þ
ab ðtmÞ ¼ xm and both xðaÞðtÞ and xðbÞðtÞ are Cr

½tm�e;tmÞ and Cr�1
ðtm;tmþe�-continuous ðrP 2Þ, respectively.

The transverse flow x ¼ xðaÞðt < tmÞ [ xð0Þab ðtmÞ [ xðbÞðt > tmÞ on the semi-passable boundary oX
�!

ab

is termed a transversal tangential flow of the second kind if the following condition exists:
nT
ab 	 _xðaÞðtm�Þ ¼ 0: ð80Þ
Definition 19. For a discontinuous dynamical system in Eq. (3), xðtmÞ � xm 2 oXij for tm. 8e > 0,

9½tm�e; tmÞ and ðtm; tmþe�, suppose xðaÞðtm�Þ ¼ x
ð0Þ
ab ¼ xðbÞðtmþÞ with fa;bg 2 fi; jg ða 6¼ bÞ for

x
ð0Þ
ab ðtmÞ ¼ xm, both xðaÞðtÞ and xðbÞðtÞ are Cr

½tm�e;tmÞ and Cr�2nþ1
ðtm;tmþe�-continuous ðrP 2nÞ, respectively and

kdrxðcÞ=dtrk <1 ðc 2 fi; jgÞ. The transverse flow x ¼ xðaÞðt < tmÞ [ xð0Þab ðtmÞ [ xðbÞðt > tmÞ on the

semi-passable boundary oX
�!

ab is termed a transversal, ð2n� 1Þth-order tangential flow of the
second kind if the following conditions exist:
nT
ab 	

dk

dtk
xðaÞðtm�Þ ¼ 0 ðk ¼ 1; 2; . . . 2n� 1Þ and nT

ab 	
d2n

dt2n
xðaÞðtm�Þ 6¼ 0: ð81Þ
The theorems for the transverse-tangential flows of the second kind on the semi-passable
boundary oX

�!
ij can be similar to Theorems 14–21 for the transverse-tangential flow of the first



(a)

(b) (d)

(c)

Fig. 10. The flows passing through a boundary convex to Xj: (a) transverse, tangential flow of the second kind; (b) post-

transverse, tangential flow for tToXij
	 _xð0Þij > 0; (c) transverse, tangential flow of the second kind and (d) post-transverse,

tangential flow for tToXij
	 _xð0Þij < 0.

A.C.J. Luo / Communications in Nonlinear Science and Numerical Simulation 10 (2005) 1–55 31
kind. The transverse-tangential flows of the second kind on the semi-passable boundary oX
�!

ij are

illustrated in Fig. 10. The flows crossing over the boundary for two cases (tToXij
	 _xð0Þij > 0 and

tToXij
	 _xð0Þij < 0) are demonstrated. Compared to the transverse, tangential flow of the first kind,

the input tangential flow is independent of the sliding flow. After the transverse, tangential
bifurcation of the second kind occurs, the bouncing motion will appear in the post-transversal
tangential flow. However the outflow of the bouncing motion is strongly dependent upon the
sliding motion.
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8. Transversal, cusped and inflexed tangential flows

The tangency of a flow occurs just before and just after the flow passes through the separation
boundary. This tangential flow includes two types of the tangential flows: transversal, cusped and
inflexed tangential flows. The definitions are given as follows.

Definition 20. For a discontinuous dynamical system in Eq. (3), xðtmÞ � xm 2 oXij for tm. 8e > 0,

9½tm�e; tmÞ and ðtm; tmþe�, suppose xðaÞðtm�Þ ¼ x
ð0Þ
ab ðtmÞ ¼ xðbÞðtmþÞ with fa; bg 2 fi; jg ða 6¼ bÞ for

x
ð0Þ
ab ðtmÞ ¼ xm and both xðaÞðtÞ and xðbÞðtÞ are Cr

½tm�e;tmÞ and Cr
ðtm;tmþe�-continuous ðrP 2Þ, respectively.

The transverse flow x ¼ xðaÞðt < tmÞ [ xð0Þab ðtmÞ [ xðbÞðt > tmÞ passing through oX
�!

ab is termed a
transversal, cusped tangential flow if the following conditions are satisfied:

(C1)
nT
ab 	 _xðaÞðtm�Þ ¼ nT

ab 	 _xðbÞðtmþÞ ¼ 0: ð82Þ
(C2)
either
tToXab
	 ½xðaÞðtm�Þ � xðaÞðtm�eÞ� < 0

tToXab
	 ½xðbÞðtmþeÞ � xðbÞðtmþÞ� > 0

)
for tToXab

	 _xð0Þab > 0;

or

tToXab
	 ½xðaÞðtm�Þ � xðaÞðtm�eÞ� > 0

tToXab
	 ½xðbÞðtmþeÞ � xðbÞðtmþÞ� < 0

9>=>; for tToXab
	 _xð0Þab < 0:

9>>>>>>=>>>>>>;
ð83Þ
Definition 21. For a discontinuous dynamical system in Eq. (3), xðtmÞ � xm 2 oXij for tm. 8e > 0,
9½tm�e; tmÞ and ðtm; tmþe�, suppose xðaÞðtm�Þ ¼ x

ð0Þ
ab ðtmÞ ¼ xðbÞðtmþÞ with fa; bg 2 fi; jg ða 6¼ bÞ for

x
ð0Þ
ab ðtmÞ ¼ xm and both xðaÞðtÞ and xðbÞðtÞ are Cr

½tm�e;tmÞ and Cr
ðtm;tmþe�-continuous ðrP 2Þ, respectively.

The transverse flow x ¼ xðaÞðt < tmÞ [ xð0Þab ðtmÞ [ xðbÞðt > tmÞ passing through oX
�!

ab is termed a
transversal, inflexed tangential flow if the following conditions are satisfied:

(C1)
nT
ab 	 _xðaÞðtm�Þ ¼ nT

ab 	 _xðbÞðtmþÞ ¼ 0: ð84Þ
(C2)
either

tToXab
	 ½xðaÞðtm�Þ � xðaÞðtm�eÞ� > 0

tToXab
	 ½xðbÞðtmþeÞ � xðbÞðtmþÞ� > 0

9>=>; for tToXab
	 _xð0Þab > 0;

or

tToXab
	 ½xðaÞðtm�Þ � xðaÞðtm�eÞ� < 0

tToXab
½xðbÞðtmþeÞ � xðbÞðtmþÞ� < 0

9>=>; for tToXab
	 _xð0Þab < 0:

9>>>>>>>>=>>>>>>>>;
ð85Þ
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Definition 22. For a discontinuous dynamical system in Eq. (3), xðtmÞ � xm 2 oXij for tm. 8e > 0,

9½tm�e; tmÞ and ðtm; tmþe�, suppose xðaÞðtm�Þ ¼ x
ð0Þ
ab ¼ xðbÞðtmþÞ with fa;bg 2 fi; jg ða 6¼ bÞ for

x
ð0Þ
ab ðtmÞ ¼ xm and both xðaÞðtÞ and xðbÞðtÞ are Cr�2qþ2p

½tm�e;tmÞ and Cr
ðtm;tmþe�-continuous ðrP 2qÞ, respec-

tively. The transverse flow x ¼ xðaÞðt < tmÞ [ xð0Þab ðtmÞ [ xðbÞðt > tmÞ passing through oX
�!

ab is termed
a transversal, cusped, ð2p � 1:2q� 1Þ-order tangential flow if the following conditions are
satisfied:

(C1)
nT
oXab
	 dk1

dtk1
xðaÞðtm�Þ ¼ 0 ðk1 ¼ 1; 2; . . . 2p � 1Þ and nT

oXab
	 d2p

dt2p x
ðaÞðtm�Þ 6¼ 0;

nT
oXab
	 dk2

dtk2
xðbÞðtmþÞ ¼ 0 ðk2 ¼ 1; 2; . . . 2q� 1Þ and nT

oXab
	 d2q

dt2q x
ðbÞðtmþÞ 6¼ 0:

9=; ð86Þ
(C2)
either

tToXab
	 ½xðaÞðtm�Þ � xðaÞðtm�eÞ� < 0

tToXab
	 ½xðbÞðtmþeÞ � xðbÞðtmþÞ� > 0

9>=>; for tToXab
	 _xð0Þab > 0;

or

tToXab
	 ½xðaÞðtm�Þ � xðaÞðtm�eÞ� > 0

tToXab
½xðbÞðtmþeÞ � xðbÞðtmþÞ� < 0

9>=>; for tToXab
_x
ð0Þ
ab < 0:

9>>>>>>>>=>>>>>>>>;
ð87Þ
Definition 23. For a discontinuous dynamical system in Eq. (3), xðtmÞ � xm 2 oXij for tm. 8e > 0,

9½tm�e; tmÞ and ðtm; tmþe�, suppose xðaÞðtm�Þ ¼ x
ð0Þ
ab ðtmÞ ¼ xðbÞðtmþÞ with fa; bg 2 fi; jg ða 6¼ bÞ for

x
ð0Þ
ab ðtmÞ ¼ xm and both xðaÞðtÞ and xðbÞðtÞ are Cr�2qþ2p

½tm�e;tmÞ and Cr
ðtm;tmþe�-continuous ðrP 2qÞ, respec-

tively. The transverse flow x ¼ xðaÞðt < tmÞ [ xð0Þab ðtmÞ [ xðbÞðt > tmÞ on the semi-passable boundary

oX
�!

ab is termed a transversal, inflexed, ð2p � 1:2q� 1Þ tangential flow if the following conditions
are satisfied:

(C1)
nT
oXab
	 dk1

dtk1
xðaÞðtm�Þ ¼ 0 ðk1 ¼ 1; 2; . . . 2p � 1Þ and nT

oXab
	 d2p

dt2p x
ðaÞðtm�Þ 6¼ 0;

nT
oXab
	 dk2

dtk2
xðbÞðtmþÞ ¼ 0 ðk2 ¼ 1; 2; . . . 2q� 1Þ and nT

oXab
	 d2q

dt2q x
ðbÞðtmþÞ 6¼ 0:

)
ð88Þ
(C2)
either

tToXab
	 ½xðaÞðtm�Þ � xðaÞðtm�eÞ� > 0

tToXab
	 ½xðbÞðtmþeÞ � xðbÞðtmþÞ� > 0

9>=>; for tToXab
	 _xð0Þab > 0;

or
tToXab
	 ½xðaÞðtm�Þ � xðaÞðtm�eÞ� < 0

tToXab
	 ½xðbÞðtmþeÞ � xðbÞðtmþÞ� < 0

)
for tToXab

	 _xð0Þab < 0:

9>>>>>>=>>>>>>;
ð89Þ
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The theorems for such cusped and inflexed tangential flows can be developed which are similar
to the ones for the transverse tangential flows of the first and second kinds. The corresponding
conditions in the transverse tangential flows can be used for the tangential, input and output flows
of the cusped and inflexed flows. Therefore, no further theorems are presented herein. To help
understand the above definitions, the cusped, tangential flow and a post cusped, tangential flow of
the first and second kind are sketched in Fig. 11, and the inflexed, tangential flow and a post
inflexed, tangential flow of the first and second kind are presented in Fig. 12 as well.
9. Tangential non-passable boundaries

The properties of the flow in the semi-passable boundary are discussed. In this section, the local
characteristics of flows around the non-passable boundary will be discussed.

Definition 24. For a discontinuous dynamical system in Eq. (3), xðtmÞ � xm 2 oXij for tm. 8e > 0,
9½tm�e; tmÞ, suppose xðaÞðtm�Þ ¼ xm ða 2 fi; jgÞ and, xðaÞðtÞ is Cr

½tm�e;tmÞ-continuous ðrP 2Þ for time t
and kdrxðaÞ=dtrk <1.

(i) The non-empty boundary set oXij is the semi-tangential, non-passable boundary of the first
kind, foXij if xðaÞðtÞ and xðbÞðtÞ satisfies
either nT
oXij
	 _xðaÞðtm�Þ ¼ 0 or nT

oXij
_xðbÞðtm�Þ ¼ 0: ð90Þ
(ii) The non-empty boundary set oXij is the tangential, non-passable boundary of the first kind,foXij if xðaÞðtÞ and xðbÞðtÞ satisfies
nT
oXij
	 _xðaÞðtm�Þ ¼ 0 and nT

oXij
	 _xðbÞðtm�Þ ¼ 0: ð91Þ
Definition 25. For a discontinuous dynamical system in Eq. (3), xðtmÞ � xm 2 oXij for tm. 8e > 0,
9ðtm; tmþe�, suppose xðaÞðtmþÞ ¼ xm ða 2 fi; jgÞ and, FðaÞðtÞ are Cr

½tm�e;tmÞ-continuous ðrP 1Þ and
kdrþ1xðaÞ=dtrþ1k <1.

(i) The non-empty boundary set oXij is the semi-tangential, non-passable boundary of the
second kind coXij if xðaÞðtÞ and xðbÞðtÞ satisfies
nT
oXij
	 _xðaÞðtmþÞ ¼ 0 or nT

oXij
	 _xðbÞðtmþÞ ¼ 0: ð92Þ
(ii) The non-empty boundary set oXij is the tangential, non-passable boundary of the second
kind coXij if xðaÞðtÞ and xðbÞðtÞ satisfies
nT
oXij
	 _xðaÞðtmþÞ ¼ 0 and nT

oXij
	 _xðbÞðtmþÞ ¼ 0: ð93Þ
The theorems for the semi-tangential and tangential non-passable boundaries can be developed
as before. The corresponding conditions in the tangential flows in the corresponding domains can
be used for the tangential, input or output flows on the semi-tangential and tangential non-



Fig. 11. The flows passing through a boundary convex to Xj for tToXij
	 _xð0Þij > 0: (a) cusped, tangential flow and (b) post

cusped, tangential flow of the first kind, and (c) cusped, tangential flow of the second kind.
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Fig. 12. The flows passing through a boundary convex to Xj for tToXij
	 _xð0Þij < 0: (a) inflexed, tangential flow and (b) post

inflexed, tangential flow of the first kind and (c) post inflexed, tangential flow of the second kind.
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Fig. 13. Semi-tangential, non-passable boundary set oXij: (a) the semi-tangential, sink boundary (or the semi-tan-

gential, non-passable boundary of the first kind) and (b) the semi-tangential, source boundary (or the semi-tangential,

non-passable boundary of the second kind).
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passable boundaries. Therefore, no further theorems are presented herein. The tangential sink and
source boundaries are shown in Figs. 13 and 14 from the above definitions.
10. Separation boundary formation

In Section 4, the separation boundary has been discussed. All the separation boundaries will be
connected together to form a complicated separation boundary. The concepts for the gluing point



Fig. 14. Tangential non-passable boundary set oXij ¼ foXij [ coXij: (a) the tangential sink boundary and (b) the tan-

gential source boundary.
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sets will be introduced herein. A gluing point on the boundary connects two portions of separatrix
on which the flows possess two different flow directions. Therefore, this gluing point has special
properties. The definitions of passable and non-passable boundaries are based on the flow com-
ponent on the normal direction of the boundary. Therefore, the gluing points are defined as follows.
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Definition 26. A countable point set on the boundary oXij
Cij ¼ x
ð0Þ
k 2 oXijjx 2 Xa; lim

x!xð0Þk

ðnT
oXij
	 _xÞ

(
¼ 0; a 2 fi; jg; k 2 N

)
ð94Þ
is termed the gluing point set.

Notice that N is the natural number set. The gluing singular point set is a special case of the
corner point sets. This gluing point can be either static or dynamic. The static gluing points can be
determined from the equilibrium points for equations of the sliding dynamics (i.e., lim

x!xð0Þk

ðtToXij
	 _xÞ ¼ 0Þ. If the equation of motion for sliding dynamics along the separation boundary did

not have equilibrium, the dynamical gluing points will exist (i.e., lim
x!xð0Þk

ðtToXij
	 _xÞ 6¼ 0).

Definition 27. A countable point set on the boundary oXij
CðaÞij ¼ x
ð0Þ
k 2 oXijjx 2 Xa; lim

x!xð0Þk

ðnT
oXij
	 _xÞ

(
¼ 0; a ¼ fi or jg; k 2 N

)
� Cij ð95Þ
is termed the input or output, semi-gluing, singular points sets on the boundary.

The above definition CðaÞij indicates the switching of the flow direction at the singular point on
the side of Xa.

Definition 28. A countable point set on the boundary oXij
C0
ij ¼ x

ð0Þ
k 2 oXijjx 2 Xa; lim

x!xð0Þk

ðnT
oXij
	 _xÞ

(
¼ 0; a ¼ fi and jg; k 2 N

)
� Cij ð96Þ
is termed the full-gluing, singular point set.

The foregoing definition C0
ij indicates the switching of the flow direction at the singular point on

both sides of Xa. The gluing point set is Cij ¼ CðiÞij [ CðjÞij [ C0
ij.

To investigate the dynamical behaviors in the neighborhood of gluing points, the d sub-do-
mains and boundaries relative to the gluing points are defined as

Definition 29. The d-sub-domains and boundaries are
XðdÞa ¼ x 2 Xaj8d
n

> 0; kx� xð0Þk k < d; xð0Þk 2 Cij; a 2 fi; jg for a given k
o
; ð97Þ

oXðdÞij ¼ xm 2 oXijj8d
n

> 0; kxm � xð0Þk k < d;xð0Þk 2 Cij; a 2 fi; jg for a given k
o
; ð98Þ

XðdÞij ¼ XðdÞi [ XðdÞj [ oX
ðdÞ
ij : ð99Þ
From the above definition, the d-sub-domains and boundary in the neighborhood of x
ð0Þ
k 2 Cij are

illustrated in Fig. 15. The d-boundary oXðdÞij is represented by the dark curve. The gluing point is
expressed by the circular symbol. The d-sub-domains XðdÞi and XðdÞj are expressed by the shaded
and white areas, respectively.



Fig. 15. The d-sub-domains and sub-boundary of the gluing point x
ð0Þ
k 2 Cij.
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Definition 30. For a discontinuous dynamical system in Eq. (3), there is a gluing point x
ð0Þ
k 2 Cij

on oXij. 8d > 0, 9fxm;xng 2 oXðdÞij and fxðaÞðtmþÞ, xðaÞðtn�Þg 2 XðdÞa ða 2 fi; jgÞ. Suppose

xðaÞðtmþÞ ¼ xm and xðaÞðtn�Þ ¼ xn, x
ðaÞðtÞ is Cr

ðtmþ;tn�Þ-continuous ðrP 2Þ and kdrxðaÞ=dtrk <1 in Xa.

8e > 0, 9ðtmþ; tmþe� and ½tn�e; tn�Þ, there are fxðaÞðtmþeÞ; xðaÞðtn�eÞg 2 XðdÞa with for a 6¼ b, and
either
ðnmoXij

ÞT 	 ½xðaÞðtmþeÞ � xðaÞðtmþÞ� > 0

ðnnoXij
ÞT 	 ½xðaÞðtn�eÞ � xðaÞðtn�Þ� < 0

)
for oXij convex to Xa;

or

ðnmoXij
ÞT 	 ½xðaÞðtmþeÞ � xðaÞðtmþÞ� < 0

ðnnoXij
ÞT 	 ½xðaÞðtn�eÞ � xðaÞðtn�Þ� > 0

9=; for oXij convex to Xb:

9>>>>>>=>>>>>>;
ð100Þ
(i) The gluing point x
ð0Þ
k 2 Cij is parabolic on the side of Xa if
either

ðtmoXij
ÞT 	 ½xðaÞðtmþeÞ � xðaÞðtmþÞ� > 0

ðtnoXij
ÞT 	 ½xðaÞðtn�eÞ � xðaÞðtn�Þ� > 0

9=; for oXij convex to Xa;

or
ðtmoXij
ÞT 	 ½xðaÞðtmþeÞ � xðaÞðtmþÞ� < 0

ðtnoXij
ÞT 	 ½xðaÞðtn�eÞ � xðaÞðtn�Þ� < 0

)
for oXij convex to Xb:

9>>>>>>=>>>>>>;
ð101Þ
(ii) The gluing point x
ð0Þ
k 2 Cij is hyperbolic on the side of Xa if
either
ðtmoXij
ÞT½xðaÞðtmþeÞ � xðaÞðtmþÞ� < 0

ðtnoXij
ÞT 	 ½xðaÞðtn�eÞ � xðaÞðtn�Þ� < 0

)
for oXij convex to Xa;

or
ðtmoXij
ÞT 	 ½xðaÞðtmþeÞ � xðaÞðtmþÞ� > 0

ðtnoXij
ÞT 	 ½xðaÞðtn�eÞ � xðaÞðtn�Þ� > 0

)
for oXij convex to Xb:

9>>>>=>>>>; ð102Þ



Fig. 16. Parabolic flows in the d-domain XðdÞij of x
ð0Þ
k 2 Cij on the side of (a) Xj and (b) Xi. The boundary oXij is convex

to the domain Xj. The domain in the dashed boundary is XðdÞij .
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Note that tmoXij
and nmoXij

are the tangential and normal vectors relative to the point xm 2 oXij. From
the above definition, the hyperbolicity and parabolicity of the gluing point x

ð0Þ
k 2 Cij are illustrated

respectively in Figs. 16 and 17 as d! 0 and e! 0. The domain in the dashed boundary is XðdÞij .
The flow xðaÞðtÞ in XðdÞa for t 2 ðtmþ; tn�Þ will not have any other point intersected with the boundary
oXij.



Fig. 17. Hyperbolic flows in the d-domain XðdÞij of x
ð0Þ
k 2 Cij on the side of (a) Xj and (b) Xi. The boundary oXij is convex

to the domain Xj. The domain in the dashed boundary is XðdÞij .
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Theorem 22. For a discontinuous dynamical system in Eq. (3), there is a gluing point x
ð0Þ
k 2 Cij on

oXij. 8d > 0, 9fxm;xng 2 oXðdÞij and fxðaÞðtmþÞ;xðaÞðtn�Þg 2 XðdÞa ða 2 fi; jgÞ. Suppose xðaÞðtmþÞ ¼ xm
and xðaÞðtn�Þ ¼ xn, x

ðaÞðtÞ is Cr
ðtmþ;tn�Þ-continuous ðrP 2Þ and kdrxðaÞ=dtrk <1 in Xa with for a 6¼ b,

and
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either ðnmoXij
ÞT 	 _xðaÞðtmþÞ > 0 and ðnnoXij

ÞT 	 _xðaÞðtn�Þ < 0 for oXij convex to Xa;

or ðnmoXij
ÞT 	 _xðaÞðtmþÞ < 0 and ðnnoXij

ÞT 	 _xðaÞðtn�Þ > 0 for oXij convex to Xb:

9=;
ð103Þ
(i) The gluing point x
ð0Þ
k 2 Cij is parabolic on the side of Xa iff
either ðtmoXij
ÞT 	 _xðaÞðtmþÞ > 0 and ðtnoXij

ÞT 	 _xðaÞðtn�Þ > 0 for oXij convex to Xa;

or ðtmoXij
ÞT 	 _xðaÞðtmþÞ < 0 and ðtnoXij

ÞT 	 _xðaÞðtn�Þ < 0 for oXij convex to Xb:

9=; ð104Þ
(ii) The gluing point x
ð0Þ
k 2 Cij is hyperbolic on the side of Xa iff
either ðtmoXij
ÞT 	 _xðaÞðtmþÞ < 0 and ðtnoXij

ÞT 	 _xðaÞðtn�Þ < 0 for oXij convex to Xa;

or ðtmoXij
ÞT 	 _xðaÞðtmþÞ > 0 and ðtnoXij

ÞT 	 _xðaÞðtn�Þ > 0 for oXij convex to Xb:

9=; ð105Þ
Proof. Following the proof procedure of Theorem 1, this theorem can be proved. h

Theorem 23. For a discontinuous dynamical system in Eq. (3), there is a gluing point x
ð0Þ
k 2 Cij on

oXij. 8d > 0, 9fxm; xng 2 oXðdÞij and fxðaÞðtmþÞ;xðaÞðtn�Þg 2 XðdÞa ða 2 fi; jgÞ.
Suppose xðaÞðtmþÞ ¼ xm and xðaÞðtn�Þ ¼ xn, FðaÞðtÞ is Cr

ðtmþ;tn�Þ-continuous (rP 1) and
drþ1xðaÞ=dtrþ1

�� �� <1 in Xa with for a 6¼ b
either nmoXij

� �T

	 FðaÞðtmþÞ > 0 and nnoXij

� �T

	 FðaÞðtn�Þ < 0 for oXij convex to Xa;

or nmoXij

� �T

	 FðaÞðtmþÞ < 0 and nnoXij

� �T

	 FðaÞðtn�Þ < 0 for oXij convex to Xb:

9>=>;
ð106Þ
(i) The gluing point x
ð0Þ
k 2 Cij is parabolic on the side of Xa iff
either tmoXij

� �T

	 FðaÞðtmþÞ > 0 and tnoXij

� �T

	 FðaÞðtn�Þ > 0 for oXij convex to Xa;

or tmoXij

� �T

	 FðaÞðtmþÞ < 0 and tnoXij

� �T

	 FðaÞðtn�Þ < 0 for oXij convex to Xb:

9>=>;
ð107Þ
(ii) The gluing point x
ð0Þ
k 2 Cij is hyperbolic on the side of Xa iff
either tmoXij

� �T

	 FðaÞðtmþÞ < 0 and tnoXij

� �T

	 FðaÞðtn�Þ < 0 for oXij convex to Xa;

or tmoXij

� �T

	 FðaÞðtmþÞ > 0 and tnoXij

� �T

	 FðaÞðtn�Þ > 0 for oXij convex to Xb:

9>=>;
ð108Þ
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Proof. Following the proof procedure of Theorem 2, this theorem can be proved. h

In the non-smooth dynamic system, the separation boundary often consists of semi-passable,

non-passable and gluing singular points. Consider two semi-passable boundary sets oX
�!

ij and
oX
 �

ij with a gluing point, i.e.,
oX
$

ij ¼ oX
�!

ij [ oX
 �

ij [ C0
ij: ð109Þ
In general, an open chain boundary consisting of oX
�!ðn1Þ

ij and oX
 �ðn2Þ

ij with C0ðn3Þ
ij possesses the

following structures as
oX
$

ij ¼
[k1

n1¼1

oX
�!ðn1Þ

ij [
[k2

n2¼1

oX
 �ðn2Þ

ij [
[k1þk2�1

n3¼1

C0ðn3Þ
ij ; ð110Þ
where two integers satisfy jk1 � k2j6 1. A closed passable boundary is formed as
oX
$

ij ¼
[n
n1¼1

oX
�!ðn1Þ

ij [
[n
n2¼1

oX
 �ðn2Þ

ij [
[2n
n3¼1

C0ðn3Þ
ij : ð111Þ
If the gluing singular point x0
k 2 C0

ij on both sides of boundary possesses the hyperbolicity in the
corresponding d-domain, the hyperbolic motion will appear. If the gluing singular point x0

k 2 C0
ij

on both sides of boundary experiences parabolicity in the corresponding d-domain, the parabolic
motion will be observed. However, due to the discontinuity, the parabolicity and hyperbolicity of
the gluing singular point x0

k 2 C0
ij on both sides of the boundary cannot occur at the same time

always. Therefore, the C-motion will appear.

Definition 31. In XðdÞij for x
ð0Þ
k 2 Cij, there is xðaÞðtÞ in XðdÞa (a 2 fi; jg) and xðbÞðtÞ in XðdÞb

(b 2 fi; jg; a 6¼ b). Three possible motion exists.
(i) This motion in XðdÞij is termed a C-motion around the gluing point x

ð0Þ
k if xðaÞðtÞ and xðbÞðtÞ

possess the hyperbolicity and parabolicity to x
ð0Þ
k , respectively.

(ii) This motion in XðdÞij is termed a hyperbolic-motion around the gluing point x
ð0Þ
k if xðaÞðtÞ and

xðbÞðtÞ possess the hyperbolicity to x
ð0Þ
k .

(iii) This motion in XðdÞij is termed a parabolic-motion around the gluing point x
ð0Þ
k if xðaÞðtÞ and

xðbÞðtÞ possess the parabolicity to x
ð0Þ
k .

The phase portraits of the hyperbolic, parabolic and C-shape motions in the d-domain of the
gluing point x0

k are sketched in Fig. 18. The largest, solid circular circle is a full gluing point
x0
k 2 C0

ij. The largest solid curve with circular symbols is the discontinuous boundary set. On the

semi-passable boundary oX
�!

ij (or oX
 �

ij), flows pass through the boundary from the domain Xi into
Xj (or Xj into Xi).

Consider a non-passable boundary formed by two non-passable sub-boundaries and a gluing
point, expressed by
oXij ¼ foXij [ C0
ij [ coXij: ð112Þ



Fig. 18. Phase portraits for (a) hyperbolic, (b) parabolic and (c) C-motion in the d-domain near the discontinuous

boundary set oXij ¼ oX
�!

ij [ oX
 �

ij [ C0
ij. The largest, solid circular circle is the gluing point xð0Þk 2 Cij. The boldest solid

curve with circular symbols is the discontinuous boundary set. On the semi-passable boundary oX
�!

ij (or oX
 �

ij), the flow

depicted by the smaller solid curves passes through the boundary from the domain Xi into Xj (or Xj into Xi).
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For a passable boundary involving the non-passable sub-boundary of the first and second kinds,
the boundaries are formed as
oX
$

ij ¼ oX
�!

ij [ CðjÞij [ foXij [ CðiÞij|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
sliding

[oX �
ij;

oX
$

ij ¼ oX
�!

ij [ CðiÞij [ coXij [ CðjÞij|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
outflow

[oX �
ij;

oX
$

ij ¼ oX
�!

ij [ CðjÞij [ oXij [ CðjÞij|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
sliding and outflow

[ oX �
ij:

9>>>>>>>>>>>>=>>>>>>>>>>>>;
ð113Þ
As in Eq. (110), the generalized boundary with non-passable sub-boundaries can be developed. To
demonstrate the discontinuous boundary including the non-passable boundary, the phase por-
traits near the non-passable boundary of the non-passable sub-boundaries the first and second
kinds are sketched in Fig. 19(a)–(c). The non-passable sub-boundaries of the first and second are
connected by a gluing point x

ð0Þ
k 2 Cij. The parabolic, hyperbolic and inversed C-motions exist in

the neighborhood of the gluing point x
ð0Þ
k . Similarly, the phase portraits near the passable dis-

continuous boundary sets with the non-passable boundary of the first kind are depicted in Fig.
20(a)–(d). Two semi-gluing points are used to connect the non-passable boundary and semi-
passable boundaries. In the neighborhood of the semi-gluing points, the hyperbolicity of the flows
to the semi-gluing point is similar to the one for the gluing points, and either semi-hyperbolic or
semi-parabolic behaviors of flows in such a neighborhood exist as well. Such phenomena exist in
the neighborhood of the passable boundary sets with the non-passable boundary of the second
kind.
11. Bouncing motion

For discontinuous dynamical systems, after the semi-tangential bifurcation in Xj occurs at the

boundary oX
 �

ij, there is a bouncing motion in Xi at the discontinuous boundary. When a flow

xðiÞðtÞ arrives to the boundary oX
 �

ij or coXij, the flow will bounce at such a boundary. To describe
the bouncing motion, the following mathematical description is given as follows.

Definition 32. For a discontinuous dynamical system in Eq. (3), xðtmÞ � xm 2 oXij for tm. 8e > 0,
9½tm�e; tmÞ and ðtm; tmþe�, suppose xðaÞðtm�Þ ¼ xm ða 2 fi; jgÞ and xðaÞðtÞ is Cr

½tm�e;tmÞ and Cr
ðtm;tmþe�-

continuous (rP 1) for time t. The flow xðaÞðtÞ in Xa is bouncing on the boundary oXij if the two
conditions hold:

(C1)
nT
oXij
	 _xðaÞðtm�Þ 6¼ nT

oXij
	 _xð0Þab ðtmÞ ¼ 0: ð114Þ



Fig. 19. Phase portraits for (a) parabolic, (b) hyperbolic and (c) inversed C-flows near the non-passable boundary

consisting of the non-passable boundaries of the first and second kinds. The largest, solid circular circle is the gluing set

x
ð0Þ
k 2 C0

ij. The dashed curve is the non-passable boundary.
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Fig. 20. Phase portraits near the passable boundary with a sliding non-passable sub-boundary: (a) semi-hyperbolic

flows, (b, c) mixed semi-parabolic and semi-hyperbolic flows and (d) semi-parabolic flows. The largest, solid circular

circle is the gluing sets CðiÞij and CðjÞij . The boldest solid curve with circular symbols plus the dashed bold curve is the entire

discontinuous boundary set. The dashed curve is the non-passable boundary.
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(C2)
either
nT
oXij
	 xðaÞðtm�Þ � xðaÞðtm�eÞ
� �

> 0

nT
oXij
	 xðaÞðtmþeÞ � xðaÞðtmþÞ
� �

< 0

)
for oXij convex to Xb;

or
nT
oXij
	 xðaÞðtm�Þ � xðaÞðtm�eÞ
� �

< 0

nT
oXij
	 xðaÞ tmþeð Þ � xðaÞðtmþÞ
� �

> 0

)
for oXij convex to Xa:

9>>>>=>>>>; ð115Þ
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Definition 33. For a discontinuous dynamical system in Eq. (3), xðtmÞ � xm 2 oXij for tm. 8e > 0,
9½tm�e; tmÞ and ðtm; tmþe�, suppose xðaÞðtm�Þ ¼ xm ða 2 fi; jgÞ and xðaÞðtÞ is Cr

½tm�e;tmÞ and Cr
ðtm;tmþe�-

continuous (rP 1) for time t. A bouncing flow xðaÞ in Xa ða 2 fi; jgÞ at xm 2 oXij is of

ii(i) the first kind for xðaÞðtm�Þ ¼ xm if
tToXij
	 xðaÞðtm�Þ
�n

� xðaÞðtm�eÞ
�o
� tToXij

	 xðaÞðtmþeÞ
�n

� xðaÞðtm�Þ
�o

< 0: ð116Þ
i(ii) the second kind if
tToXij
	 xðaÞðtm�Þ
�n

� xðaÞðtm�eÞ
�o
� tToXij

	 xðaÞðtmþeÞ
�n

� xðaÞðtm�Þ
�o

> 0: ð117Þ
(iii) the third kind if
tToXij
	 xðaÞðtm�Þ
�n

� xðaÞðtm�eÞ
�o
� tToXij

	 xðaÞðtmþeÞ
�n

� xðaÞðtm�Þ
�o
¼ 0: ð118Þ
Definition 34. For a discontinuous dynamical system in Eq. (3), xðtmÞ � xm 2 oXij for tm. 8e > 0,
9½tm�e; tmÞ and ðtm; tmþe�, suppose xðaÞðtm�Þ ¼ xm ða 2 fi; jgÞ and xðaÞðtÞ is Cr

½tm�e;tmÞ and Cr
ðtm;tmþe�-

continuous (rP 1) for time t. A bouncing flow of the third kind xðaÞ in Xa ða 2 fi; jgÞ at xm 2 oXij

for xðaÞðtm�Þ ¼ xm is:

ii(i) A normal-input bouncing flow if
tToXij
	 xðaÞðtm�Þ
�

� xðaÞðtm�eÞ
�
¼ 0: ð119Þ
i(ii) A normal-output bouncing flow if
tToXij
	 xðaÞðtmþeÞ
�

� xðaÞðtmþÞ
�
¼ 0: ð120Þ
(iii) A complete bouncing flow if
tToXij
	 xðaÞðtm�Þ
�

� xðaÞðtm�eÞ
�
¼ tToXij

	 xðaÞðtmþeÞ
�

� xðaÞðtmþÞ
�
¼ 0: ð121Þ
From the three definitions of bouncing flows, the geometrical illustrations are sketched in
Figs. 21 and 22. The classification of bouncing bifurcations is based on the components of
the flow xðaÞðtÞ on the normal and tangential directions of the boundary oXij. In Fig. 21,
the first and second bouncing flows are depicted. The bouncing flows of the third kind is
shown in Fig. 22. The lightly-shaded symbols represent two points (xðiÞm�e and x

ðiÞ
mþe) on the

flow before and after the bouncing. The bouncing point xm on the boundary oXij is
represented by a large circular symbol. This flow only exists in non-smooth dynamical
systems.



(a)

(b)

(c)

Fig. 21. A flow in the domain Xi bouncing on the boundary oXij convex to Xj: (a, b) first bouncing flow and (c) second

bouncing flow. The lightly-shaded symbols represent two points (xðiÞm�e and x
ðiÞ
mþe) on the flow before and after the

bouncing. The bouncing point xm on the boundary oXij is represented by a large circular symbol.
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Fig. 22. A flow in the domain Xi bouncing on the boundary oXij convex to Xj: (a) normal-input bouncing flow, (b)

normal-output bouncing flow and (c) complete bouncing flow. The lightly-shaded symbols represent two points (xðiÞm�
and x

ðiÞ
mþ) on the flow just before and after the bouncing. The bouncing point xm on the boundary oXij is depicted by a

large circular symbol.
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Theorem 24. For a discontinuous dynamical system in Eq. (3), xðtmÞ � xm 2 oXij for tm. 8e > 0,

9½tm�e; tmÞ and ðtm; tmþe�, suppose xðaÞðtm�Þ ¼ xm ða 2 fi; jgÞ and xðaÞðtÞ is Cr
½tm�e;tmÞ and Cr

ðtm;tmþe�-con-
tinuous (rP 2) for time t and dxr=dtrk k <1. The flow xðaÞðtÞ for t 2 Tm in Xa is bouncing on the

boundary oXij iff
nT
oXij
	 _xðaÞðtm�Þ 6¼ nT

oXij
	 _xðaÞðtmÞ ¼ 0; ð122Þ

nT
oXij
	 _xðaÞðtm�Þ

n o
� nT

oXij
	 _xðaÞðtmþÞ

n o
< 0: ð123Þ
Proof. Following the proof procedure in Theorem 8, this theorem can be proved. h

Theorem 25. For a discontinuous dynamical system in Eq. (3), xðtmÞ � xm 2 oXij for tm. 8e > 0,
9½tm�e; tmÞ and ðtm; tmþe�, suppose xðaÞðtm�Þ ¼ xm ða 2 fi; jgÞ and FðaÞðtÞ is Cr

½tm�e;tmÞ and Cr
ðtm;tmþe�-con-

tinuous (rP 1) for time t and dxrþ1=dtrþ1
�� �� <1. The flow xðaÞðtÞ for t 2 Tm in Xa is bouncing on

the boundary oXij iff
nT
oXij
	 FðaÞðtm�Þ 6¼ nT

oXij
	 FðaÞðtmÞ ¼ 0; ð124Þ

nT
oXij
	 FðaÞðtm�Þ

n o
� nT

oXij
	 FðaÞðtmþÞ

n o
< 0: ð125Þ
Proof. Following the proof procedure in Theorem 9, this theorem can be proved. h

Theorem 26. For a discontinuous dynamical system in Eq. (3), xðtmÞ � xm 2 oXij for tm. 8e > 0,
9½tm�e; tmÞ and ðtm; tmþe�, suppose xðaÞðtm�Þ ¼ xm ða 2 fi; jgÞ and xðaÞðtÞ is Cr

½tm�e;tmÞ and Cr
ðtm;tmþe�-con-

tinuous (rP 2) for time t and dxr=dtrk k <1. A bouncing flow xðaÞ in Xa ða 2 fi; jgÞ at xm 2 oXij is
of the first kind for xðaÞðtm�Þ ¼ xm iff
tToXij
	 _xðaÞðtm�Þ

h i
� tToXij

	 _xðaÞðtmþÞ
h i

< 0 ð126Þ
of the second kind iff
tToXij
	 _xðaÞðtm�Þ

h i
� tToXij

	 _xðaÞðtmþÞ
h i

> 0 ð127Þ
and of the third kind iff
tToXij
	 _xðaÞðtm�Þ

h i
� tToXij

	 _xðaÞðtmþÞ
h i

¼ 0: ð128Þ
Proof. Following the proof procedure in Theorem 8 and using the Taylor series, this theorem can
be proved. h

Theorem 27. For a discontinuous dynamical system in Eq. it>(3), xðtmÞ � xm 2 oXij for tm. 8e > 0,

9½tm�e; tmÞ and ðtm; tmþe�, suppose xðaÞðtm�Þ ¼ xm ða 2 fi; jgÞ and FðaÞðtÞ is Cr
½tm�e;tmÞ and Cr

ðtm;tmþe�-con-

tinuous (rP 1) for time t and dxrþ1=dtrþ1
�� �� <1. A bouncing flow xðaÞ in Xa ða 2 fi; jgÞ at

xm 2 oXij is of the first kind for xðaÞðtm�Þ ¼ xm iff
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tToXij
	 FðaÞðtm�Þ

h i
� tToXij

	 FðaÞðtmþÞ
h i

< 0 ð129Þ
of the second kind iff
tToXij
	 FðaÞðtm�Þ

h i
� tToXij

	 FðaÞðtmþÞ
h i

> 0 ð130Þ
is of the third kind iff
tToXij
	 FðaÞðtm�Þ

h i
� tToXij

	 FðaÞðtmþÞ
h i

¼ 0: ð131Þ
Proof. Using Eq. (3) and Theorem 17, this theorem can be proved. h

Theorem 28. For a discontinuous dynamical system in Eq. (3), xðtmÞ � xm 2 oXij for tm. 8e > 0,
9½tm�e; tmÞ and ðtm; tmþe�, suppose xðaÞðtm�Þ ¼ xm ða 2 fi; jgÞ and xðaÞðtÞ is Cr

½tm�e;tmÞ and Cr
ðtm;tmþe�-con-

tinuous (rP 2) for time t and dxr=dtrk k <1. The flow of the third kind xðaÞ in Xa ða 2 fi; jgÞ at
xm 2 oXij for xðaÞðtm�Þ ¼ xm is:

(i) A normal-input bouncing flow iff
tToXij
	 _xðaÞðtm�Þ ¼ 0: ð132Þ
(ii) A normal-output bouncing flow iff
tToXij
	 _xðaÞðtmþÞ ¼ 0: ð133Þ
(iii) A complete bouncing flow iff
tToXij
	 _xðaÞðtm�Þ ¼ tToXij

	 _xðaÞðtmþÞ ¼ 0: ð134Þ
Proof. Following the proof procedure in Theorem 8 and using the Taylor series, this theorem can
be proved. h

Theorem 29. For a discontinuous dynamical system in Eq. (3), xðtmÞ � xm 2 oXij for tm. 8e > 0,

9½tm�e; tmÞ and ðtm; tmþe�, suppose xðaÞðtm�Þ ¼ xm ða 2 fi; jgÞ and FðaÞðtÞ is Cr
½tm�e;tmÞ and Cr

ðtm;tmþe�-con-

tinuous (rP 1) for time t and dxrþ1=dtrþ1
�� �� <1. A bouncing flow of the third kind xðaÞ in

Xa ða 2 fi; jgÞ at xm 2 oXij for xðaÞðtm�Þ ¼ xm is:

(i) A normal-input bouncing flow iff
tToXij
	 FðaÞðtm�Þ ¼ 0: ð135Þ
(ii) A normal-output bouncing flow iff
tToXij
	 FðaÞðtmþÞ ¼ 0: ð136Þ
(iii) A complete bouncing flow iff
tToXij
	 FðaÞðtm�Þ ¼ tToXij

	 FðaÞðtmþÞ ¼ 0: ð137Þ
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Proof. Using Eq. (3) and Theorem 28, this theorem can be proved. h

Remark. The theories for tangential and bouncing motions are suitable for the motion in non-
smooth dynamical systems with non-passable boundaries.
12. Conclusions

In this paper, the accessible and inaccessible domains for non-smooth dynamical systems are
introduced, and a theory of non-smooth dynamical systems on connectable and accessible sub-
domains is developed. In this theory, the local singularity and transversality of a flow from a
accessible domain to its adjacent accessible domains are investigated, and the necessary and
sufficient conditions for the singularity and transversality are developed. The formation and
properties for separation boundaries based on the characteristics of flows are investigated, and the
sliding dynamics on a specified separation boundary is introduced. The flows either bouncing on
or tangential to the boundary for non-smooth dynamical systems are discussed as well.
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