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Abstract

In this paper, a local theory of non-smooth dynamical systems on connectable and accessible sub-do-
mains is developed. The properties for separation boundaries based on the characteristics of flows are
determined, and the sliding dynamics on a specified separation boundary is introduced. The local singu-
larity and transversality of a flow on the separation boundary from a domain into its adjacent domains are
investigated, and the bouncing and tangency of the flows to the separation boundary for non-smooth
dynamical systems are discussed as well. The sufficient and necessary conditions for the local singularity,
transversality and bouncing of the flows are developed. These conditions are applicable for determining
complicated dynamical behaviors of non-smooth dynamical systems.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Consider a smooth dynamical system in space R"*"
x = f(x,u,1), (1)
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where the vector function f € R", and state and input variable vectors are x € R" and u € R",
respectively. In smooth dynamical systems, the sufficient condition for the existence of a solution
for every initial state x(#)) and input vector u(¢) is that the vector function f(x, u, ¢) is continuous
in a given domain Q C ‘R". However, this condition cannot guarantee the uniqueness of solution.
Therefore, the following Lipschitz condition is used for guaranteeing the existence and uniqueness
of the solution for the system in Eq. (1)

1£(x,u,2) — (X, u,0)[| <K]|x —X]| (2)

for all x and X in the domain Q C R" and all time ¢ in a certain interval, where K is a constant and
|| - || represents a vector norm.

Most of the existing theories in dynamics are based on the Lipschitz condition in Eq. (2). In-
deed, those theories are widely used in science and engineering. However, ones want to develop
the expected dynamic behavior to satisfy specified requirements. Hence discontinuous constraints
destroying the Lipschitz conditions are added to dynamic systems, Because of this, the established
dynamical system theories based on the Lipschitz condition are not adequate for such non-smooth
dynamical systems. For instance, smooth linear dynamical systems with periodic impacting (e.g.,
[1,2]) have complicated dynamical behaviors which are unpredictable from the traditional
dynamical theories. The condition in Eq. (2) is very strong for practical dynamical problems, and
many dynamical systems cannot satisfy such a condition. To overcome this difficulty, a theory for
non-smooth dynamical systems should be developed.

The early investigation of discontinuous systems in mechanical systems can be found in the 30’s
of last century (e.g., [3,4]). In 1966 Masri and Caughey [1] investigated the stability of the sym-
metrical period-1 motion of a discontinuous oscillator, and in 1970, Masri [2] gave the further,
analytical and experimental investigations on the general motion of impact dampers. The
unsymmetrical motion was observed, and the rigorous stability analysis was conducted as well.
Since the discontinuity exists widely in engineering and control systems, in 1978 Utkin [5] pre-
sented sliding modes and the corresponding variable structure systems, and the theory of auto-
matic control systems described with variable structures and sliding motions was also developed
[6] in 1981. Further, in 1988, Filippov [7] developed a geometrical theory of the differential
equations with discontinuous right-hand sides, and the local singularity theory of the discontin-
uous boundary was discussed qualitatively. Ye et al. [8] discussed the stability theory for hybrid
systems in 1998. From geometrical points of view, Broucke et al. [9] investigated structural sta-
bility of piecewise smooth systems in 2001. So far, an efficient method to model such non-smooth
dynamical systems has not been developed yet. For instance, the linear impacting oscillators
cannot be fully understood as one of the simplest discontinuous systems (e.g., [10-15]). Another
typical example in engineering is piecewise smooth linear systems. In 1983, Shaw and Holmes [16]
used mapping techniques to investigate the chaotic motion of a piecewise linear system with a
single discontinuity. In 1989, Natsiavas [17] numerically determined the periodic motion and
stability for a system with a symmetric, tri-linear spring. In 1991, Nordmark [18] introduced the
grazing mapping to investigate non-periodic motion. In 1992, Kleczka et al. [19] investigated the
periodic motion and bifurcations of piecewise linear oscillator motion, and numerically observed
the grazing motion. In 2002, Leine and Van Campen [20] investigated the discontinuous bifur-
cations of periodic solutions through the Floquet multipliers of periodic solutions. The analytical
prediction of periodic responses of piecewise linear systems was presented (e.g., [21,22]). Normal
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formal mapping for piecewise smooth dynamical systems with/without sliding were discussed
(e.g., [23,24]). In 2000, Kunze [25] presented a mathematical background of a non-smooth
dynamical system with friction. In 2000, Popp [26] pointed out: (i) solution methods need to be
improved; (ii) efficient methods for stability and bifurcation are required to develop and (iii) the
attractor characteristics need to be reconstructed. From the aforementioned, brief literature
survey, a local theory for discontinuous dynamical systems should be developed to discuss the
dynamical properties of flows and to find appropriate methods for the corresponding solutions,
stability and bifurcation.

In this paper, accessible and inaccessible sub-domains will be introduced for development of a
theory of non-smooth dynamical systems on connectable and accessible sub-domains. The
boundary sets and singular sets will be developed. The local singularity and transversality of a
flow from a domain to its adjacent domains will be investigated. The bouncing and tangential
flows to the separation boundaries of non-smooth dynamical systems will be discussed. The
necessary and sufficient conditions for such a local singularity, transversality and bouncing mo-
tion will be developed.

2. Connectable and separable domains

Before development of a general theory for non-smooth dynamical systems on a universal
domain Q C R" in phase space, the sub-domains Q; (i = 1,2,...) of the domain Q are introduced,
and the dynamics on the sub-domains are defined differently.

Definition 1. A sub-domain in the universal domain Q is termed the accessible sub-domain on
which a specific, continuous dynamical system can be defined.

Definition 2. A sub-domain in the universal domain Q is termed the inaccessible sub-domain on
which no any dynamical system can be defined.

Since the dynamical system can be defined differently on each accessible sub-domain, the
dynamical behaviors of the system in those accessible sub-domains Q; can be different from each
other in the sense of Newton’s mechanics. These different behaviors cause the complexity of
motion in the universal domain Q. Owing to the accessible and inaccessible sub-domains, the
universal domain (2 is classified into the connectable and separable ones. The connectable domain
is defined as:

Definition 3. A domain Q in phase space is termed the connectable domain if all the accessi-
blesub-domains of the universal domain can be connected without any inaccessible sub-do-
main.

Similarly, a definition of the separable domain is:

Definition 4. A domain is termed the separable domain if the accessible sub-domains in the uni-
versal domain are separated by inaccessible domains.
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Fig. 1. Phase space: (a) connectable and (b) separable domains.

The boundary between two adjacent, accessible sub-domains is a bridge of dynamical behaviors
in the two domains for motion continuity. For the connectable domain, it is bounded by the
universal boundary surface S € R" (r<n — 1), and each sub-domain is bounded by the sub-do-
main boundary surface S;; C R (i,j € {1,2,...}) with/without the partial universal boundary.
For instance, consider a 2-D connectable domain in phase space, as shown in Fig. 1(a). The
shaded area @Q; is a specific sub-domain, and other sub-domains are white. The dark, solid curve
represents the original boundary of the domain Q. In the separable domain, there is at least an
inaccessible sub-domain to separate the accessible sub-domains. The union of inaccessible sub-
domains is also called the “sea”. The sea is the complement of the accessible sub-domains to the
universal (original) domain Q. That is determined by & = Q\ | J, Q;. The accessible sub-domains
in the domain Q2 are also called the ““islands”. For illustration of such a definition, a 2-D separable
domain is shown in Fig. 1(b). The dashed curve is the boundary of the universal domain, and the
gray area is the sea. The white regions are the accessible domains (or islands). The diagonal line
shaded region represents a specific accessible sub-domain (island). From one island to another,
the transport is needed for motion continuity. Because of page limitation, the transport laws will
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be discussed in sequel. Once the sub-domains are determined, a theory for non-smooth dynamics
systems can be developed.

3. Non-smooth dynamical systems

To demonstrate the basic concepts of non-smooth dynamical system theory, the development
of the theory in this article is restricted to a 2-D non-smooth dynamical system. Consider a
planar, dynamic system consisting of # sub-dynamic systems in a universal domain Q C R* that is
divided into n accessible sub-domains Q;, and the union of all the accessible sub-domains |J;_, @;
and the universal domain Q = [J._, @; U &, as shown in Fig. 1. Z is the union of the inaccessible
domains. For the connectable domain in Fig. 1(a), Z = {0}. In Fig. 1(b), the union of the
inaccessible sub-domains is the sea, &= Q\ J._, @ is the complement of the union of the
accessible sub-domains. On the /" open sub-domain €;, there is a C"-continuous system (» > 1) in
a form of

x=F(x,t,n) e R, x=(xy) €. (3)

The time is £ and % = dx/dz. In all the accessible sub-domains €, the vector field F(x, z, p,) with
parameter vectors p, = (i, s - - - » ) € R is C"-continuous (» > 1) in x and for all time #; and
the continuous flow in Eq. (3) x?(¢) = ®9(x% (1), 1, n,) with x?(z)) = ®(x (1), to, ;) is C"*'-
continuous for time 7.

The non-smooth dynamic theory developed in this paper holds for the following condi-
tions:

A1l: The switching between two adjacent sub-systems possesses time-continuity.
A2: For an unbounded, accessible sub-domain €;, the corresponding vector field and its flow are
bounded, i.e.,

IF?|| <Ki(const) on €, and [ ®"||<Ky(const) for ¢ € [0,00). )

A3: For a bounded, accessible domain £, the corresponding vector field is bounded, but the flow
may be unbounded, i.c.,

|IF?|| <Ki(const) on @, and |®"| < oo forte[0,00). (5)

4. Boundary sets and singular sets

Since the dynamical systems on the different accessible sub-domains are distinguishing, the
relation between flows in the two sub-domains should be developed herein for flow continuity.
For a sub-domain €;, there are k;-segment boundaries (k; <n — 1). Consider a boundary set of any
two sub-domains, formed by the intersection of the closed sub-domains, 1.e., 0Q; =0 ﬂﬁj
(i, €{1,2,...,n},j #i), as shown in Fig. 2.



6 A.C.J. Luo | Communications in Nonlinear Science and Numerical Simulation 10 (2005) 1-55

B2 |

X

Fig. 2. Sub-domains ©; and Q;, and the corresponding boundary 0Q;;.

Definition 5. The boundary set in the 2-D phase space is defined as
S, =0Q; = {(x,y)W(x,y) €Q:nN ﬁj c R satisfying H;;(x,y) = 0}. (6)

Definition 6. The two sub-domains ©; and Q; are disjoint if the boundary set 0€2;; is an empty set

(i.e., 0Q; = {0}).

The boundary values (x,y®) and (x'),y")) are pertaining to the open domains ©; and Q;,
respectively. Note that the function H;; is C"-continuous (r > 1). Based on the boundary defini-
tion, we have 0Q;; = 0Q;;.

Definition 7. If the intersection of the three or more sub-domains,

ik
Filiz"'ik = mﬁl C ‘}{0, (7)

i=iy

where i, € {1,2,...,n} and k > 3 is non-empty, the sub-domain intersection is termed the singular
set.

The boundary functions relative to the singular points are C’-continuous and the singular
points are also termed the corner points or vertex. In Fig. 3, the singular point set for the three
closed domains {€;, Q;,Q;} is sketched. The circular symbols represent intersection point sets.
The largest solid circular symbol stands for the singular point set I';;. The corresponding dis-
continuous boundaries are labeled by 0€;;, 0Q; and 0Q;. The singular point possesses the
hyperbolic or parabolic behavior depending on the properties of the discontinuous boundary set,
which will be discussed later.
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Fig. 3. A singular point set for the intersection of three closed domains {Q;, Q;,2;}. The circular circles represent
intersection point sets. The largest solid circular symbol stands for the singular point set I';;. The corresponding
discontinuous boundaries are marked by 0Q;;, 0Q; and 0€;.

Definition 8. For a discontinuous dynamical system in Eq. (3), x(¢,) = x,, € 0Q;; at t,,. Ve > 0,
[t ! tw) and (t,, t,y.), suppose X (t,_) = x,, = xY)(t,,,.). The non-empty boundary set 0Q; to a
flow x )( t) (o € {i,j}) is semi-passable from the domain €, to ©; (expressed by 0Q;)) if the flow
x*(¢) possesses the following properties

L [xO( x9(t,_,)] >0 and
either for 0€; convex to ;,
[X(/ WH—S _ X(/ ( )]
(8)
naQ [ (t-) tu—s)] < 0 and
or for 0€;; convex to €,
naQ : [XU ( m+£ tm+ ]
where the normal vector of the boundary 0€;; is
0H; OHy;\"
naQ,, - VI{U - < 6)( y ay >(Xm,ym)' (9)

Note that notations #,., = t,, + ¢ and ¢,. = t,, = 0 are used. To interpret the geometrical concept
of the semi-passable boundary sets, consider a flow in Eq. (3) from the domain €; into the domain
Q; through the boundary 0€;;. For a time #,, at which the flow arrives to the boundary 09;;, a small
nelghborhood (tm—sy twse) Of the time ¢, is arbitrarily selected where ¢,.. =1, £ ¢&. As ¢ — 0, the
time increment Af=¢— 0. XV(t,_,) = (X0 (tys), Y (1n-0)) s XD (tse) = (XD (Epre)s Y (b))
and X, = (x(t,),»(t,))". The input and output flow vectors are x?(z,)—x(z,_,)
and xY(¢,.,) — xY(t,), respectively. The process of the flow passing through the convex and
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(b)
Fig. 4. Semi-passable boundary set @)ﬁ from the domain @; to Q;: (a) convex to €; and (b) convex to .
XO(tys) = (D (b)), YO (o)) XD (1) = (XD (trss) Y (tse)) " and X,y = (X(1), ¥(t)) " Where t,,4, = £, + & for an
arbitrary & > 0. Two vectors ngg, and to, are the normal and tangential vectors of the boundary curve 0€2;; determined
by Hi(x,») = 0.

non-convex boundary sets from the domain €; to Q; is shown in Fig. 4. Two vectors ngo,; and tag,

are the normal and tangential vectors of the boundary curve 0€; determined by H;;(x,y) = 0.

When a flow x(¢) in the domain Q; arrives to the semi-passable boundary 0Q;, the flow can be
—

tangential to, bouncing on and passing through the semi-passable boundary 0Q,;. However, once

a flow x)(¢) in the domain Q; arrives to the semi-passable boundary ﬁé,‘, the flow cannot pass
through the boundary, but either the tangential or bouncing flow x")(¢) at the semi-passable

boundary E}ij exists. The tangential and bouncing flows will be discussed in this paper. Notice
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that no any control and transport laws are defined on the semi-passable boundary. The direct-
ionof tog, X Mmyg, 1s the positive direction of the coordinate by the right-hand rule.

Theorem 1. For a discontinuous dynamical system in Eq. (3), X(t,) = X,, € 0Q; for t,. Ve >0,
A[tys, tn) and (t,,, m+8] suppose X (t,,) = x,, = xV(t,,,.) and, both x)(t) and xV)(t) are Cl,, o and
Clyvims-CONtinuouUs (r = 2) for time t, respectively and |d'x®/de"|| < oo (« € {i,j}). The non-empty
boundary set 0Q;; is semi-passable Jfrom the domain Q; to Q; iff

cither nggv XD (ty_) >0 and nggv XU (t,) >0 for dQ;; convex to Q;, (10)
or ngg,, x0(1,.) <0 and ﬂggy XU (t,1) <0 for 3Q;; convex to Q.

Proof. For a point x,, € 0Q;; convex to Q;, suppose x'(¢,,_) = x,, = x"(¢,.,) and, both x 2 ( ) and
xU(t) are CI and (7, -continuous r>2 for time ¢, respectively and | X < oo

[tm—cstm) d’
(e €{i,j}) for 0<e << 1. Cons1der a € [tysytm—) and b € (L, tyye)- Apphcatlon of thte Taylor

series expansion of X (t,.,) with t,., = t, ¢ (x € {i,j}) to x >( ) and x®(b) gives

XD (ty_y) = x(t,- — &) = x(a) + xD(a)(t,-. —&—a) +o(ty — & —a),

XD (tie) = XDty + &) = XU (D) + XU () (tmy + & — b) + O(ty + & — b).
Let a — ¢t,_ and b — t,,, the limits of the foregoing equations lead to

XD (ty_y) = xD(t,_ — &) = x(t,_) — x(t,_)e + o(e),

X0 (tn0) = X (1 + ) = X0 (1) + X0 ()2 + 0(e):

Because of 0 < ¢ < 1, the % and higher order terms of the foregoing equations can be ignored.
Therefore, with the first equation of Eq. (10), the following relations exist:

nggij . [X(i)([m,) — X(i)([mie)] = nggii . x () (tm,)S > 0 and
ngQ,-j : [XU)(thrs) - X(I)(Zer)] = nggv_ . (1>(tm+)8 > 0.

From Definition 8, the boundary 0€;; convex to £; is semi-passable under the condition in the
first inequality equations of Eq. (10). In a similar manner, the boundary 0€;; convex to €; is semi-
passable under the conditions in the second inequality equation in Eq. (10). [

Theorem 2. For a discontinuous dynamical system in Eq. (3), X(t,) =X,, € 0Q; for t,. Ve >0,
s, ) and (ty,tyss), suppose xV(t,_) = x,, = x(t,,,) and, both FY(t) and FV (1) are Cl i)
and C, , \-continuous (r = 1) for time t, respectively and [dx® /drt|| < oo (a € {i, ]}) The
non-empty boundary set 0€;; is semi-passable from the domain ©Q; to Q; iff

either “gﬂf/ Ft, ) >0 and nggij F(t,,,) >0 for 0Qy; convex to Q,, } an

or Mg, F(t,.) <0 and NG, FY(t,,) <0 for 0Q, convex to Q;,

where FO(t,_) = FO(x, t,,_, ;) and FV(t,..) = FV(X, 1,0, ).
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Proof. For a point x,, € 0Q;; convex to Q;, we have x(z,_) = x,, = xY (¢, ). With Eq. (3), the
first inequality equation of Eq. (11) gives

“aT,Q,-,- X0 (4,) = “gQ,-,- -F(t,-) >0 and ngg,-,» X (1) = ngg,-,- FU(t,,) > 0.

From Theorem 1 and Definition 8, the boundary 0€;; convex to Q; is semi-passable. In a similar
fashion, the boundary 0€;; convex to €; is semi-passable under the condition in the second
inequality equations of Eq. (11). [

Definition 9. For a discontinuous dynamical system in Eq. (3), x(z,) = x,, € 0Q;; for #,. Ve > 0,
I[tm_ss tm), suppose x(t, ) = x,, = x¥)(t,_). The non-empty boundary set 0Q;; is the non-pass-
able boundary of the first kind, 0Q;; (or termed a sink boundary between the sub-domains €, and
Q)) if the flows x7)(¢) for (y € {o, B} € {i,j} and « # B) in the neighborhood of the boundary 0Q;;
possess the following properties

{nggy_ x9 () - X(“)(tm,g)]} X {nggy_ x P (1) — x<ﬁ>(zm,£)}} <0. (12)

Definition 10. For a discontinuous dynamical system in Eq. (3), x(¢,) = x,, € 0Q;; for #,,. Ve > 0,
Ity tmre)s suppose X (4,1) = X,, = XY (z,,). The non-empty boundary set 3Q;; is the non-pass-
able boundary of the second kind 0€;; (or termed a source boundary between the sub-domains ;
and Q)) if the flows x)(¢) for (y € {a, B} € {i,j} and o # p) in the neighborhood of the boundary
0Q;; possess the following properties.

{nko, - X (1) = x(0)] | 5 {nlo, - [x (1) = xP (0] } < 0. (13)

The above two concepts for the sink and source boundaries between the two sub-domains Q;
and Q; are illustrated in Fig. 5(a) and (b), and the flows in the neighborhood of the boundaries are
depicted. When a flow x(¢) (o € {i, j}) in the domain Q, arrives to the non-passable boundary of
the first kind 0€;;, the flow can be tangential to or sliding on the non-passable boundary 0€Q;;. For
the non-passable boundary of the second kind 3Q;;, a flow x* (¢) ) (o € {i,j}) in the domain €, can
be tangential to or bouncing on the non-passable boundary 0Q;,. The tangential, sliding and
bouncing motion on the non-passable boundary will be discussed later in this paper.

Theorem 3. For a discontinuous dynamical system in Eq. (3), x(t,) = X,, € 0Qy; for t,. Ve >0,
tm_o»tw), suppose X (t,) = x,, (« € {i,j}) and, x*(¢) is Cl,, ,-continuous (r = 2) for time t
and ||d'x® /d¢"|| < co. The non-empty boundary set 0Q;; is a non-passable boundary of the first kind
iff

[nggij.%@(zm,)] X [nggij P (5,0] <0 (14)
for {0, B} € {i,/} (4 £ B).

Proof. Following the procedure of the proof of Theorem 1, the Theorem 3 can be proved. [
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(b) *

Fig. 5. Non-passable boundary set m,-,- = 5?2,1,- U 6/5\25,-: (a) the sink boundary (or the non-passable boundary of the first
kind, 0Q;), (b) the source boundary (or the non-passable boundary of the second kind, 0Q;). x,, = (x(t,,,),y(lm))T,
XO () = (X (1), Y (£s)) " and o = {i, j} where 1,4, = t,, + ¢ for an arbitrary ¢ > 0.

Theorem 4. For a discontinuous dynamical system in Eq. (3), x(t,) =X,, € 0Q;; for t,. Ve >0,
El[tm,ls, tw), suppose X" (t,_) =x, (x€{i,j}) and F(t) are Cl,, .o-continuous (r > 1) and
|[d""'x® /de+1|| < oo. The non-empty boundary set 8Q;; is a non-passable boundary of the first kind

if for p € {i,j} (o7 B)
[0, - F ()] % [l - FP(5,0)] <0, (15)
where F9 (1, )2F(x, t,_,p,) and FV (1, )2FY)(x,1,,_, B

Proof. Following the procedure of the proof of Theorem 2, the Theorem 4 can be proved. [
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Theorem 5. For a discontinuous dynamical system in Eq. (3), x(tw) =X, € 0Q;; for t,. Ve >0,
El(tm,tmﬂ] suppose X (t,y) =X, (2 € {i,j}) and, x*)(1) is C[, , |-continuous (r>2) for time t
and ||d'x® /dt"|| < oco. The non-empty boundary set 0Q;; is a non passable boundary of the second
kind iff

[ndo, - X (tn) | x [y, - X7 (1] < 0 (16)
for B e{i,j} (x# p).
Proof. Following the procedure of the proof of Theorem 1, the Theorem 5 can be proved. [J

Theorem 6. For a discontinuous dynamical system in Eq (3), x(tn) =X, € 0Q;; for t,. Ye >0,
El(tm,tmﬂ] suppose X (t,,) =x,, (o€ {i,j}) and, F® () are Cr y-Continuous (r=1) and
|d"'x® /de+!|| < co. The non-empty boundary set 8Q,; is a non-passable boundary of the second

kind iff for B € {i.j} (2% )

[, F ()] % [nlg, - FP(50)| <0, (17)
where FU (£, ) 2F)(X, £, ,n,) and FY (1, )2FY (X, t,,, . 1,).
Proof. Following the procedure of the proof of Theorem 2, the Theorem 6 can be proved. [l

Definition 11. The non-empty boundary set 0Q;; is pas(s;able (6?%-) only if it is not only semi-
passable boundary 0Q;; from the domain €; to Q; but 0Q;; from the domain Q; to ;.

This definition indicates that the C°-flow on the boundary set is invertible. The gradients of the
flow on both sides of the separation boundary are different in the non-smooth dynamical systems.
If the flow is C'-smooth on the boundary without effects of sliding motion, the boundary set
becomes a trivial boundary set, and the two sub-dynamical systems becomes a smooth dynamical
system. For illustration of the passable boundary set, the flow passing through the boundary 0€;;
from @; to Q; and from Q; to €; are presented in Fig. 6. The dashed curves are other boundaries
for the domalns Q; and Q;. The thicker solid curve represents the boundary 09;;. The thinner solid
curves with arrows are the flow of Eq. (3) in the two domains.

5. Local singularity and tangential bifurcation

Definition 12. For a discontinuous dynamical system in Eq. (3), x(¢,) = x,, € 0Q;; for #,. Ve > 0,
tw_o,tm) and (¢, tmse), suppose x¥ (¢, ) = x,, = xP(t,..), ({o, B} € {i,j}) and, both x*(¢) and
xP () are Cr. ..yand C,  -continuous (r > 2), respectively. A point x,, is critical on the non-
empty boundary set 0Q;; if the following equation exists

ngQij ’ X(a) (tm_) = O or n;irQ,j ’ X(ﬁ) (tm+) = 0' (18)
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% !

(b)

Fig. 6. Flow passing through the boundary 0Q;;: (a) from ; to Q; and (b) from ©; to Q;. The dashed curves are the
other boundaries for the domains ©; and ;. The thicker solid curve represents the boundary 0€;;. The thinner solid
curves with arrows are the flow of Eq. (3) in the two domains.

Theorem 7. For a discontinuous dynamical system in Eq. (3), x(t,) =X, € 0Q; for t,. Ve >0,
Htmess tw) and (ty, twse], suppose X (t,_) =X, = xB(t,,.)({o, B} € {i,j}) and, both F* (1) and

FP (1) are Cl,, .oy and C{, \-continuous (r = 1) for time t, respectively and |[dHx® /der | < oo
The point x,, € 08, is critical on the non-empty boundary set 082;; iff
ngﬂ,, : F(d) (tm*) = O or ngQ,-j ’ F(ﬁ)(tm"r) = 0’ (19)

where F® (1, Y2F® (x,1,_,p,) and FP (1, ) 2FP(x, 1,,,, ny).

Proof. Using Eq. (3) and Definition 12, the Theorem 7 can be proved. [
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Since the tangential vector of the input and output flows x*(z,_) and x*(z,,) on the side of
the domain Q,(x € {7, /}) at the boundary 0€;; is normal to the normal vector of the boundary, it
implies that the input flow is tangential to the boundary. The mathematical description is given as
follows.

Definition 13. For a discontinuous dynamical system in Eq. (3), x( ) =X, € 09 for t,,. Ve > 0,
Htn—s; tn) and (tn, tr], suppose X (t,) =, (x € {i,j}) and x(¢) is €}, ) and C, -
continuous (7 > 1) for time . The flow x*(¢) in Q, is tangential to the boundary 0Q;; 1f the

following two conditions hold:
(CD)

ngg, - X (£,1) = 0. (20)
(C2) either

ngg, - (X (t,-) = x“ (ty—)] >0

for 00;; convex to Qg, 21
g, + (X (tnie) — X" (8,1)] <0 } / y 1)

where f§ € {i,j} but « # f, or

ngg’_l_ . [X(“)(l‘m,) _ X(a)(tnzfg)] <0

for 0Q;; convex to Q,. 27
ngﬂi/ ’ [X(“)(tm+8) - X(a)(tm-&-)] > 0 } / ( )

Since nggij - tog, = 0 and too, = X,, on the boundary 0€Q;;, with Eq. (20), we have

ijs
ngQij ’ X(a)(tmi) =0= nggij Xy Or X(“)(tm*) =Xp = X(a)(tm+)' (23)

The above equation implies that the flow x* on the boundary is at least C'-continuous. To
demonstrate the above definition, consider a flow in the domain Q, tangential to the boundary
0Q; convex to €; as shown in Fig. 7. The gray-filled symbols represent two points
(XUﬂE =x(t, £¢)) on the flow before and after the tangency. The tangential point x,, on the
boundary 0€; is depicted by a large circular symbol. This tangential bifurcation is also termed the
grazing bifurcation.

Theorem 8. For a discontinuous dynamical system in Eq. (3), x( ) = Xy € 0Qy; for t,. Ve >0,
tw_ostm) and (tw,tn..), suppose x<°‘)(tmi) =x, (« €{i,j}) and x?(t) are C[’t Ly and Cl -

t
continuous (r = 2) for time t and ||d"x® /df"|| < co. The flow x*(t) in Q, is tangential to the
boundary 0Q;; iff

nlo, - X (tns) = 0, (24)

{nggi/_ : X(“)(tm_g)} X {nggﬁ -X“‘)(tmﬂ)} <0 (25)
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y

Fig. 7. A flow in the domain ©; tangential to the boundary 0Q;; convex to Q;. The gray-filled symbols represent two
points (x? = and xmﬂ) on the flow before and after the tangency. The tangentlal point x,, on the boundary 0€Q;; is
depicted by a large circular symbol.

Proof. Since Eq. (24) is identical to Eq. (20), the first condition in Eq. (20) is satisfied.

x(“)(tmi) = x"(¢ (tws T eF F) = X(“)( e T &) F ax(“)(tmi +¢)+ o(e)
= X( >( mis) :ng (mia) +O( )

For 0 < ¢ <« 1, the higher order terms in the above equation can be ignored. Therefore

ngQ,-_,- ’ [X(@(tm-i—) - X(a)(lm—s)} = Snggﬁ 'X(a) (tm—s)7

g, + [XO(tnre) = X" (81)] = endy - X (t1,).

From Eq. (25), the first case is:
0o, - X¥(tn) >0 and ng, X" (t,1,) <0

with which Eq. (21) holds for 0Q;; convex to Q; (ff # o). However, the second case is:
nggi, -x¥(t,_,) <0 and nggi' X (t,4,) >0

from which Eq. (22) holds for dQ;; convex to ,. Therefore, from Definition 13, the flow x(¢) for
t € T, in Q, is tangential to the boundary 0Q;. [

Theorem 9. For a discontinuous dynamical system in Egq. (3), x(t,,,) =X, € 0Q; for t,. Ve>0,

Wtwess tw) and (ty, tyss), suppose X (t,1) =X, (o € {i,j}) and F¥(¢) are Cl, .o and Cf, -

continuous (r = 1) for time t and ||d""'x® /de+|| < co. The flow X (1) for t € T, in'Q, is tangentlal
to the boundary 0€;; iff
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nlo, - F(tns) =0, (26)
{nlo, - FOn0 } x {nly, - FO (1)} < 0. (27)

Proof. Using Eq. (3) and the Theorem 8§, the Theorem 9 can be proved. [

Theorem 10. For a discontinuous dynamical system in Eq. (3), X(t,,) = X,, € 0Q;; for t,. Ve >0,
Htwess ) and (ty, tyse), suppose X (t,s) =X, (o € {i,j}) and F9(t) are Cr, oy and Cl, -

continuous (r = 3) for time t and |d'x® /d¢’|| < oo. The flow x\(t) for t € T,, in Q, is tangential to
the boundary 08;; iff

nly,  X®(1,2) =0, (28)

either nl, -X%(t,.) <0 for 0Q; convex to Qu(p € {i,j} but p# a),
00 jj B ]
or “gg,, X®(t,1) >0 for 0Q;; convex to Q,.

(29)

Proof. Eq. (28) is identical to Eq. (20), thus the first condition in Eq. (20) is satisfied.

From Definition 13, consider the boundary 0€;; convex to Q4 (f # o) first. Suppose
X (tys) = Xy (2 € {i,j}) and x*(¢) are Cj, ,  and C[, , -continuous (r > 3) for time 7 and
|d"x® /de"|| < oo (o € {i,j}). Let @ € [ty tn) OF @ € (ty, tmy,). Application of the Taylor series
expansion of x*(¢,.,) to x* (a) up to the third-order term gives

(“)( = x(®
X' (tyae) = XYty + &)
X (a) + X (a) (tye £ & — a) + X9 (@) (tys £ & — a)” + 0((tye £ & — a)’).

As a — t,., the limit of the foregoing equation leads to

x(“)(tmﬂ) x<°‘)(lm +e¢) = x¥ (tne) £ X(“)(tmi)s + i(a)(tmi)sz +o(&?).

The ignorance of the &* and high order terms, the deformation of the above equation and the left
multiplication of nag, gives

ngg[/- X () = xP(11)] = “ggz,;,- X (41 )+ ngsz;, X (t4) €7,

ngQU X () = X (t)] = nggu XP (8, )e — ngﬂu X9 (1, )e.

With Eq. (28), we have

ng:Qi/' ' [X(“)(lm+8) - X(GC)(Z,,H_)} = n;ﬁrﬂi/‘ ' X(a)(tm-&-)gza

ngg[/_ X () = X (t)] = _ngﬂi; K@ (1, ).

For the boundary 0€;; convex to €, using the first inequality equation of Eq. (29), the foregoing
two equations lead to
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nng/ ) [X(a)(tm*) - X(“>(tm*8)} = _ngQij ) ji(m)(tm*)gz > 07

ngﬂi] ) [X(a)(tmﬂ) - X(a)(thr)] = ngQij ’ ji(O()(thr)gz <0.

Similarly, for the boundary 09;; convex to ,, using the second inequality equation of Eq. (29),
the foregoing two equations lead to

nggl_/ . [x(a)(tm,) - X(“)(tmfs)] — —ngg[/. &% (1, )8 < 0,

ngg,, ) [X(a)(thrs) - X(a)(thr)] = nggy_ : i(a)(thr)Sz > 0.
Therefore under condition in Eq. (29), the flow x* () in Q, is tangential to the boundary 0Q;;. O

Theorem 11. For a discontinuous dynamical system in Eq. (3), X(t,) = X,, € 0Q;; for t,. Ve >0,
WNtweer ) and (ty, tus), suppose X (t,:) =X, (a € {i,j}) and F(t) are G, .y and C

‘m—e>tm (tm -,tm+r:] B

continuous (r = 2) for time t and ||d"7'x® /de || < oo. The flow x*)(t) in Q, is tangential to the
boundary 0Q;; iff

ngﬂi,- : F(a)(tmi) = 07 (30)
either nggy_ -DF"(t,..) <0 for 0Q,; convex to Qz (B € {i,j} but f # o),

(31)
or nggi, -DF?(t,..) >0 for 0Q,; convex to Q,,

where the total differentiation

OF ™ (=)

0x,

OF ™ (£,,.)

DF(“)(l‘mi>: ]F((X)(l‘mi)‘FT) (p,q€{1,2},x1 :xax2:y)'

Proof. Using Egs. (3) and (30), thus the first condition in Eq. (20) is satisfied. The derivative of Eq.
(3) with respect to time gives

X =
0x,

0
x +—FY(x,t,1.).
X+ (x,t,n,)

For ¢t =t,., X = x,, and F¥ (X b s ua)éF(“)(tmi), the left multiplication of myg, to the foregoing
equation gives

“gg,-,- X (tns) = nggU ' {

) 0 s
7]x(tmi) +&F< )(zmi)}.

Using Eq. (31), the above equation leads to Eq. (29). From Theorem 10, the flow x*(¢) in €, is
tangential to the boundary 0Q;;. [
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Definition 14. For a discontinuous dynamical system in Eq. (3), x( ) =X, € 0Q, for t,. Ve > 0,
tw o, tm) and (t,,t,.,], suppose x“* )(tmi) X, (a € {i,j}) and x®(t) is ¢,y and C[, -

continuous (r > 2n) for time ¢. The flow x*(¢) for ¢ € T,, in Q, is the (2n — l)th order tangential
to the boundary 0Q;; if the three conditions hold:

(Cl)
k
nggif-@x(“)(mi) =0 for (k=1,2,...,2n—1). (32)
(C2)
2n
(C3) either
nly, - X (1) = xO(6,2)] > 0
i for 0Q;; convex to Q;, 34
ngﬂi/’ ) [X(“)(th) - Xw)@m-%)] <0 / 4 ( )
where f§ € {i,j} but a # f, or
nl, - [x?(t,-) — x*(t,-,)] <0
i for 0Q;; convex to Q,. 35
"gﬂi,- . [x(“)(tm+,;) _ x(“)(t,,ﬁ)] >0 j (35)

Theorem 12. For a discontinuous dynamical system in Eq. (3), X(t,) = X,, € 0Q;; for t,. Ve >0,
El[tmfsvtm) and (tma tm+£]r suppose X(a>(tmi) = Xm (OC € {l J}) and Xm( ) is C[’;‘m—gqtm and Ct ) "M

tinuous (r = 2n) for time t and ||d'x®/d¢"|| < co. The flow x*(¢t) in Q, is the (2n — l)lh -order
tangential to the boundary 0, iff

k

nggy.%xm@mi) =0 for (k=1,2,...2n—1), (36)
2n

nggij ’ @X(“) (tmi) # 07 (37)

either nggi/_ -gt—;x(“)(tmi) <0 for 8Q,5 convex to Qy, (38)

or “ﬁT,Q,-,» '%X(“)(Zmi) >0 for 0Q,s convex to Q,,

where € {i,j} but o # p.

Proof. For Eqgs. (36) and (37), the first two conditions in Definition 14 are satisfied. Consider the
boundary 0Q;; convex to Q; (f # a) first. Choose a € [t,,_;, t,) or a € (t,,t,_.], and application of
the Taylor series expansion of x*(¢,+,) to x*(a) and up to the 2n-order term gives
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—1 2n
d d i
X(a>(tm:ts) = X(a)( It + 8 E T m:t +te— a)k + dg2r XW) (a)(tm:t te— a)2

As a — t,., we have

2n—1 gk 2n

d \ :
X () = X (1 £ 8) = X (ts) + ) @x(“)(tmi)(jzs)k + @x(“) (tns) (£6)™ + o(£&™).

k=1

With Egs. (36) and (37), the deformation of the above equation and let the multiplication of nyq,
produces

y d2n ,
nggij X () — XD (t1)] = nggy_ .@X( (1 )6,

2n
nggl_/_ . [x(“)(tm,) — X(“)(l‘m,g)] = _nggij '@X(a)(tmi)ﬁzn.

Under Eq. (38), the condition in Eq. (34) is satisfied. Therefore, the flow x*(¢) in Q, is the
(2n — 1)th-order tangential to the boundary 0Q,; convex to Q4. Similarly, under the condition in
Eq. (38), the flow x*(¢) in Q, is the (2n — 1)th-order tangential to the boundary 9€,; convex to
Q,. This theorem is proved. [

Theorem 13. For a discontinuous dynamical system in Eq. (3), x(t ) = X, € 0Q;; for t,. Ve >0,
Ntes ) and (ty, tyre), suppose X (t,2) = x,, (o € {i, j}) and F* (t) is C, ., and C[, -con-
tinuous (r = 2n — 1) for time t and |d""'x* /de+'|| < oo. The flow X (¢) in Q, is the (2n — 1)th-
order tangential to the boundary 0Q;; iff

nlo, - D FY (1,0) =0 for (k=1,2,...,2n = 1), (39)
nlo, - D" F(1,1) #0, (40)
ng,, D 'F¥(t,.) < 0 for 0 convex to Qg, or (1)
"gﬂf; -Dz”*lF("‘)(tmi) >0 for 08;; convex to ,,
where the total differentiation
OF ™ (1, F
D@ (tys) = Dk—Z{ ﬁ] F(a)(tmi) + L(tmi) ’ (42)
ox, ot

(p>q € {1,2},)61 =X, X :yak € {2,3,...,271}) andﬁ € {17]} but o 7é ﬂ
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Proof. The derivative of Eq. (3) with respect to time gives

dnx(g()(Z ) dn 1 dn—l
i ——F% (X, 1, 1) = D"'FP(x,, 1,
dt" dt ( ) dtn_l (X ’ 7“1) (X ) 7”0{)
OF) (X s 1) 0
S Bl LT P (O, :
{ ax, X+ 5, F (X s 1)

Using the foregoing equation to the conditions in Egs. (39)—(42), the flow x®(¢) for ¢ € T,, in Q, is
the (2n — 1)th-order tangential to the boundary 0€;; from Theorem 12. Therefore, this theorem is
proved. [

Definition 15. A flow x*(¢) tangential to 8Q;; (« € {i, j}) in Q, is termed the local grazing flow if
x(t) starting from 9€; in Q, is not intersected with another boundary before grazing. Suppose
x¥(t) has xfyﬁ , and xfyﬁl on the nyg, -line relative to x,, € 0€2;, then the three grazing flows exist:
The local tangential flow x*(¢) is termed the grazing flow of the first kind if

71 = Xall < 1,71 = X (43)
The tangential flow x*(¢) is termed the grazing flow of the second kind if

16500 = %l > [, = Xl (44)
The tangential flow x*(¢) is termed the grazing flow of the third kind if

X2 — %]l = X5, — X (45)

m+1

From the above definition, the local grazing flows in the domain €; to the boundary 0€;
convex to €; are sketched in Fig. 8 for interpretation of the local grazing flows. The first, second
and third kinds of grazing flow are arranged in Fig. 8(a)—(c), respectively. The grey-filled symbols
represent two points (x ', and xm +1) on the normal line relative to tangential point x,, on the
boundary 0€;; depicted by a large circular symbol.

6. Sliding dynamics

From the flows illustrated in Fig. 5, consider a flow x*(¢ t) with njg, - X*(#) > 0 in the domain
Q, convex to Q4 for ¢ € [t,_,, t,.], once the flow xP(¢) in the domain Qp (o # P) possesses
njg, XV (t,-) <O with {nf, -x*(t,.)} x {nl, - X" (1,-.)} <0, the sliding motion will appear.
Until one of the two flows (e, xP(), ype{of}) has nl, -x7(z,,) =0 with
{nly, - X" (t,0)} x {“agJ x(1,.,)} > 0, the sliding motion will end. Before the transverse, tan-
gentlal bifurcation is discussed, the sliding dynamics on the separatrix will be investigated first
because the sliding motion along the separatrix strongly changes the behavior of post-transverse
motion in non-smooth dynamical systems. As in Filippov [7], consider a differential inclusion of
Eq. (3) on the closed interval [0,1] as
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y
m+l 5?2
X
@

y Q,

X
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y Q,
oy

X

©

Fig. 8. A classification of local grazing flows in Q; to 0€2;; convex to Q;: (a) first kind of grazing flow, (b) second kind of
grazing flow and (c) third kind of grazing flow. The grey-filled symbols represent two points (xfn> , and x,(n .1) on the
normal line relative to tangential point x,, on the boundary 0Q;; depicted by a large circular symbol.
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xeF(x,0,7) x=(xy) €eQUQUS;, (46)
where a set-valued vector field F(x, ¢, 1) is convex and continuous with respect to the parameter 4
on the closed interval [0,1]. The following property holds for the convex set of the vector filed.

F*(x,t,p,), for input vector filed (1 =0),
F(x,t,1) = ny(;;) (x,1), on the boundary, 34 € (0,1), (47)
FP(x,1, ng), for output vector (4= 1),
where F® and F¥ ({«, B} € {i,/}, o # f) represent the input and output vector fields, respec-

tively. Fi%) (x,1) is a vector field along the separation boundary S;;. From the convexity of the set-
valued vector field, we have

FY(x, 1) = P (x, 1, 1y) + (1 — HFO(x,1,p,). (48)

The sliding motion is along the separation boundary, it indicates that the vector field is along the
boundary. So nggaﬂ Fgf;g) = 0 from which we have

1= ngﬂa/} ) F(OC) (X7 t "oc) '
nlo, - [F(x,1,1,) — FO(x,1,p)]

The sliding motion along the separated boundary can be investigated as a continuous dynamical
-(0) _ 1(0) : ;
system through X, =F, /(x,7). For the traveling separation boundary controlled by

(pij(x7y7 t) = 0, we have

(49)

)= 6%(/)0([5 + nng/; : F(O,) (Xv f lly) (50>
“ggw : [F(a)(xv L) — | (X, 2, 15)]

7. Transversal tangential bifurcation

The tangential bifurcation for a flow tangential to the separatrix was discussed. The tangency of
the flow occurs just after the flow passes through the separation boundary. This tangential flow is
termed the transversal tangential flow, and the mathematical definition is given as

Definition 16. For a discontinuous dynamical system in Eq. (3), x(¢,) = x,, € 0Q;; for #,. Ve > 0,

, 0 : h
EI([é,)n,g,tm) and (t,tuy.), suppose x¥(t,_) = xifg(tm) =xP(t,.) w1th {o, B} € {i,j} (x# ﬁ? for
X, (tn) = X and both x*(¢) and x)(¢) are C7,!  and C[, , |-continuous (r > 2), respectively.
o m—éestm mstm—+e —_
The transverse flow x = x® (¢t < 1,,) U xi%)(tm) UxP (¢ > t,) to the semi-passable boundary 0Q ,; is

termed a transversal tangential flow of the first kind if the following conditions are satisfied:

(@)
0, X0 (1,,) = 0. (51)
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(C2)

either t., X () — xP(t,,)] >0 for ty, ) ~5<f$ >0,
. ’ (52)
or thy - X (tus) = xP(8,,)] <0 for th, X <0.

From the above definition, the first condition (C1) gives a necessary condition of a flow tan-
gential to the semi-passable boundary just after the flow passes through the boundary. The second
condition (C2) determines the direction of a flow after the flow passes over the boundary, which is
very strongly influenced by the sliding flow along the separation boundary. The direction of the
component of the transversal tangential flow on the tangential vector of the separatrix 0€;; has the
same direction of the sliding motion along the separatrix. Therefore, the second condition can be
re-written as

(%) 5 tn1.) = x(1)] > 0. (53)

However, the computation of Eq. (52) is much easier and more intuitive than Eq. (53) because
the flow xfx%) is determined by xi(}),) = F;Oﬁ)(x, t).

To illustrate the above concept, the geometrical description of the flows passing through a
boundary convex to ; are presented in Fig. 9, and a pre-transversal-tangential flow, a trans-
versally-tangential flow and post-transversal-tangential flow are included. The tangency of the
transverse flow occurs at the portion of the outflow. Consider a sliding motion along the po-
sitive direction of ta, (i.e., tggij.xg?) > 0). The pre-transversal-tangential flow is a regular
transverse flow from the domain Q; to Q;. The transversal-tangential flow is a flow tangential to
the separation boundary just after the flow passes over the boundary. After the transversal-
tangential bifurcation, a post-transversal-tangential flow exists. For a post-transversal-tangential
flow, there are two intersected points on the separation boundary locally and the bouncing
motion at the first intersected point will appear, as shown in Fig. 9(c). Because this tangential
bifurcation causes the bouncing motion, this tangential bifurcation is also termed “the bouncing
bifurcation”.

Theorem 14. For a discontinuous dynamical system in Eq. (3), X(t,) = X,, € 0Q;; for t,. ¥V ¢ >0,

lincrt) and (i tyo], suppose X (tn-) =X,/ (tn) = XD (1) with {2, B} € {i,J} (24 ) for

Xa%) (tw) = X, both x*(t) and x\P)(¢t) are Cl, . and C(, . -continuous (r > 2), respectively and
ro (s - .. (o) 0

|d'x") /de|| < oo (7€ {ﬂ}}) The transverse flow x = x(t < t,) U Xfx;(tm) uUxP(¢t>t,) to the

semi-passable boundary 08,z is a transversal tangential flow of the first kind iff

either  mg, x®(t,-) >0, N, X (tyis) >0 for 0Q;; convex to Q, (54
or miy x¥(t,) <0, LU X (t,,,) <0 for 0Qy; convex to Q,,

n;l“ﬁ X (tw+) = 0, (55)
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Fig. 9. The flows passing through a boundary 09, convex to Q;: (a) pre-transversal-tangential flow, (b) transversal-
tangential flow and (c) post-transversal-tangential flow. The sliding motion is along the positive tyo, (i.€., taTﬂu . xfjo) > 0).
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either tggw XD (1) >0 for tagﬁ 521) >0,

| (56)
or tgsza,f X (ty) <0 for tag“/f “ﬁ <0

Proof. For a point x<ﬁ eanﬁ convex to Q, suppose x()(t ) :x“;j)(t ) =xP(t,,) with
{a, B} € {i,j} (o # p) for Xzﬁ( ) = X,, and both x*(¢) and x'¥)(¢) are ¢, .. and C . -con-
tinuous (r > 2), respectively and ||d"’x®") /d¢"|| < oo (y € {i, ]}) for 0 < ¢ < 1. As similar to the
proof of Theorem 1, application of the Taylor series expansion of x*(¢,_,) and x#(z,.,) with

tmie = tw £ & (o € {i,j}) to x¥(t,+) and up to the second order term gives

X0 (1) = X (6 — &) = XD (1) — X (1 )& + 0(&), }

X(ﬂ)(tm‘F) =x (tm+e - 8) =x (tm+8) - X(m(lm-&-e)s + 0(8)'

=

Because of 0 < ¢ < 1, the second and higher order terms of the Taylor series expansion can be
ignored in the foregoing equations. Therefore, we have

nggx,, X (1) — X (8,-)] = nggij -x*(¢,_)e > 0 and
ng‘gw . [X(/j) (thrlJ) — X(ﬁ) (tm+)] = ngQ‘./- . X(ﬁ) (tm+8)8 > O

tl, - X (t,,.)e >0 for tgﬁ«/f : xé%) >0 or
. . (0
o, - X (i) = xP (1)) = g - XD (610)e < 0 for tl, - xj) < 0.

From Definitions 8 and_16, the transverse flow x = x¥(t < t,)U Xg;})(tm) uUxP(t>t,) on the
semi-passable boundary 0€2,; is a transverse, tangential flow of the first kind for the boundary
09,5 convex to 4. In a similar fashion, for the boundary 08,5 convex to ©,, it can be prove_d) that
the transverse flow x = x® (¢ < ¢,,) U x( )( tn) UXP (¢ > ,) on the semi-passable boundary 0Q ,; is
a transversal tangential flow of the ﬁrst kind. O

Theorem 15. For a discontinuous dynamical system in Eq (3), x(t,) = x,, € 0Q;; for t,. Ve >0,
Ntn_ertm) and (t,, m+g] suppose X (t,,_) :xi%)(tm) = xB)(t,.) with {a, B} € {i,j} (a#B) for
Xi%)(tm) = X,,, both (1) and FP) (1) are Cl, .. and C{, -continuous (r >1), respectively.
[d'x@) /de | < oo (7 € {i J}). The transverse flow x = x* )(t <t,)U xgﬁ)( tn) UXP(t > t,) to the
semi-passable boundary 20 p IS a transversal tangential flow of the first kind iff

either “ag,»,» F9(,) > O,nan,j FP(t,.,) >0  for 0Q; convex to Q, (57)

or nggy ~F(“>(tm,) < O,Hggi/_ -F(ﬂ>(tm+g) <0 for 08;; convex to Q,,

ngﬁ ’ F(ﬁ)(tm+) = 07 (58)
: 0

either  ti, FP (i) >0 for tly . Fiﬂ) > 0, (59)

or th -FP(t,,,) <0 fortl, - F) <.
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Proof. For a point x.) e aQ .5 convex to Qg suppose x* >(t ) = x(%)(t ) =xP(t,,) with
{o, B} € {i,j} (@ # P) forx ( ) = X andbothF () and F (1) are ¢, .. and Cj, . -con-
tinuous %r > 1), respectlvely and [d XD /de || < oo (y € {i,j}) for 0 < & < 1. With Eq (3) and
XS;; = F! /3)( t), the first set of inequalities of Eq. (57) gives

“aQij X (1, ) = “aQ,, -F¥(t,_) >0 and “aQi, XP(ts) = “eT/Qi, FO(t,.,) >0,

ny, X (t,) =n, - FP(5,,) =0,

and

. T . (0 0
o, XD () = o - F P () >0 for thy X/ () = h - Fyy) > 0 or

. B T - (0) (0)
tggxﬁ xP(t,,) = tg% FP(t,.) <0 for too,, " Xop (twy) =t - , Fup <O.

From Theorems 1 and 14 and Definitions 8 and 16, it is proved that the transverse flow
x =x (¢t < t,) U x(ﬁ)( tn) UXP (¢ > 1,) on 0Q,; is a transverse, tangential flow of the first kind for

GQJ/; convex to Q. In a similar fashion, the transverse flow x = x* (¢ < 1,,) U xgtﬂ)( t) UXP(t > t,)

on 2Q 5 15 @ transversal, tangential flow of the first kind for 02,5 convex to Q,. [

Theorem 16. For a discontinuous dynamical system in Eq (3), x(t,) = x,, € 0Q;; for t,. Ve >0,
Ntw_ortm) and (ty,twss), suppose x¥(t, ) :X;Oﬁ)(tm) =xP(t,.) with {o, B} € {i,j} («#B) for

xi%)(tm) =X, both x"(t) and xP(t) are C7! ~ and C, , . -continuous (r>3), respectively.

|d'x® /de!|| < 0o and ||d'xP)/dr|| < co. The transverse flow x =x"(t < t,)U Xi(;;(tm) U
—

xB(t > t,) on the semi-passable boundary dQ 5 is a transversal tangential flow of the first kind iff

either nl, -x*(¢,.)>0,nl, -XP(z,.) >0 for 0Q; convex to Qg,
0Q;; 0Q;; + j B

60

or i X7 (1) < 0,0l XD (5,,) <0 for 9y convex to Q,, (60)

(1) =0, (61)
. , (0

either 3, X (t,) >0 for tho,, Xiﬁ) > 0, )

or t_argxﬁ . X(ﬁ)(tm+) <0 for tgﬂqﬁ . Xi(/); < 0.

Proof. Using the procedure of Theorem 1, suppose x®(t, ) = xg;}(tm) =x¥(¢,,) with
{a, B} € {i,j} (a # P) for X,{ﬂ( tn) = Xy, both x*(¢) and x/)(¢r) are C7,! | and C, , -continuous
(r = 3), respectlvely |[d"'x®/de!|| < 0o and ||d"x)/de|| < oo. Applymg the Taylor series
expansion of x*(t,_,) to x* )( tm_) up to the second term and x#(z,,,,) to x"# (¢, ) up to the third
term gives

XD (b — &) = X (1) — %" (t,_)e + o),

X ()

X (tyie) = xP (b, + &) = xP(t,1) + XD (1, )e + XD (2, )& + o(e?).
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Since 0 < ¢ < 1, the higher order terms can be ignored. The deformation of the above equations
and the left multiplication of NG, and too,; leads to

o, - X (tn) = XDty = g X (1),

Do, - X (t1e) = XD (1)) = “ggaﬁ X0 (1) + nggw X (1),

tggaﬂ XD (i) = xP (1)) = tggm XDt )e.

With Eq. (62), we have

n - X () = XD (6,)] =l %P ()8

For the boundary 0€;; convex to €, using the first inequality equation of Eq. (60), the foregoing
two equations lead to

nggaﬁ X () = xD(t,_,)] = nggm X (g, )e > 0,

“ggd,j XD (o) = xP (10)] = “gga,; XD (1,1 )6 > 0.

Similarly, for the boundary 09;; convex to Q,, using the second inequality equation of Eq. (60),
the foregoing two equations lead to

nggdﬁ . [X(Ot) (tm—) _ X(“)([m_g)] — nggdﬁ . X(1>(tm_)£ < 07

ngﬂaﬁ : [X(ﬁ)(tm+8) - X(ﬁ) (thr)] = nggyﬁ . X(ﬁ) (tm+)82 < 0

From Eq. (63), we have

. (0
tggaﬂ xP(t,)e>0 for tggw . xiﬁ) >0,

tT . X(ﬁ) Lote _X(ﬂ) Ly —
ey X () () o, XD (tny)e < 0 for tl Xy < 0.

Therefore from Definitions 8 and 16, the flow x = x*(r < ¢,,) U Xi(/);)(l‘m) Ux(¢ > t,) on the semi-
passable boundary 0Q, is a transversal tangential flow of the first kind. [J

Theorem 17. For a discontinuous dynamical system in Eq. (3), X(t,,) = X,, € 0Q;; for t,. Ve >0,

tms, tn) and (ty,tmis), suppose x(t, ) = xi%)(tm) =xP(t,,) with {o,p} € {i,j} («#PB) for

xfx%) (tn) = X, both FO(t) and FP (1) are C[’t:mtm) and C, , -continuous (r>2), respectively.

|[d""'x® /dr!|| < oo and ||d"xP) /d¢’|| < oo. If the following conditions are satisfied

either nggij F9(,_) > O,nggy_ -DFP(t,,.) >0 for 0Q,; convex to Qy,
or nng:f F9¢,.) < O,Hggij -DFP(t,.) <0 for 0Q; convex to Q,,

n, FO(1,,) =0, (64)
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either tggﬁ FP (1 (twy) >0 for tag,; S;? >0,
FO(1,,) <0 for th, -Fy <0, )

T
or tagw

then the transverse flow x = x®(t < t,,) U Xéﬁ)( ) UxP (¢ > t,) on the semi-passable boundary @aﬁ

is a transversal tangential flow of the first kind.
Proof. Using Eq. (3) and xé%) =F i(;})(x, t), from Theorem 16, the above theorem is proved. O

Definition 17. For a discontinuous dynamlcal s?/stem in Eq. (3), x(¢,) = x,, € 0Q;; for ¢,,. V&> 0,
tysrtw) and (t,, mH] suppose x(* y xP(t,.) with {«, B} € {i,j} («# p) for

§ﬁ>( tw) = X, both x®(¢) and x! (t) are C’ z”jmz) and Ci,. . -continuous (r > 2n), respectively.
The transverse flow x = x¥ (¢ < ¢,,) U x( >( ) uxP(t > t ) on the semi-passable boundary 0Q s
is termed a transversal, (2n — 1)th- order tangential flow of the first kind if the following condi-
tions are satisfied

(CI)

k (2n)
n},,@x%mg =0 (k=1,2,...,2n) and njﬁd—x<ﬂ>(tm+) #0. (66)

dg2n)
(C2)

. « (0
either tET,Qw XO (ts0) — xP ()] > 0 for tggw ' Xilf) >0,
or - O (i) —xP(1,,)] <0 for thy, % <0. (67)

Theorem 18. For a discontinuous dynamical system in Eq. (3), X(t,) = X, € 0Q;; for t,,. V ¢ >0,

Nty tw) and (ty,tn..), suppose xP(t,_) :X(Oﬁ)(t ) =xP(t,.) with {a, B} € {i,j} («#B) for
Xi(;}(tm) = X,,, both x¥(t) and x(/”(t) are Cj- 2”“) and C, , | -continuous (r > 2n), respectively.

|d2"2x ) /de=242|| < oo and ||d'xP) /de|| < co. The transverse flow x = x™(t < t,,) U Xiﬁ)( tn) U

xP(t > t,) on the semi-passable boundary @)aﬁ is a transversal, (2n — 1)th-order tangential flow of
the first kind iff the following conditions hold

either  mgq xW(t,) >0, g, - X (t,1.) >0 for 0Qy; convex to Qp,

68

or my, x® (t,.) <0, g, X (t:) <0 for 0Q;; convex to Q,, (68)
dk d2n

n;, -@xw(m) =0 (k=1,2,...,2n) and nj- i x(t,.) #0, (69)
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either tggw -xP, +)>0 for tag /j Xi%) >0,

| (70)
or tig, XP(ty,) <0 fortgo - o <0

Proof. Following the proof procedure of Theorem 8, and using of the Taylor series expansion, the
above theorem can be proved. [l

Theorem 19. For a discontinuous dynamical system in Eq. (3), X(t,) = X,, € 0Q;; for t,. ¥V ¢ >0,

Atmes tw) and (t, mﬂ] suppose X (t, ) = x(%)(t ) = xP(t,,) with {a, B} € {i,j} (x#B) for
xf:;j) (tn) = X, both F(t) and FP (1) are C. 2’““2 and C, ,  -continuous (r = 2n — 1), respectively.

[d2"x® /der—23)| < 00 and ||d"'x( /dtrHH < 0. The transverse flow x =x"(t<t,)U

X! ﬁ)( ) UXB (¢ > t,) on the semi-passable boundary @),ﬁ is a transversal, (2n — 1)th-order tan-

gential flow of the first kind iff

either nggdﬂ F (b)) > O’“ggxﬂ F () > 0 for 8Q; convex to Qy, } (71)
or nggw FO(, ) < QnﬁTﬂyﬁ FPD(t,..) <0 for 0Q; convex to Q,,

n!, - DV FO(,,) =0 (k=1,2,...,2n) and n,, - D"~ "FP (1) #0, (72)
either tggw FP () >0 for thx/; 'Fi(l? >0, } (73)
or tET,Qaﬁ FP(t,,) <0 for tag,; Ffﬁ) <0.

Proof. Following the proof procedure of Theorem 9 and using of the Taylor series expansion, the
above theorem can be proved. [

Theorem 20. For a discontinuous dynamical system in Eq. (3), X(t,) = X,, € 0Q;; for t,. ¥V ¢ >0,

Aty tw) and (t,, m+s] suppose X¥(t,_) = Xi(;;)(tm) = x(t,.) with {o, p} € {i,j} (o #B) for
X“;}) (tw) = X, both x)(t) and x\P)(¢) are C[’tﬁ”jz) and Cy, , \-continuous (r = 2n), respectively.

o

|[d 2 x® /=242 < oo and ||d'xP) /d"|| < co. The transverse flow x = x™(t < t,,) U xfxﬁ)( tm) U

xP(t > t,) on the semi-passable boundary @)aﬁ is a transversal, (2n — 1)th-order tangential flow of
the first kind iff

either ngguﬁ X (t,-) > 0, ng%ﬁ -St—z;nx(ﬁ)(tm) >0 for 0Q;; convex to Qp, (74)
or nggzﬁ -x®(t,_) <0, nggzﬁ -gt—zx(ﬁ)(t%) <0 for 08y convex to Qay,

k
X (i) =0 (k=1,2,....20 = 1), (75)
either taQ XP(t,,) >0 for tag,j (yoﬁ> >0, (76)
or tgﬂuﬁ Bt,) <0 for tl, s X “/; <0.
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Proof. Following the proof procedure of Theorem 10 and using of the Taylor series expansion, the
above theorem can be proved. [

Theorem 21. For a discontinuous dynamical system in Eq. (3), X(t,) = X,, € 0Q;; for t,. Ve >0,
Aty oy tm) and (t, mH] suppose X (t,-) = Xg;;(tm) =xB(t,+) with {a, B} € {i,j} («#pB) for
xi(;;(tm) = X,,, both F(t) and ¥ (¢) are C[’tiz”ﬁ and C, ,  -continuous (r = 2n — 1), respectively.

|d 2" x® /de=23)| < 0o and || d'xP) /de || < co. The transverse flow x =x"(t < t,)U

x;[;( D UxP (¢t >t,) on the semi-passable boundary @}“/5 is a transversal, (2n — 1)th-order tan-

gential flow of the first kind iff

either mgq, - F¥(¢,-) > 0, g, D" 'FP(1,.) >0 for 0Q;; convex to Qp, )

or my, F9(1,) <0, g, D 'FP(1,.) <0  for 0Q; convex to Q,,

ny, - D"'FP(1,,) =0 (k=1,2,....2n— 1), (78)
. 0

either tggqﬁ FP,) >0 for tio, ’ Fiﬁ) > 0, (79)

or Qo FP(t,) <0 fortl, -Fyl <0.

Proof. Following the proof procedure of Theorem 11 and using of the Taylor series expansion, the
above theorem can be proved. [J

Definition 18. For a discontinuous dynamical system in Eq. (3), x(¢,,) = x,, € 0Q;; for ¢,,. Ve > 0,

Hltnsstn) and (ty, tr), SUppoSse x<“><t ) =Xy (t) = x<ﬁ><rm+> with {a, B} € {i,j} (x# p) for

xi%)(tm) = x,, and both x¥(¢) and x( (t) are Cj, , and Cj, | -continuous (r > 2), respectively.
) Wl Esvm.

The transverse flow x = x (¢ < t,,) U Xx[)’( ) UxB (¢ > tm) on the semi- -passable boundary 0Q
is termed a transversal tangential flow of the second kind if the following condition exists:

n, - x"(1,-) =0. (80)

Definition 19. For a discontinuous dynamical system in Eq. (3), x(¢,,) = x,, € 0Q;; for ¢,. Ve > 0,
s tn) and (u, twss), suppose x@(t, ) =x\)) =xP(,.) with {o,p} € {i,/} («#p) for
xs;} (tn) = Xu, both x*)(7) and x/)(¢) are C}, ,  and C[, 2”“]—cont1nuous (r = 2n), respectively and
|d"x?) /de|| < o (y € {i,j}). The transverse ﬂow x =x(t < 1,,) UX") >( tn) UxP (¢t >t,) on the
semi-passable boundary 0€,; is termed a transversal, (2n — 1)th-order tangential flow of the
second kind if the following conditions exist:

gt 2n

o d o
ny, -@x< (tw-) =0 (k=1,2,...20n—1) and ny- @yd ty_) #0. (81)

The theorems for the transverse-tangential flows of the second kind on the semi-passable
boundary 0Q;; can be similar to Theorems 14-21 for the transverse-tangential flow of the first
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Fig. 10. The flows passing through a boundary convex to €;: (a) transverse, tangential flow of the second kind; (b) post-

transverse, tangential flow for tggl, x> o; (c) transverse, tangential flow of the second kind and (d) post-transverse,

ij
tangential flow for tggi, . xf/o) < 0.

kind. The transverse-tangential flows of the second kind on the semi-passable boundary @U are
illustrated in Fig. 10. The flows crossing over the boundary for two cases (tgg[/_ xfjo) >0 and
tggll_ ijo) < 0) are demonstrated. Compared to the transverse, tangential flow of the first kind,
the input tangential flow is independent of the sliding flow. After the transverse, tangential
bifurcation of the second kind occurs, the bouncing motion will appear in the post-transversal
tangential flow. However the outflow of the bouncing motion is strongly dependent upon the
sliding motion.
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8. Transversal, cusped and inflexed tangential flows

The tangency of a flow occurs just before and just after the flow passes through the separation
boundary. This tangential flow includes two types of the tangential flows: transversal, cusped and
inflexed tangential flows. The definitions are given as follows.

Definition 20. For a discontinuous dynamical system in Eq. (3), x(¢,,) = x,, € 0Q;; for ¢,. Ve > 0,

Htwsst) and (b, ts), suppose X (t,_) = X\ (1) = X (t,,.) with {a, B} € {i,/} (o # p) for
xi%)(tm) = x,, and both x*/(¢) and x/)(¢r) are ¢}, and C[, ,  -continuous (r > 2), respectively.
The transverse flow x = x®*) (¢ < #,,) UX') (¢,,) UxP) (¢ > ,,) passing through 0Q,; is termed a

of

transversal, cusped tangential flow if the following conditions are satisfied:

(CD)
g X () = my X (4,0) = (82)
(C2)
gg [X * (tm—) - X(x)(tm—a)] <0 T (0)
either i for ty, X5 >0,
off

tgﬁqﬁ . [X(ﬁ>(tn1+s) — X(/j)(thr)} >0

(o, - X0 ) = X% (1] > 0 (8)
or X (1) —xP(5,)] <0 ¢ for g -y <0

Definition 21. For a discontinuous dynamical system in Eq. (3), x(¢,)) = x,, € 0Q;; for #,. Ve > 0,
Htwsst) and (b, ts), suppose X (t,) = X, (1) = x P (t,,.) with {a, B} € {i,/} (a# p) for

xi%)(tm) = x,, and both x*/(¢) and x/)(¢) are ¢}, and C[, ,  -continuous (r > 2), respectively.

The transverse flow x = x® (¢ < ¢,) U xi(;;(tm) Ux®(t >1t,) passing through 3Q,; is termed a

transversal, inflexed tangential flow if the following conditions are satisfied:
(CI)
n' - x?(, ) =nl,-xP () =0. (84)
(C2)
tio,, - (X (tn) = xP (1)) > 0

off

. T . (0)
either tgflqﬁ . [X(ﬁ)(tn1+s) - X(ﬂ)(thr)} >0 for taga/; ’ Xotﬁ > 07

(85)
o, - X (t) —x(1,)] < 0

T . (0)
or tq, XB) (tse) — xB(2,.)] <0 for o, - X, < 0.
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Definition 22. For a discontinuous dynamical system in Eq. (3), x(¢,,) = x,, € 0Q;; for ¢,. Ve > 0,
tw_s,tm) and (tm,tnis), suppose x*(t, ) = x((;;) =xP(t,,) with {o,p} € {i,j} (x# B) for

Xi%) (tn) = X,, and both x®(¢) and x¥)(¢) are C[’fzqu)p and C[, , -continuous (r > 2g), respec-
m—estm mytm—+e S

tively. The transverse flow x = x¥ (¢ < t,,) U xi%) (tn) UxP (¢ > t,) passing through 0Q,; is termed

a transversal, cusped, (2p — 1:2¢ — 1)-order tangential flow if the following conditions are

satisfied:

(C1)
nggxﬁ -iikllx(“)(tm,) =0(k=1,2,...2p—1) and ngﬂw ~(‘%x(“>(tm,) #0, (56)
nl,, X (1) =0 (ky=1,2,...2g— 1) and ng,, - xB)(1,,,) # 0.
(C2)
tio, (X" (tn-) —x® (1) <0
either tggw X (te) — X B (8,,4)] > 0 for taT/Q“ﬁ . xi%) > 0,
(87)

tggaﬁ XD (1) = X ()] > 0 )
T .
or tggaﬂ XD (£ss) —xP(2,.)] <0 for t;o X,5 <O0.

Definition 23. For a discontinuous dynamical system in Eq. (3), x(¢,,) = x,, € 0Q;; for t,,. Ve > 0,

tm-ss tw) and (b, turs)s suppose X(t,-) = X3 (t) = xP(t,.,) with {o, B} € {i,j} (x# p) for
x(t,,) = x,, and both x®(r) and x¥(¢) are C[';f[’jf)” and C[, , -continuous (r > 2g), respec-
tively. The transverse flow x = x¥ (¢ < ¢,,) U xg},)(tm) UxP(t > t,) on the semi-passable boundary

ﬁa,; is termed a transversal, inflexed, (2p — 1:2¢ — 1) tangential flow if the following conditions
are satisfied:

(C1)
o, X6, ) =0 (k=1,2,..2p—1) and nj, -$ox(s, ) #0, } 58)
XD (6,,) =0 (kh=1,2,...2¢—1) and nl, -EoxP(z,,) #0.
(€2)
tio,, - X (tn-) = xP (1)) > 0 )
either ¢, - [x(1,0..) — xW(1,,)] > 0 p for 6o, - Xy >0,
(89)

th - [x®(t, ) —x®(t,-.)] <0
0Q,p [ ( ) ( )] 0 for tggxﬁ . XS;;) <0.

tggqﬁ ’ [X(ﬂ>(tm+8) - X<ﬁ)(tm+)] <
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The theorems for such cusped and inflexed tangential flows can be developed which are similar
to the ones for the transverse tangential flows of the first and second kinds. The corresponding
conditions in the transverse tangential flows can be used for the tangential, input and output flows
of the cusped and inflexed flows. Therefore, no further theorems are presented herein. To help
understand the above definitions, the cusped, tangential flow and a post cusped, tangential flow of
the first and second kind are sketched in Fig. 11, and the inflexed, tangential flow and a post
inflexed, tangential flow of the first and second kind are presented in Fig. 12 as well.

9. Tangential non-passable boundaries

The properties of the flow in the semi-passable boundary are discussed. In this section, the local
characteristics of flows around the non-passable boundary will be discussed.

Definition 24. For a discontinuous dynamical system in Eq. (3), x(¢,)) = x,, € 0Q;; for #,,. Ve > 0,
tw—s,tm), suppose X (t,) = x,, (« € {i,j}) and, x*(¢) is Cf, -continuous (r > 2) for time ¢
and ||d"x®/dr| < . "

(i) The non-empty boundary set 0Q;; is the semi-tangential, non-passable boundary of the first
kind, 0Q; if x¥(¢) and xP(z) satisfies

either ng, X" (1, ) =0 or njy X" (s, ) =0. (90)

__(ii) The non-empty boundary set 0Q;; is the tangential, non-passable boundary of the first kind,
0Q,; if x(¢) and x'P)(¢) satisfies

nlg, - X*(ty-) =0 and ng, -x"(s, ) =0. (91)

Definition 25. For a discontinuous dynamical system in Eq. (3), x(¢,,) = x,, € 0Q;; for ¢,. Ve > 0,
3(tw, tuss], suppose X (ty) =X (2 €{i,j}) and, F¥(¢) are Cj  -continuous (r>1) and
|d"x@) /dr | < .

(1) The non-empty boundary set 0€;; is the semi-tangential, non-passable boundary of the
second kind 0€;; if x¥(¢) and xP)(¢) satisfies

g, X? () =0 or niy -x"(5,) =0. (92)

(i) The non-empty boundary set 0€;; is the tangential, non-passable boundary of the second
kind 0€Q;; if x*(¢) and x#)(¢) satisfies

nlg, X7 (tn) =0 and nj, -xP(z,,) = 0. (93)
The theorems for the semi-tangential and tangential non-passable boundaries can be developed

as before. The corresponding conditions in the tangential flows in the corresponding domains can
be used for the tangential, input or output flows on the semi-tangential and tangential non-
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()
. (0)

Fig. 11. The flows passing through a boundary convex to Q; for tggu -x;;’ > 0: (a) cusped, tangential flow and (b) post
cusped, tangential flow of the first kind, and (c) cusped, tangential flow of the second kind.
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(O]

Fig. 12. The flows passing through a boundary convex to Q; for th‘_, . 5(1(1?) < 0: (a) inflexed, tangential flow and (b) post
inflexed, tangential flow of the first kind and (c) post inflexed, tangential flow of the second kind.
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(b)

Fig. 13. Semi-tangential, non-passable boundary set @,-j: (a) the semi-tangential, sink boundary (or the semi-tan-
gential, non-passable boundary of the first kind) and (b) the semi-tangential, source boundary (or the semi-tangential,
non-passable boundary of the second kind).

passable boundaries. Therefore, no further theorems are presented herein. The tangential sink and
source boundaries are shown in Figs. 13 and 14 from the above definitions.

10. Separation boundary formation

In Section 4, the separation boundary has been discussed. All the separation boundaries will be
connected together to form a complicated separation boundary. The concepts for the gluing point
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=

(b)

Fig. 14. Tangential non-passable boundary set ETQU = 5!/24,- U GAQ,-/: (a) the tangential sink boundary and (b) the tan-
gential source boundary.

sets will be introduced herein. A gluing point on the boundary connects two portions of separatrix
on which the flows possess two different flow directions. Therefore, this gluing point has special
properties. The definitions of passable and non-passable boundaries are based on the flow com-
ponent on the normal direction of the boundary. Therefore, the gluing points are defined as follows.
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Definition 26. A countable point set on the boundary 0Q;;
r;= {Xl(:)) € 0Q|x € Q,, lin(lo)(ng% -X)=0,0 € {i,j},k € N} (94)
X*?Xk

is termed the gluing point set.

Notice that N is the natural number set. The gluing singular point set is a special case of the
corner point sets. This gluing point can be either static or dynamic. The static gluing points can be
determined from the equilibrium points for equations of the sliding dynamics (i.e., lim_

X—?Xk
(tgg x) = 0). If the equation of motion for sliding dynamics along the separation boundary did
not have equilibrium, the dynamical gluing points will exist (i.e., lim__ ) (tl, - x) #0).
k Y

Definition 27. A countable point set on the boundary 0€;

X*?Xk

F(‘?) = {X]EO) e GQU’X € Q,, liH&»(nggil X) =0,a= {l or ]}’k c N} C Fij (95)
is termed the input or output, semi-gluing, singular points sets on the boundary.

The above definition I’ ff) indicates the switching of the flow direction at the singular point on
the side of Q,.

Definition 28. A countable point set on the boundary 0€;

Fg. = {x,(f) € 0Q;|x € Q,, lin%])(nggij -X) =0,0={i and j},k € N} crIy (96)

is termed the full-gluing, singular point set.

The foregoing definition I (i indicates the sw1tch1ng of the flow direction at the singular point on
both sides of Q,. The gluing point set is F,j = F U F U FO

To investigate the dynamical behaviors in the nelghborhood of gluing points, the § sub-do-
mains and boundaries relative to the gluing points are defined as

Definition 29. The §-sub-domains and boundaries are

Q) = {x € Q,v0 >0, |x —x\"|| < 6,x\” € I'j,a € {i,j} for a given k}, (97)

GQ @ {xm € 0Q;|Vé > 0, ||x,, — xk <6 xk e€I'y,o€{i,j} fora given k} (98)
@) _ o) (%) (9)

Q¥ =P U uoQY. (99)

From the above definition, the §-sub- domalns and boundary in the neighborhood of xk € I';;are
illustrated in Fig. 15. The 6-boundary GQ is represented by the dark curve. The gluing point is
expressed by the circular symbol. The 5-sub domains Q. and Q are expressed by the shaded
and white areas, respectively.
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& a0l —

X

Fig. 15. The J-sub-domains and sub-boundary of the gluing point x,(f)) erly.

Definition 30. For a discontinuous dynamical system in Eq. (3), there is a gluing point xffo) el
on 3Q,. VY6>0, Ix,,x,}€ aQ,?;?) and {x(t,,), x®(,)} €@ (xe{ij}). Suppose
X (tyy) = X, and x*)(z,-) = x,,, x*)(1) is €[, , -continuous (r > 2) and [|[d"x™" /d¢"[| < oo in @,
Ve > 0, Ity s and [t,_,, 1, ), there are {x (,,,+s),x<«>(t,,,s)} € QY with for o # B, and

T
m—+é t”l
either (ngg )T [ @ w) = ( > for 0€; convex to Q,,
(mg,) "+ X (ta) — X (1, )]
(02,)" - X () = X (81)] < (100)
or (mg, )T x®(t,_,) — x*(1,.)] > 0 for 0€;; convex to Q.
(1) The gluing point X,({()) € I';; is parabolic on the side of Q, if
(t20,)" - (X (tnss) =X (24)] > 0 ‘
either (t2, ) X9 (t, ) — x(2,.)] > 0 for 0€Q;; convex to Q,,
(101)
) X (1) — XP (£,,)] < 0
or ( BQ"’)T X (Fga) = Xt for 0€;; convex to Q.
(th,-j) ’ [X(@(tn—S) - X(a)(tn—)] <0
(i1)) The gluing point X}({o) € I';; is hyperbolic on the side of Q, if
7 )V IX® (4,0) — XD (4,,.)] < 0
either (aQ’J)T[X (bnie) = X (() +) for 04;; convex to Q,,
(agt, X (ts-0) = x(8,-)] < 0
(102)

)
t X (tie) — XD (t,,4)] > 0
or (t0 ) X () (i) for 0Q;; convex to Q.
200" [x¢ x(® >0 '

(t )T X () = X (t,)]
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Fig. 16. Parabolic flows in the J-domain ij’-i) ofx” er i on the side of (a) Q; and (b) Q;. The boundary 0€; is convex
to the domain Q;. The domain in the dashed boundary is fo)

Note that t7, and nf, are the tangential and normal vectors relative to the point x,, € 0€;;. From
the above deﬁnition, the hyperbolicity and parabolicity of the gluing point x,((o) € I';; are illustrated
respectively in Figs. 16 and 17 as 6 — 0 and ¢ — 0. The domain in the dashed boundary is Qf;)).

The flow x*(¢) in Q' for ¢ € (£, ,,_) will not have any other point intersected with the boundary

41
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(b)

Fig. 17. Hyperbolic flows in the é-domain Q of xL erly; on the side of (a) ©; and (b) ©;. The boundary 0Q;; is convex
to the domain Q;. The domain in the dashed boundary is Q

Theorem 22. For a dlsconlmwus dynamzcal system in Egq. (3) there is a gluing point X,i €l on

0Q;;. V6 > 0, H{Xm,xn} € 00 and {x) (1, ),x"(t,-)} € QY (x € {i,}}). Suppose X® (1) = X,
and x (t,_) = x,, xX*(¢) is C”tm” \-continuous (r = 2) and ||dr @ /df"|| < oo in Q, with for o # B,
and
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either (ng"Q‘,/)T X (ty) >0 and (nggi/)T x¥(t,) <0 for 0Qy; convex to Q,,

or (ngf“gl_l_)T X (t,,) <0 and (ngQ[;)T xW(t,_) >0 for 0Q;; convex to Q.

(103)
(i) The gluing point x,(co) € I';; is parabolic on the side of Q, iff
either (tg”gij)T X (tyy) >0 and (tq, ) x®(t,.) >0 for 0Q; convex to Q,, (104)
or (tg’Qi/_)T X9 (t,,) <0 and (tiq, )TxC)(4,) <0 for 0Q;; convex to Q.
(ii) The gluing point X,io) € I';; is hyperbolic on the side of Q, iff
either (t’g‘gl_/_)T XA (tyy) <0 and (th[/_)T x¥(t,.) <0 for 0Q;; convex to Q,, (105)

or (tg"gzl_/_)T x*(t,,) >0 and (tgg,-,-)T X (t,.) >0 for dQ;; convex to Q.

Proof. Following the proof procedure of Theorem 1, this theorem can be proved. [
Theorem 23. For a dlscontmuous dynamlcal system in Egq. (3) there is a gluing point X,E €r'; on
09;;. Yo > 0, H{Xm,X}EGQ and {X" (t,,,),x(t,.)} € QY (a € {i,j}).
Suppose X (t,1) = X, and xA(t,.) = x,, F(“) (¢) is C,. , \-continuous (r>=1) and
|[d* ! x@ /de || < oo in Q, with for o # B
T T
either (ngbi/) Ft,,) >0 and (nggﬁ) -F¥(t, ) <0 for 0Q;; convex to Q,,

T T
or (ngﬂg) F9t,.) <0 and (“gﬂf;> F¥(t,.) <0 for 0Q;; convex to Q.

(106)
(i) The gluing point X,(co) € I';; is parabolic on the side of Q, iff
either (tg’gﬁ)T . F<°‘>(lm+) >0 and <thi/_)T . F<°‘)(tn_) >0 for 08 convex to Q,,
or (tg”gl,j)T F9(t,.) <0 and (tggij)T F¥(t,.) <0 for 0Q;; convex to Q.
(107)

(ii) The gluing point X,(f)) € I';; is hyperbolic on the side of Q, iff
T T
either (tgn!?,y-) F9(t,.) <0 and (tggij) F¥(t,.) <0 for 3Q; convex to Q,,

T T
or (t’a”gl_/_) F9(t,.) >0 and (thU) F¥(t,.) >0 for 0Q; convex to Q.
(108)
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Proof. Following the proof procedure of Theorem 2, this theorem can be proved. [

In the non-smooth dynamic system, the separation boundary often consists of semi- passable
non-passable and gluing singular points. Consider two semi-passable boundary sets 69,, and
0Q;; with a gluing point, 1.e.,

= — «— 0

. oo —(m) ——(m) . 0(m3)
In general, an open chain boundary consisting of 0€,, and 0Q; with I';"™ possesses the
following structures as

ky+hky—1
112 n
M%_LPQ ULPQ U Q1)ﬁ (110)
ny ny n3

where two integers satisfy |k; — k»| < 1. A closed passable boundary is formed as

PN n n n n 2n
o0, = Jae, u|Jae,” v |Jr. (111)
n1=1 ny=1 n3=1
If the gluing singular point x{ € Iy 9 on both sides of boundary possesses the hyperbollclty in the
corresponding d-domain, the hyperbohc motion will appear. If the gluing singular point x! € Iy 0
on both sides of boundary experiences parabolicity in the corresponding é-domain, the parabohc
motion will be observed. However, due to the discontinuity, the parabolicity and hyperbolicity of
the gluing singular point x{ € I % on both sides of the boundary cannot occur at the same time
always. Therefore, the C- motion will appear.

Definition 31. In Q @ for x\ €I, there is x®(r) in Q¥ (xe{i,j}) and xP(r) in QE;”
(ped{i,j},a#P). Three possible motion exists.

(i) This motion in &;; % is termed a C-motion around the gluing point x\” if x®(r) and x¥(¢)
possess the hyperbohc1ty and parabolicity to x,(C ), respectively.

(11) This motion in Q is termed a hyperbolic-motion around the gluing point Xk Vif x( “)(¢) and

(B)(t) possess the hyperbohclty to x,(( ),

(111) This motion in Q is termed a parabolic-motion around the gluing point xk ) if x( %) (¢) and

xP(t) possess the parabohclty to x,i ),

The phase portraits of the hyperbolic, parabolic and C-shape motions in the d-domain of the
gluing point x{ are sketched in Fig. 18. The largest, solid circular circle is a full gluing point
x)erl ?j The largest solic&urve \Ml circular symbols is the discontinuous boundary set. On the
semi-passable boundary 0Q;; (or 022 ;), flows pass through the boundary from the domain ©; into
Q; (or Q; into €).

Consider a non-passable boundary formed by two non-passable sub-boundaries and a gluing
point, expressed by
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(b)

(©)

Fig. 18. Phase portr&ts} for (a) hyperbohc (b) parabolic and (¢) C-motion in the - domam near the discontinuous
boundary set 0Q; = 0Q;; U 69,] U F The largest, solid circular circle is the gluing point xk IS I",j The boldest solid
curve with circular symbols is the dlscontlnuous boundary set. On the semi-passable boundary 69,] (or 0Q)), the flow
depicted by the smaller solid curves passes through the boundary from the domain €; into Q; (or ; into ).
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For a passable boundary involving the non-passable sub-boundary of the first and second kinds,
the boundaries are formed as

aQ =20, ;ur?uae,ury U@Q

ijs

sliding

Q. = 00, ur? U, urY use,
0Q; = 0Q,;UT;; UdQ;UT;UdQ,, (113)

outflow

O — 20 1T A T Ao
0Q; = 0Q,; U T UdQ, UT UdQ,,.

sliding and outflow )
Asin Eq. (110), the generalized boundary with non-passable sub-boundaries can be developed. To
demonstrate the discontinuous boundary including the non-passable boundary, the phase por-
traits near the non-passable boundary of the non-passable sub-boundaries the first and second
kinds are sketched in Fig. 19(a)—(c). The non-passable sub-boundaries of the first and second are
connected by a gluing point X,EO) € I';;. The parabolic, hyperbolic and inversed C-motions exist in
the neighborhood of the gluing point xk> Similarly, the phase portraits near the passable dis-
continuous boundary sets with the non-passable boundary of the first kind are depicted in Fig.
20(a)—(d). Two semi-gluing points are used to connect the non-passable boundary and semi-
passable boundaries. In the neighborhood of the semi-gluing points, the hyperbolicity of the flows
to the semi-gluing point is similar to the one for the gluing points, and either semi-hyperbolic or
semi-parabolic behaviors of flows in such a neighborhood exist as well. Such phenomena exist in
the neighborhood of the passable boundary sets with the non-passable boundary of the second
kind.

11. Bouncing motion

For dlscontlnuous dynamical systems, after the semi-tangential bifurcation in ; occurs at the

boundary GQU, there is a bou&ng motion in €; at the discontinuous boundary. When a flow

x)(¢) arrives to the boundary 0Q,; or 0%, the flow will bounce at such a boundary. To describe
the bouncing motion, the following mathematical description is given as follows.

Definition 32. For a discontinuous dynamical system in Eq. (3), x(t ) =X, € 09y for t,,. Ve > 0,
tw_s,tm) and (t,, 1., suppose x*(t, )—x (oce {i,j}) and x®(¢) is C’ o) and C’tmtm]
continuous ( > 1) for time ¢. The flow x*(¢) in Q, is bouncing on the boundary 0Q;; if the two

conditions hold:
(C1)

nlg, - X (ts) # ndg, - Xy (1) = 0. (114)
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(b)

(©

Fig. 19. Phase portraits for (a) parabolic, (b) hyperbolic and (c) inversed C-flows near the non-passable boundary

consisting of the non-passable boundaries of the first and second kinds. The largest, solid circular circle is the gluing set

xfco) erl ?j The dashed curve is the non-passable boundary.
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y

x x
() (©

Y ¥y . Q,
!
aQ” r‘(l)

x X

®) )

Fig. 20. Phase portraits near the passable boundary with a sliding non-passable sub-boundary: (a) semi-hyperbolic
flows, (b, ¢) mixed semi-parabolic and semi-hyperbolic flows and (d) semi-parabolic flows. The largest, solid circular
circle is the gluing sets I’ ,(/’) and I’ ,(]’) . The boldest solid curve with circular symbols plus the dashed bold curve is the entire
discontinuous boundary set. The dashed curve is the non-passable boundary.

(C2)

]>0

nT . X(“) tm, _X(“) tmie
00y [ (n-) ( 0 for 0€;; convex to £y,

either )

ngQij ' [X(@(tm%?) - X(“)(tm+)] <

ngﬂzj ’ [X(a) (tm—) - X(“>(l‘m_£
(

T . [x®
g, x

(115)

)] <0
or for 0€;; convex to Q,.
)] >0 -
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Definition 33. For a discontinuous dynamical system in Eq. (3), x(t ) =X, € 0Q; for t,. Ve > 0,
tmetw) and (L, tyss], suppose X@(t,2) = X, (oc c {i,j}) and x¥(¢) is Cl, ..y and C -
continuous (r > 1) for time . A bouncing flow x® in Q, (« € {i,j}) at x,, € 6(2,, is of

(i) the first kind for x*(¢,.) = x,, if

{tggy x9 () - x<“>(t,,,,,,.)]} X {tggu_ X (t) — x<°<>(t,,,,)]} <0. (116)

(i1) the second kind if

{tggu [X(“)(tm_) — X(“)(tm_g)]} X {tgg,-, . [X(a)(tm+g) _ X(oc)(tm_)]} > 0. (117)
(ii1) the third kind if

{tho, - X (1) = x (a0 )] | x {tho, - (X (t0) = xD(1,)] } =0, (118)

Definition 34. For a discontinuous dynamical system in Eq. (3), x( ,,) =X, € 0Q; for t,. Ve > 0,
tmertw) and (t,,tnio], suppose x#(t,+) =x,, (« € {i,;}) and x o) is ¢p, ) and Cp -

contlnuous (r = 1) for time #. A bouncing flow of the third kind x* in Q, (« e {z J}) atx,, € 0Q;
for x9(t,1) = x,, is:

(i) A normal-input bouncing flow if

tlo, - (X7 (tn-) —x"(t.)] = 0. (119)
(i1)) A normal-output bouncing flow if

tho, - X" (tnre) = X (t0y)] = 0. (120)

(iii)) A complete bouncing flow if

tho, - (X (tn) = X (tn-)] =ty - [X (tn1s) — X7 (801)] = 0. (121)

From the three definitions of bouncing flows, the geometrical illustrations are sketched in
Figs. 21 and 22. The classification of bouncing bifurcations is based on the components of
the flow x®(f) on the normal and tangential directions of the boundary 3. In Fig. 21,
the first and second bouncing flows are depicted. The bouncing flows of the thlrd kind is
shown in Fig. 22. The lightly-shaded symbols represent two points (x¥) —and xmﬂ) on the
flow before and after the bouncing. The bouncing point x, on the boundary 0€; is
represented by a large circular symbol. This flow only exists in non-smooth dynamical
systems.
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y Q)
X
y
(b) x
y Q,
(© X

Fig. 21. A flow in the domain £; bouncing on the boundary 3€Q;; convex to £;: (a, b) first bouncing flow and (c) second
bouncing flow. The lightly-shaded symbols represent two points (x\? , and x,(,‘,)ﬂ,) on the flow before and after the

bouncing. The bouncing point x,, on the boundary 0€;; is represented by a large circular symbol.



A.C.J. Luo | Communications in Nonlinear Science and Numerical Simulation 10 (2005) 1-55 51

Y Q

Fig. 22. A flow in the domain ©; bouncing on the boundary 0€;; convex to ;: (a) normal-input bouncing flow, (b)
normal-output bouncing flow and (c) complete bouncing flow. The lightly-shaded symbols represent two points (x{
and XEL) on the flow just before and after the bouncing. The bouncing point x,, on the boundary 09Q;; is depicted by a
large circular symbol.
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Theorem 24. For a discontinuous dynamical system in Eq. (3), x( w) = X, € 0Qy; for t,. Ve >0,
tw_ortm) and (ty,tny.), suppose XP(t,1) = x,, (« € {i, ]}) and x(t) is Chr oy and Cf, .\ -con-
tinuous (v = 2) for time t and ||dx"/d¢"|| < co. The flow x(¢) for t € T, zn Q, zs bounczng on the
boundary 0Q;; iff

n;ir.Qi/ ' X(“) (tmi) # ngﬂi,‘ ' X(a)(tm) = 07 (122>
{ngQ[/ ’ X(a)(t’”*)} X {ng.Q;/ ’ X(a)(tm+)} < 0. (123)
Proof. Following the proof procedure in Theorem 8, this theorem can be proved. [
Theorem 25. For a discontinuous dynamical system in Egq. (3), x( tn) = X, € 0Qy; for t,. Ve >0,
tns, tm) and (t,tyss), suppose X (t,+) = X, (a € {i, j}) and F“ ( ) is C’ i) and Ct s mCON

tinuous (r = 1) for time t and de'“/dterl | < oco. The flow x(¢) for t € Tm in Q, is bounczng on
the boundary 0€;; iff

ngg[/ . F(%) (tmi) # nggii . F(“) (tm) — 07 (124)
{nT R )} X {nT RO )} <0 (125)
OQ,-j m— aQ,‘/‘ m+ :

Proof. Following the proof procedure in Theorem 9, this theorem can be proved. [

Theorem 26. For a discontinuous dynamical system in Eq. (3), X( ) = Xm € 0Q;; for t,. Ve >0,
tw_sostm) and (ty,tyy.), suppose X (t,-) = x,, (« € {i,j}) and X () is Cl, .y and Cf, -con-
tinuous (r = 2) for tlme t and ||dx"/d¢"|| < oco. A bouncing flow x*) in Q, (oc € {l J}) atx,, € 08y is
of the first kind for X" (t,+) = x,, iff

tT X(“)(tm,) X tggij %P (1) ] <0 (126)
of the second kind iff _ _

tgg x<“>(t,,,,) x [, - xP(tn0)| >0 (127)
and of the third kind iff _ _

th” % (1,0)] % [thy, - xP(ta0)| = 0. (128)

Proof. Following the proof procedure in Theorem 8 and using the Taylor series, this theorem can
be proved. [J

Theorem 27. For a discontinuous dynamical system in Eq. it>(3), x(tm) =X, € 0Q; for t,. Ve >0,
twss ) and (ty, tse), suppose X (t,1) = X, (o € {i,j}) and F¥ () is G, oy and Ci,  \-con-

tinuous (r>=1) for time t and de”l/dt’“H < 00. A bouncing flow x' ) in Q, («€{i,j}) at
X, € 0Q;; is of the first kind for X (t,,2) = X, iff
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-tggij ' Fw)(tm*)- X -thij ’ F(OC)(tm )- < O (129)
of the second kind iff
_th[/' . F<M) (tm*)_ X _th[j ’ F(“)(l‘m )_ > O (130)

is of the third kind iff

't FO ()| x [ty F¥(t,0)] = 0. (131)

Proof. Using Eq. (3) and Theorem 17, this theorem can be proved. [

Theorem 28. For a discontinuous dynamical system in Eq. (3), X(t,) = X, € 0Q;; for t,. Ve >0,
tmertw) and (tn,tw.s), suppose X (t,s) = x,, (¢ € {i,j}) and x*(¢) is G, .y and C, ,  \-con-
tinuous (r = 2) for time t and ||dx"/d¢"|| < co. The flow of the third kind x* in Q, (« € {i,j}) at
X, € 08y for XA (ts) = X, is:
(1) A normal-input bouncing flow iff

tg.Qij ’ X(a)(tm*) =0. (132)
(11) A normal-output bouncing flow iff

thij ’ X(Ot)(thr) =0. (133)
(iii)) A complete bouncing flow iff

tggij ’ X(a)(t’”—) = tgﬂi/ ’ Xm(tm-) =0. (134)

Proof. Following the proof procedure in Theorem 8 and using the Taylor series, this theorem can
be proved. [

Theorem 29. For a discontinuous dynamical system in Eq. (3), X(t,) = X,, € 0Q;; for t,. Ve >0,
Wtmess tw) and (ty, tss), suppose X (1) = X, (o € {i,j}) and F* (1) is Ch i and Ci,  \-con-

eslm B+

tinuous (r>=1) for time t and de’“/dl’“H < 00. A bouncing flow of the third kind x* in
Q, (x € {i,j}) at x,, € 3Qy; for X (t,1) = X,, is:
(1) A normal-input bouncing flow iff

tho, - F?(tn) = 0. (135)
(i) A normal-output bouncing flow iff

tho, - F(tn:) = 0. (136)
(ii1) A complete bouncing flow iff

tho,  F&(tn) = thy - F¥(5,,1) = 0. (137)
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Proof. Using Eq. (3) and Theorem 28, this theorem can be proved. [

Remark. The theories for tangential and bouncing motions are suitable for the motion in non-
smooth dynamical systems with non-passable boundaries.

12. Conclusions

In this paper, the accessible and inaccessible domains for non-smooth dynamical systems are
introduced, and a theory of non-smooth dynamical systems on connectable and accessible sub-
domains is developed. In this theory, the local singularity and transversality of a flow from a
accessible domain to its adjacent accessible domains are investigated, and the necessary and
sufficient conditions for the singularity and transversality are developed. The formation and
properties for separation boundaries based on the characteristics of flows are investigated, and the
sliding dynamics on a specified separation boundary is introduced. The flows either bouncing on
or tangential to the boundary for non-smooth dynamical systems are discussed as well.
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