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Abstract

The Lagrangian technique is used to compute particle dispersion in a two-dimensional ventilated cavity.
The instantaneous air velocity field at the particle’s location is obtained by proper orthogonal decomposi-
tion (POD). The low-dimensional dynamic model is obtained by performing a Galerkin projection of the
Navier—Stokes equations onto each POD eigenfunction and it is coupled with the particle’s equation of mo-
tion. A substantial decrease in computing time (when comparing with LES computations) is noted. Two
different cases of particles’ injection are modelled: the particle source is located in the inlet in the first sim-
ulation, and close to the floor in the second simulation.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Nowadays people spend a great amount of time in an indoor environment and it is thus impor-
tant to predict indoor air quality in order to assess health risks. Indoor air quality may be related
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to gaseous pollutants (volatile organic compounds, formaldehyde for instance) and also to parti-
cles (tobacco smoke, black carbon soot emitted by motor vehicles. ..). Our work is more partic-
ularly focused on the numerical modelling of particle dispersion in a ventilated cavity. The long
term objective is to control particle dispersion in an active way, for realistic configurations
encountered in buildings. In the present paper, a Lagrangian particle tracking method is used
in conjunction with a low-order dynamical system obtained by proper orthogonal decomposition
(POD) that provides the fluid flow dynamics.

Using the Lagrangian technique to compute particle dispersion in a turbulent flow requires the
knowledge of the instantaneous fluid velocity at the particle’s location. The instantaneous velocity
can be obtained in three different ways. The first one is direct numerical simulation [1-3]. In this
approach, Navier—Stokes equations are solved numerically without using a turbulence model.
The mesh should be fine enough to solve the smallest scales of motion, this approach is therefore
very time consuming and cannot be applied to building simulation. Another approach is to use
Reynolds averaged Navier—Stokes models to compute the time averaged turbulent flow, and to
introduce a stochastic model that provides the fluctuating velocity field [4-6]. These models are
generally formulated for homogeneous turbulence and their extension to more complex flows is
a hard task. The last approach consists in using large eddy simulation (LES) to generate the instan-
taneous flow information [7-9]. With LES, a filter is applied to Navier—Stokes equations. The
instantaneous velocity of the eddies larger than the filter length scale is computed, and the effect
of the subgrid scales is modelled. Applying LES to compute particle dispersion in a room is nev-
ertheless a computationally intensive technique. To compute particle dispersion in a turbulent flow
with LES it is necessary to couple at the same time step the computation of the instantaneous veloc-
ity field and the particle dispersion. Small time steps are required to integrate the particles’ equa-
tions of motion, and a large amount of time step must be used when dealing with indoor air quality.

In the 1980s, researchers have developed low-dimensional dynamic models to compute turbulent
flows at a reduced cost. One of the most widely used techniques is proper orthogonal decomposi-
tion that is based on the construction of an optimal basis function (in an energetic norm sense). In
the present study, the instantaneous velocity of the turbulent flow is computed by the means of
POD in a first step, and a coupled system of differential equations (composed of the particles’ equa-
tion of motion and the equation of the instantaneous fluid velocity at the particles’ location by
POD) is solved in order to get the particles’ velocity and position. This principle was already ap-
plied to investigate the motion of bubbles and particles in a turbulent boundary layer [10]. Exper-
imental results were used to construct the POD basis. Only one POD mode was used in the wall-
normal direction, and Fourier modes were used in the spanwise and streamwise directions.

This contribution considers the investigation of particle dispersion in a ventilated cavity. Since
this work is in its early stages, the flow is assumed isothermal and two-dimensional. Moreover, it
is heterogeneous according to the two space directions. The POD basis is derived by first comput-
ing the turbulent flow with two-dimensional large eddy simulation. It should be pointed out here
that although the use of two-dimensional LES may be somewhat questionable, it has been applied
successfully to other types of flows [11,12]. The ability of the POD basis to reproduce the turbu-
lent flow is tested. The low-dimensional dynamic model is obtained by performing a Galerkin pro-
jection of Navier—Stokes equations onto each eigenfunction and it is coupled with the particles’
equation of motion. A substantial decrease in computing time (when comparing with LES com-
putations) is noted. The influence of the number of particles injected in the flow on particles’ sta-
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tistical results is analyzed. Two different cases of particles’ injection are modelled: the particle
source is located in the inlet in the first simulation, and close to the floor in the second simulation.
In the last part of this paper, the implementation of this code on an IBM SP supercomputer is
explained, and the low cost computations of the simulations are highlighted.

2. POD method

The proper orthogonal decomposition (POD) is inspired by the principal component analysis
(PCA) in data processing. The main idea of PCA is to reduce the dimensionality of data set which
consists of a large number of interrelated variables, while retaining as much as possible the variation
present in the data set. This is achieved by transforming the original variables into a new set of var-
iables, the principal components, which are uncorrelated and are ordered so that the first few ones
retain most of the variation present in all of the original variables. POD is thus a powerful technique
for extracting basis functions that represent ensemble averaged structures. This technique, which
was introduced in fluid mechanics by Lumley [13]in 1967, has been found to be useful and efficient
in approximating the dynamics of flows characterized by large-scale spatially coherent structures.
As a very small number of POD modes capture most of the energy, this technique is also used
to construct low-dimensional dynamic models. A Galerkin projection of the Navier—Stokes equa-
tions onto the most energetic POD modes gives a low finite-dimensional system of non-linear ordi-
nary differential equations (ODE) for which solution can be found with a very limited
computational effort when compared to DNS or LES of a turbulent flow. Since 1988 and the pio-
neering paper of Aubry et al. [14] in which the motion of structures in the wall region of a flat plate
turbulent boundary layer was represented by a realistic dynamical system, the construction of low-
dimensional models has been considered for numerous configurations such as flows in driven cav-
ities [15,16], in boundary layers [17], in plane mixing layers [18], across sudden expansions [11,19].

2.1. Proper orthogonal decomposition

The basic idea of POD consists in finding a “physical’ basis which is optimal in an energetic
sense. Thus, we search a deterministic function ¢ which gives the “best” representation of the
set of flow fields u (assumed random and at real values) in the following sense:

{ (u,¢) = max,c20)(w, Y) (1)
(¢,0) =1

where (e, o) denotes the inner product of L*(Q) and @ denotes a statistic average operator. L? is the
space of functions of finite energy in the flow volume Q.

From variational calculus it follows that the above expression is equivalent to the Fredholm
integral

Find i€ R and ¢ € [2(Q) with / Rx,¥)0() 0 = 7 (x) 2)

representing an eigenvalue problem for ¢. R is the spatial correlation tensor defined, with ergo-
dicity hypothesis, by:
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R(x,x') =u(x,1) @ u(x, 1) 3)
The eigenfunctions ¢, are orthogonal and all realizations of the flow u are written as:
+00
u(x,7) = > a,()¢,(x) in L*() sense, with () = (u(x,1), ,) (4)
n=1

In practice, if the sampling of the flow field is obtained by numerical simulation, the evaluation
of the tensor R is a very large computational task. In order to reduce the calculation, we used the
Snapshots method proposed in 1987 by Sirovich [20]. In this technique, based on the fact that the
eigenfunctions can be expressed in terms of the original set of data,

M
¢n (x) = Z u(x, tk)Ank (5)
=1
we must solve the matrix eigenvalue problem:
M
ijAnk:)*‘Anj forj: 1,...,M (6)
=1
where A4, denotes the constants associated to the nth mode, M is the number of snapshots, and C
is the temporal correlation tensor defined by:

Cyj = A%/Qu,»(x, te)u;(x,t;)dx (7)

As Cis symmetric and positive semi-definite, all eigenvalues are real and non-negative and can be
ordered as 4; = /A,--- = ;.. Each eigenvalue 4, taken individually, represents the energy contri-
bution of the corresponding eigenfunction. The eigenvectors ¢,, are by construction incompress-
ible (e.g. their divergence is null), satisfy the boundary conditions and can be normalized to form
an orthonormal set. The main property of the POD is its ability to give the best approximation of
the flow in an energetic sense [21]. The energy contained in the first N POD modes is indeed al-
ways greater than the energy contained in any other basis such as the Fourier basis.

2.2. Low-order dynamical system

Usually, the first N (V small) POD modes contain most of the energy. So we can expect that a
low-order dynamical system, obtained by Galerkin projection of the Navier—Stokes equations
onto the most energetic eigenmodes ¢,,, gives the flow dynamics accurately. The first step consists
in approximating the flow field u by keeping the first N modes and ignoring the remaining modes.
This approximation is written as:

u(x, 1) =~ Zan(f)%(ﬂ (8)

The second step consists in performing a Galerkin projection. As the continuity equation for
incompressible flow is satisfied by each eigenfunction, we only consider the dimensionless momen-
tum equation of the flow:

Ou 1
i u-Vu=-VP+ A
6t+u u +Re u 9)
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where Re and P are respectively the Reynolds number and the pressure. Introducing (8) into Eq.
(9), projected onto the spatial structures ¢,, and taking ¢ orthonormal:

d . N N N ]

(;ll :chnmkamak+ZBnrnam +Dn Wlthl’lzl,...,N (10)
m=1 k=1 m=1

1

and C,,.x=— (., Vo, bi)y Bup = %o (¢,,A,,), D, = —frPd)nn dsS where n is the outward normal
e

on the domain Q considered of boundary I'.

The previous system of equations includes a term D,, that is linked to the pressure P. But there
is no simple expressions of this term according to the expansion coefficients ¢,,. This term should
be known for each time step when integrating (10). This is quite difficult to achieve, but for a few
configurations, D, is strictly equal to 0 (in a driven cavity for instance, because the ¢, functions
are null on the boundaries) or is assumed to be 0. To overcome this difficulty, if this term cannot
be neglected, various approaches have been considered. This term was modelled by Aubry et al.
[14] for the study of the viscous sublayer in a channel flow. This modelling technique cannot be
extended to other flow configurations. On another hand, Rempfer [17] proposed to use a vorticity
formulation of the problem. Since this formulation induces a higher order derivative, it generates
a numerical noise which disturbs the prediction of the dynamical system. To avoid this term,
Allery [22] uses a stress formulation in conjunction with a penalization of the non-homogeneous
Dirichlet boundary conditions, for studying the flow through a long diffuser.

The POD method can be applied to the instantaneous field (u and P) or to the fluctuating field.
In this section, in order to simplify the notations, the technique has been presented for the instan-
taneous field. If the fluctuating field is considered, the dynamical system is slightly modified. It is
obtained by decomposing the instantaneous velocity and pressure fields into a mean component e,
with the fluctuating part of the velocity e’ expressed according to the POD basis. This yields:

u(x,t) =u(x) +u(x,¢) ~u(x) + %an(t)d)n(x) (11)

P(x,t) = P(x) + P'(x,1)
These expressions are then introduced into the Navier—Stokes equations. The coefficients’ expres-
sion is detailed in [15,22].

3. Particle model

A monodisperse aerosol in an isothermal flow is considered here. The particles are solid and
spherical. Aerosols in buildings are dilute. The particles do not modify the flow and do not coag-
ulate, a one-way coupling approach is thus used. The Lagrangian approach is employed in order
to compute the particles’ trajectories. A large amount of particles should be released in the flow in
order to obtain statistically independent results. Since the density ratio (particle density versus gas
density) is rather high (about 2000), the particles are mainly submitted to the gravity and drag
forces. Other forces such as the buoyancy force, the added mass effect and the Basset force are
negligible. As in a previous study performed by Ahmadi and Li [23], the Saffman lift force is
not considered because the particle studied here are rather small (5 um diameter). In addition,
the particles do not exhibit a random motion due to Brownian effects, because the particle diam-
eters in this study are greater than 1 pm. The particle equation of motion is therefore:
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nd’ du, nd’ d
Pprd—tp:TpPpg‘i‘TpPCdH“_“pH(“‘“p) (12)
where p,,, d,, u, are the density, diameter and velocity of the particle, g is the gravitational accel-
eration, p is the fluid density and u is the instantaneous fluid velocity at the particle’s location.
According to Hinds [24], the drag coeflicient can be calculated as a function of the particle Reyn-
olds number Re, in the following manner:

24 :

Cd = R—ep if Rep < 1

Cq=044 if Re, > 1000 (13)
24 Re)?

=—1|1 . if 1 <R 1000
Cq Rep ( + 6 1 < ey, <
. —u,||d . . g
with Re, = llu = uyidy and v is the kinematic fluid viscosity.

v
Eq. (12) is solved at each time step for each particle. Integrating this equation according to time
yields the particle velocity. The particle position at each time step is obtained by integrating:

dx,

%=

In a previous study, the instantaneous fluid velocity at the particle’s location was obtained by

performing large eddy simulation at each time step [25], and this three-dimensional model was

successfully validated by comparison of the numerical results with the experimental results of Sny-

der and Lumley [26]. This approach requires a large amount of computing time, because the time

step should be very small (it is imposed by the explicit integration of the particle’s equation of mo-

tion). In this work, the instantaneous fluid velocity at the particle’s location is provided by the

proper orthogonal decomposition method, so combining Egs. (10), (12) and (14) yields the follow-
ing coupled problem

((da

(14)

E = F(a, t)

du

d—tp = G(auupat) (15>
dx

Fra

where a=(ay,...,a,). This set of differential equations is solved by the Runge-Kutta method.

4. Results
4.1. Description of the case study

The application case considered here is particle dispersion in an isothermal two-dimensional
ventilated cavity (see Fig. 1). The inlet is located in the upper part of the left wall (0.31 m beneath
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Fig. 1. Geometry of the ventilated cavity.

the ceiling) and the outlet is in the lower part of the right wall (0.31 m above the floor). The room
dimensions are 2.5 m long and 2.5 m high. The inlet height is 0.07 m and the outlet height 0.07 m,
the mean velocity and turbulent intensity at inlet are respectively 0.443 m/s and 10%. The turbu-
lent flow has been computed by using the STAR-CD code. The LES model selected is the one-
equation subgrid & model that comprises a balance equation for the subgrid kinetic energy [27]
(written in tensorial notation).

ok 0 d ok K2
—+—(i:jk):v,Pk+—< —)—cg—

o o, o, \ "o, A
- N A (16)
p, (%, 0\ 3
k= ﬁxi ax,‘ ax,
where #; is the resolved large-scale velocity component, v, is the subgrid scale viscosity
v, = CedVk (17)

A is the filter width which separates the resolved scales from subgrid scales, and the dimensionless
model coefficients are given the values

C, =005  C, =100 (18)

The flow domain was discretized into a non-uniform mesh of 18477 cells. A time step equal to
0.005 s ensured a CFL (Courant-Friedrichs—Lewy condition) less than 0.5.

Since POD enables a high reduction in computing time, many cases of particle dispersion can
be considered with a minimum of effort unlike with LES or DNS. As this paper is devoted to high-
light the ability of POD to compute particles’ dispersion, we focused on two cases of particles’
injection. In the first simulation, denoted (A) in Fig. 1, a cloud of 10000 particles (diameter
d,=5 pm, density p,=2000 kg/m®) was released in the middle of the inlet at the same time. In
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the second simulation, denoted (B) in Fig. 1, the same cloud of particles was injected 10 cm above
the floor. For these two cases the initial particles’ velocity was set equal to the instantaneous fluid
velocity. The time step chosen for particle computation was 0.0002 s. 150000 time steps were per-
formed for simulations (A) and (B). For the cases studied in this paper, the particles were sup-
posed to be attached to the wall when they contacted the surfaces.

4.2. POD application

Once the LES computation of the turbulent flow has converged, POD was applied to the fluc-
tuating fields and 99 snapshots of velocity (M =99) fields were recorded every 0.01 s. In Table 1
the percentage of fluctuating energy E, contained in the mode n, and the cumulative energy FE.
contained in the n first POD modes are presented. They are defined according to:

En:i,,/i/li and Ecziﬂi/f;ii (19)

Table 1 shows that only one mode contains 78% of energy and with four modes the fluctuating
energy of the signal is almost captured.

The ability of the first POD modes to reproduce the flow velocity, was then tested. The follow-
ing normalized residual was considered:

res(n) = % (20)

with > = [, u(x, 1) —
k
Al = supA2).

Fig. 2 indicates that only four modes are necessary to obtain a residual less than 1.8x1072
(which corresponds to a relative error of 3.2x10~%). With four modes the fluctuating velocities
are hence well reconstructed. Therefore, the low-order system, used to compute the flow dynamics
and the particle dispersion, is obtained with four modes.

2

ay () (x)| dx and > = [, [u(x,#)]* dx. Here |lo|,, is the infinite norm,

n
=1

4.3. Reduced model

Fig. 3 shows the temporal evolution of the modes a,(¢) during the sampling time used for the
snapshot method. In this figure, POD corresponds to the reference solution obtained by project-
ing the LES velocity field onto the spatial structure ¢,,, pressure and without pressure are the coef-

Table 1

Energy contained in the first eigenvalues 4, of the POD

Mode n I 100E, 100E,

1 0.53399E—-02 78.62948 78.62948
2 0.98829E—03 93.18179 14.55231
3 0.29199E—-03 97.48127 4.29948
4 0.96186E—04 98.89760 1.41632
5 0.33250E—04 99.38720 0.48960
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Fig. 3. Temporal evolution of the four modes obtained by integration of the dynamical system: (a) mode 1, (b) mode 2,
(c) mode 3 and (d) mode 4.
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ficient obtained by solving the dynamical system (10) respectively with the pressure term included,
and without the pressure term. It can be noticed that the temporal evolution of the reference func-
tions POD are properly recovered from the dynamical system. These figures also highlight that
not considering the pressure term in the dynamical system does not affect the prediction of the
mode a,(t). This term will thus be neglected in the next paragraphs.

While the POD basis was built with 1 s of the fluctuating flow computed with LES, particle dis-
persion was calculated for a duration of 30 s, with the low-order dynamical system.

4.4. Particle dispersion in the ventilated room

Fig. 4 gives instantaneous streamlines of the flow. The main features of the cavity flow are as
the usual ones encountered in a ventilated cavity. The cavity flow consists of small recirculation
regions in the corners of the cavity and a big one in the room core.

Fig. 5 presents the temporal evolution of the particles’ cloud for the configuration (A). The par-
ticles followed the jet path. About 2 s since the particles’ injection, the particles were lifted in the
small recirculation region located in the upper left part of the room (Fig. 5(a)). The same phenom-
enon was observed in a previous study of particles’ dispersion computed with 3D LES [25]. Fig.
5(b) shows the particles going down along the right wall. In Fig. 5(c) and (d), it can be noticed that
some particles were exhausted. Fig. 6(a) confirms this assertion. Fig. 6(b) also highlights that a few
particles were eliminated because they were attached to the walls (and more particularly on the
right and left vertical walls). In Fig. 5(d), it can be seen that 30 s since the particles’ injection,
the indoor air quality was rather bad, many particles diffused to the core region.

An advantage of using POD to compute the instantaneous air velocity field is that many cases
of particles’ injection can be investigated without re-computing the turbulent flow. Starting from

25 =

&

O —
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0.126
0.084
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0.000

1.5

0.5

M T [T TTTTTITTITIT]

Ll ! P — P \
0 0.5 1 15 2 25

o

Fig. 4. Instantaneous streamlines at the beginning of the particles’ release.
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Fig. 5. Temporal evolution of the particles’ cloud (A) in the room: (a) 4 s, (b) 12 s, (c) 20 s and (d) 30 s.

the same instantaneous velocity field as in the previous case, we studied the influence of the loca-
tion of the particles’ attack. In this case, the particles’ source was located very close to the floor.
Fig. 7 shows the same features as in Fig. 5. The particles were lifted by the airflow. They followed
the main circular air path, some of which moved in the small recirculation regions (see Fig. 7(b)).
Since the particles were released very close to the floor, the greatest part of the attached particles
were located on the left wall (see Fig. 7(b) and (c)). For this configuration, 30 s since the particles’
injection, the indoor air quality is also rather bad.

4.5. Implementation on a parallel computer

At each time step, only four differential equations were solved to compute the turbulent flow,
but a large number of differential equations were used to get the particles’ trajectories (four equa-
tions for one particle, which implies for instance 40 000 equations if 10000 particles are injected in
the turbulent flow). Moreover the particles do not interact with each other. It was thus interesting
to parallelize the particles’ loop. The code was implemented on an IBM SP supercomputer and
parallelized with MPI (Message Passing Interface). A SPMD (Single Program Multiple Data) ap-
proach is employed (the same program is at once master and slave). Each processor computes the
turbulent flow and executes the same particles’ loop for Npue/Nproc particles where Ny, is the
number of particles and N is the number of processors. At the end the host processor collects
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Fig. 6. Percentage of particles in the room over time (configuration (A)): (a) percentage of particles exhausted, (b)
percentage of attached particles and (c) percentage of particles in the air flow.

the results of all Ny, independent trajectories and calculates the statistical results (percentage of
particles in the room, attached to each wall, ...).

We noticed that POD is a technique which considerably decreases the computing time. While 19
days were necessary to compute the dispersion of 1000 particles with 3D large eddy simulation,
only 3 days and 10 h were needed to deal with the dispersion of 10000 particles obtained by
2D proper orthogonal decomposition. In addition, the particles’ loop in the 3D LES program
was parallelized, but since the program spends most of the time computing the turbulent flow with
LES, the parallelization is not efficient. This is not the case with POD. The computation of par-
ticles’ dispersion with POD required only 12 h with 10 processors.

5. Conclusion

In this paper, we presented a numerical study of particle dispersion in a ventilated room com-
puted by means of proper orthogonal decomposition. A two-dimensional configuration was con-
sidered here as a first step. Similar features as ones noticed when computing particle dispersion in
a three-dimensional ventilated room with large eddy simulation, were highlighted. The behavior
of our model is therefore qualitatively satisfactory. We are now extending this model in order to
treat three-dimensional configurations. This will enable us to validate this model in a quantitative
way, by comparing our results with ones obtained with our model based on the computation of
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Fig. 7. Temporal evolution of the particles’ cloud (B) in the room: (a) 0's, (b) 12 s, (c) 20 s and (d) 30 s.

particle dispersion with large eddy simulation. A particular attention will be paid to the behavior
of particles in the vicinity of walls. Moreover, proper orthogonal decomposition has been shown
here to be a powerful tool to save a very large amount of computing time as well as computer
memory. A substantial decrease in computing time may be also obtained by solving the coupled
dynamical system (POD and particles) by using the asymptotic numerical method (ANM), which
consists in finding the solution as a formal series according to time.
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