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Abstract

The flow of an incompressible, viscous, electrically conducting fluid past a sphere in an aligned magnetic field is
investigated using the finite difference method for Re 100 and 200 and interaction parameter N in the range 0�N �10
(or 0�M �100), where M is the Hartmann number defined by M =√

2N Re. The length of the recirculation bubble
in the flow reduces monotonically with increasing magnetic field up to N =1 and starts growing when N �2. A non-
monotonic behavior of the boundary layer separation angle is found when N < 1, where the backward movement
of the separation angle is observed. For higher values of N, a linear dependence with

√
N of the pressure drag

coefficient, the total drag coefficient and the rear pressure is found. With increasing values of N, a general increase
in upstream base pressure and a decrease in downstream base pressure is noted. The features found in this work are
in agreement with those of experimental findings.
© 2005 Published by The Japan Society of Fluid Mechanics and Elsevier B.V. All rights reserved.
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1. Introduction

In the problem of viscous flow around a sphere, as the Reynolds number is increased, the wake behind
a sphere undergoes a series of well-defined transitions on its way to becoming fully turbulent. The
attached separation bubble grows in length until the Reynolds number reaches approximately 210. The
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first transition involves a (regular) symmetry-breaking topological change from a steady axisymmetric
wake with an attached separation bubble to a steady non-axisymmetric wake consisting of a shortened
separation bubble with two trailing counter-rotating vortices. In experimental visualizations, the dye is
trapped in the vortex cores and this leads to a dramatic two-threaded structure. Johnson and Patel (1999)
numerically found that this transition occurs at approximately Re = 211. This value compares well with
the value determined by Tomboulides et al. (1993) and Tomboulides and Orszag (2000) (Re = 212).
These values are consistent with experimental predictions which tend to be lower, but have an upper
limit closer to the numerical estimates. Magarvey and Bishop (1961a, b) found the two-threaded wake
to exist in the range 210 < Re < 270, Nakamura (1976) found the transition occurred at Re = 190,
and Ormieres and Provansal (1999) observed the two threads between 180 < Re < 280. In addition,
the stability analysis of Natarajan and Acrivos (1993) revealed a regular, i.e., time-steady transition at
Re = 210.

The second topological transition is from the steady two-threaded wake to a periodic wake in which the
trailing vortices form kinks that develop into strongly skewed loops, and these move away downstream.
There have been various studies documenting and analyzing this transition. The critical Reynolds number
has been determined experimentally to be: 280 (Ormieres and Provansal, 1999); 300 (Sakamoto and
Haniu, 1995); between 270 and 290 by Magarvey and Bishop (1961a, b) and in the range 200–300 in the
older study by Taneda (1978). Numerical simulations predict values Re=270 (Johnson and Patel, 1999),
and in the range 250–280 (Tomboulides et al., 1993). In addition, the stability analysis of Natarajan and
Acrivos (1993) found the transition to occur at Re = 277, although they based the stability analysis on
an axisymmetric base flow. Sungsu Lee (2000) has reported that the flow past a sphere remains two-
dimensional and axisymmetric until Re=250, and also that the periodic vortex shedding does not appear
until Re = 375. Recently, Thompson et al. (2001) studied the kinematics and dynamics of sphere wake
transition.

1.1. Effect of magnetic field on the flow

An externally applied magnetic field can significantly control the nature of flow of an electrically con-
ducting fluid. Experimentally, it is well established that two-dimensional instabilities can be suppressed
by the application of the external magnetic field. In general, it is believed in magnetohydrodynamics
(Chandrasekhar, 1981) that a steady magnetic field can damp any instability in the flow structure. The
effect of a magnetic field on Stokes flow past a sphere in a conducting fluid is studied by Chester (1957) for
low Reynolds numbers. The flow of an incompressible viscous electrically conducting fluid past a sphere,
in the presence of a uniform magnetic field parallel to the undisturbed flow using Oseen approximation,
has been investigated by Gotoh (1960) and later by Goldsworthy (1962). The force exerted on the sphere
for various conductivities and Reynolds numbers is computed by Blerkom (1960). For the case of flow
around a circular cylinder, Leibovich (1967) proved that the separation at a rear stagnation point could
be suppressed by a sufficiently large magnetic field perpendicular to the surface of the cylinder. These
are further discussed by Buckmaster (1969, 1971). From the works of Leibovich (1967) and Buckmaster
(1969, 1971) it is clear that the boundary layer separation will not occur if the magnetic field is large
enough. Banks and Zaturska (1984) examined the flow structure at a rear stagnation point of an incom-
pressible viscous and electrically conducting fluid and provided a resolution of the differences between
the works of Leibovich and that of Buckmaster.
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Some recent investigations carried out with regard to the problem of flow around a circular cylinder
with magnetic field are as follows: Mutschke et al. (1997, 1998, 2001) investigated the two- and three-
dimensional instabilities of the cylinder wake in an aligned magnetic field, the cylinder wake control by
magnetic fields in liquid metal flows and a linear stability analysis of the three-dimensional instabilities
of the cylinder wake. Further, the control of flow separation using electromagnetic forces has been
discussed by Weier et al. (2003). Sekhar et al. (2003) solved the vorticity–stream function form of the
Navier–Stokes equations for the steady viscous incompressible magnetohydrodynamic flow past a sphere
using the finite difference method (not second-order accurate) and found the suppression of the separation
at rear stagnation point and increase of drag coefficient with the increase of the magnetic field for moderate
values of Re and low values of N. Besides these theoretical studies, a few experimental investigations
are also reported in the literature by Yonas (1967), Maxworthy (1968, 1969), Lahjomri (1984,1993) and
Josserand et al. (1993) as follows.

Maxworthy achieved pressure distribution measurements around a sphere placed in a sodium flow
aligned with the magnetic field at infinity with the interaction parameter ranging from 0 to 40. The main
conclusions of Maxworthy (1968, 1969) are as follows: the upstream pressure first continuously rises as
N increases and reaches an asymptotic value for N greater than approximately 15. The downstream base
pressure decreases as N increases due to the loss in total pressure head that a fluid particle undergoes
when crossing the magnetic field. The association of these two phenomena is consequently responsible
for an increase with N of the pressure drag coefficient, which was found proportional to

√
N as soon as

N is greater than 5. A similar behavior has also been reported by Yonas (1967) who made direct drag
measurements on spheres and disks in a sodium flow for interaction parameter values up to 80, where the
drag coefficient was found to be 3.3

√
N (N > 10) for spheres. The fact that the asymptotic dependence

with N of the drag coefficient seems to be independent of the body’s shape is probably one of the most
important results of this study. Lahjomri (1984) experimentally found that, for a fixed hydrodynamic
Reynolds number, an increase of the interaction parameter above a critical value was able to suppress the
vortex street in the wake.

The angular evolution of the pressure around a cylinder in a magnetohydrodynamic flow aligned with
the magnetic field for 0�N �8 has been studied experimentally by Josserand et al. (1993) who found
that for N < 1, both the front and rear pressure increases when compared to the no field case N = 0.
For N > 1, the upstream base pressure increases with N while the downstream base pressure decreases.
Further, it is also shown that for sufficiently large fields, the von Kármán street behind the cylinder could
be suppressed.

In the present paper, the incompressible conducting fluid flow past a sphere in the presence of an
applied magnetic field parallel to the main flow is investigated for the Reynolds numbers 100 and 200
using the finite difference method solved by the multigrid method. The defect correction technique is
then employed to achieve second-order accurate results. We verified our results first with no magnetic
field case where results are available in the literature up to high Reynolds numbers 100�Re�5000 by
Fornberg (1988).

2. Problem definition

The flow of steady incompressible viscous conducting fluid past a sphere with uniform free-stream
velocity U∞ (from left to right) and an aligned uniform magnetic field H∞ is considered for this study.
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The equation of continuity is satisfied by introducing the dimensionless stream function �(r, �) defined
by the equations

u = 1

r2 sin �

��

��
, v = −1

r sin �

��

�r
, (1)

where u and v are the dimensionless radial and transverse components of velocity obtained by divid-
ing the corresponding dimensional components by the stream velocity U∞. The viscosity, density and
conductivity of the fluid are �, � and �, respectively. The curl of the momentum equation is

∇ × � × q = 2

Re
∇2� + N ∇ × {(q × H) × H}, (2)

where q is the fluid velocity, H is the magnetic field and

� = ∇ × q (3)

is the vorticity. The Reynolds number Re = 2�U∞a/� (a is radius of the sphere) and the interaction
parameter N = �H 2∞a/�U∞. The magnetic field and fluid flow are aligned at infinity and so the electric
field can be assumed to be zero. The magnetic Reynolds number Rm (ratio of induced magnetic field
to imposed magnetic field) is assumed to be small (< 1) so that the magnetic field is uniform and low
enough for its effect to be treated as a small perturbation of the zero field potential flow. This enables us
to replace the magnetic field in all MHD equations by

H = (− cos �, sin �, 0), (4)

hence eliminating several non-linear terms of unknown quantities. Expanding (2) and (3) using (1) and
(4) with spherical polar coordinates (r, �, �) (axis-symmetric), we get the Navier–Stokes equations in
vorticity–stream function form as
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Because the stream function and vorticity are expected to vary most rapidly near the surface of the sphere,
we substitute r = e�. Now, the above two equations become

�2�
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�

��
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+ sin �e3�� = 0, (5)
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where � and � are dimensionless stream function and vorticity, respectively, and

u = e−2�

sin �

��

��
, v = −e−2�

sin �

��

��
.

The boundary conditions to be satisfied are

On the surface of the sphere (� = 0): � = ��

��
= 0, � = − 1

sin �

�2�

��2 .

At large distances from the sphere (� → ∞): � ∼ 1

2
e2�sin2 �, � → 0.

Along the axis of symmetry (� = 0 and � = 	): � = 0, � = 0.

3. Numerical method

The governing partial differential equations (5) and (6) are solved by first applying finite difference
method and the resulting algebraic equations are solved by using the multigrid method. The finite dif-
ference grid is shown in Fig. 1, where the flow is from left to right. All derivatives in the governing
equations are approximated by second-order central differences except for the convective terms which
are approximated by first-order upwind differences. This procedure is used to ensure diagonal dominance
of the resulting algebraic system.

Here, a recursive multigrid procedure (V-cycle) is employed in which the smoother is a point Gauss
Seidel iteration and the usual coarse grid correction (Juncu and Mihail, 1990) is applied. We used
the injection operator as restriction operator throughout this study. The 9-point prolongation opera-
tor defined by Wesseling (1991) is used for the present study. The solution obtained by the multi-
grid method is not second-order accurate as we have approximated all terms by second-order central
differences except convective terms which are approximated by first-order upwind difference scheme
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Fig. 1. Figure showing the type of grid used.

to ensure diagonal dominance. In order to achieve second-order accurate solution, the defect correc-
tion method is employed as follows. If B is the operator obtained, for example, by first-order up-
wind discretization and A is that obtained by second-order accurate discretization, then the defect
correction algorithm works as given below. At the start of the defect correction, ȳ is a solution that
is not second-order accurate, and at the end of the defect correction, ȳ is second-order accurate. In
the algorithm given below, usually in practice, it is sufficient to take n = 1 or 2. In this study, we
considered n = 5.

begin Solve Bȳ = b

for i := 1 step 1 until n do
solve By = b − Aȳ + Bȳ

ȳ := y

od
end

The initial solution is taken as � = 0 and � = 0 at all inner grid points except for � at � =∞, where the
boundary condition holds. In finding the solution for higher values of Re and N, the solution obtained for
lower values of Re and N are used as starting solution. Convergence is said to have been achieved when
the norm of the dynamic residuals is less than 10−4 for N �1. For N > 1, convergence criterion is chosen
such that when the difference between two successive iterations at all interior grid points (for � and �) is
less than 10−7.

4. Results and discussion

Results obtained from the finest grid 512 × 512 of the above multigrid procedure for the Reynolds
numbers 100 and 200 and the interaction parameter 0�N �10 are given. The interaction parameter N
can be equivalently written in terms of Hartmann number M by the relation M = √

2N Re. Theviscous
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drag coefficient Cv, pressure drag coefficient Cp and surface pressure P�=0(�) are evaluated using the
following relations:

Cv = − 4

Re

∫ 	

0
��=0 sin2 � d�,
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Re

∫ 	
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{(
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)
�=0

sin2 �

}
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0

(
��

��

)
�=	
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∫ �

	

(
��

��
+ �

)
�=0

d�.

First, we verified the problem for the case of zero magnetic field (N = 0) which corresponds to the
steady incompressible viscous flow past a sphere and the results obtained on the separation length (l),
separation angle (�s) and drag coefficients agree with the data available in the literature by Fornberg
(1988). The comparison of the drag coefficients are given in Table 1. We then studied the flow patterns
due to the magnetic field by increasing the value of N. For N < 5, the recirculation length, separation
angle and drag coefficient values in two different grids 256 × 256 and 512 × 512 are tabulated in
Tables 2 and 3. For N �5, results are obtained from the finest grid of 512 × 512.

The streamlines for Re=100 and 200 are presented in Figs. 2 and 3, respectively. The length of the recir-
culation bubble at rear stagnation point of the sphere reduces monotonically from N =0.01 to 1. A similar
phenomena is reported through numerical simulation by Raghava Rao and Sekhar (1995) in the problem

Table 1
Verification of the present results with the literature for the case of zero magnetic field

Re Present results Fornberg (1988) Juncu and Mihail (1990)

100 0.52 0.54 0.53
200 0.36 0.37 –

Table 2
Comparison of second-order accurate separation length, separation angle and drag coefficient values in two different grids for
Re = 100

N l �s CD

256 × 256 512 × 512 256 × 256 512 × 512 256 × 256 512 × 512

0.5 2.13 2.12 43.59 44.30 0.59 0.61
1 1.94 1.94 38.67 39.37 0.67 0.70
2 1.98 1.99 36.56 37.27 0.80 0.83
3 2.08 2.12 36.56 37.62 0.90 0.93
4 2.16 2.22 37.27 38.32 1.01 1.02
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Table 3
Comparison of second-order accurate separation length, separation angle and drag coefficient values in two different grids for
Re = 200

N l �s CD

256 × 256 512 × 512 256 × 256 512 × 512 256 × 256 512 × 512

0.5 3.17 3.07 54.84 55.19 0.43 0.45
1 2.87 2.84 49.92 50.27 0.51 0.53
2 2.91 2.94 46.41 47.11 0.62 0.65
3 3.04 3.10 46.41 47.11 0.71 0.74
4 3.11 3.23 46.41 47.46 0.78 0.82

Fig. 2. Streamlines of the flow with Re = 100 with N = 0, 1, 2, 5, 10.
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Fig. 3. Streamlines of the flow with Re = 200 with N = 0, 1, 2, 5, 10.

of translation of a sphere in a rotating viscous fluid, where inverse Rossby number affects the wake length.
However, for stronger magnetic fields the separation is not finally suppressed. For magnetic fields strength
given by N > 1, the wake length increases until N = 10. It is found that the boundary layer separation
angle continuously decreases from N = 0.01 to 2 and then increases with increasing magnetic field for
Re = 100. But for Re = 200, a non-monotonic behavior is observed in the boundary layer separation
angle when N < 1. Although the separation angle generally decreases with N up to 2, an increase of the
boundary layer separation angle is observed at N = 0.4. It is found that the boundary layer separation
angle has moved 4◦ backward (�=0 is the downstream region). A similar observation is reported through
experimental studies by Maxworthy (1968). Further, Josserand et al. (1993) has verified the recession of
boundary layer separation angle by 15◦ backward in the study of pressure and drag measurements on a
cylinder in a liquid metal flow in the presence of an external magnetic field. Beyond N > 2, the boundary
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Fig. 4. Recirculation length versus N (top) and separation angle versus N (bottom).

layer separation angle increases and the flow becomes straightened in the main-stream direction and the
curvature of the recirculation bubble (i.e., � = 0) decreases. The flow inside the recirculation bubble
slows down monotonically with increasing magnetic field. The non-monotonic behavior in separation
length and separation angle was also recently found by Mutschke et al. (2001) for the case of flow around
a circular cylinder at Re = 200. Fig. 4 gives the overall picture on the behavior of wake length l and
separation angle �s for different Reynolds numbers.

Fig. 5 shows the variation of pressure over the surface of the sphere. As can be seen from this figure,
a general base pressure increase is found on both the upstream and downstream faces of the sphere for
Re = 100 at very low values of N (< 0.1) (see inset in Fig. 5). For N > 0.1, the upstream base pressure
increases and downstream base pressure decreases continuously for both Re = 100 and 200. The surface
pressure at � = 90◦ is found to first increase with N until N ≈ 3 and then decrease with further increase
of N. In fact, the suction force experienced by the rear half of the obstacle (here, sphere) first begins
to slightly decrease when N increases and then increases continuously. A similar remark is reported by
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Fig. 5. Surface pressure for Re = 100 and 200.

Maxworthy (1968) from a study of the pressure distribution over the front half of the hemisphere–cylinder
combination in an aligned field, where the author concludes that at �=90◦, the non-dimensional pressure
coefficient was observed to first increase and then decrease with N. The same remark is also reported by
Yonas (1967) and Lahjomri (1984).

4.1. Vortices and drag coefficient

Since the magnetic forces are proportional to and resist the flow of fluid in any other direction than that
of the unperturbed magnetic field, near the sphere, they produce a change in the pattern of the lines. The
length of the standing vortex reduced slightly and the strength of the disturbance in front and rear of the
sphere is increased with increasing magnetic field (Figs. 7). The surface vorticity (��=0) for Re = 100
and 200 are presented in Fig. 6. From Figs. 6 and 7, it is clear that the magnetic field tends to suppress
the fluctuations in surface vorticity behind the sphere. The pressure and viscous components of the drag
coefficient and total drag coefficient as a function of N are presented in Fig. 8. The drag coefficient is
found to increase continuously with N for all Re considered in this study. The variation of total drag
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Fig. 6. Surface vorticity for Re = 100 and 200.

coefficient with Reynolds number is depicted in Fig. 9, where it is observed that for a given value of
N, the drag coefficient decreases with increasing Re. The pressure drag coefficient Cp, the total drag
coefficient CD and the pressure at rear stagnation point p(0, 0) are found to vary with

√
N for N �5. This

behavior can be seen in Figs. 9 and 10. The results of the linear fit between CD and
√

N is tabulated in
Table 4. In this table, B represents the proportionality constant, and it is nearly a constant equal to 0.36,
independent of the Reynolds number. Yonas (1967), in his experiments on direct drag measurements on
spheres and disks in a sodium flow, found that CD = 0.33

√
N . The constant decrease of the base pressure

for high N is the major source of the increase in the overall drag coefficient CD. For these values of
N, the losses in total pressure suffered along the front streamlines under the effect of the j × B forces,
are responsible for the rear pressure drop. This behavior is responsible for the increase of pressure drag
coefficient which in turn increases total drag coefficient. It is also found that the pressure at the rear
stagnation point falls according to the 1

2 -power law with N, that is p(0, 0) ∝ √
N . Such a behavior is

also reported experimentally by Josserand et al. (1993). From the plots of angular evolution of surface
pressure, it is observed that compared to the case of no magnetic field, the increase of front pressure
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Fig. 7. Isocontours of vorticity of the flow with Re = 200 with N = 0, 1, 10.

around the front stagnation point is in agreement with the hypothesis of Maxworthy (1968, 1969) and
Josserand et al. (1993) that a stagnant flow develops upstream of the sphere when the magnetic field is
increased.

5. Conclusion

The steady, incompressible, axisymmetric conducting fluid flow around a sphere with an external mag-
netic field parallel to the main flow is investigated for the Reynolds numbers 100 and 200 and interaction
parameter (N) up to 10 using the finite difference method. When N < 1, the backward movement of the
separation angle is found for Re = 200. For Re = 100 and 200 a non-monotonic behavior in separation
length is found. The separation length at rear stagnation point suppresses up to N = 1, beyond which it
increases. The pressure drag coefficient, total drag coefficient and the pressure at rear stagnation point
varies with

√
N .
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Fig. 8. (Top) Pressure and (middle) viscous components of drag coefficient as a function of interaction parameter; (bottom) drag
coefficient versus interaction parameter.
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Fig. 9. (Top) Drag coefficient as a function of Reynolds number; (bottom) drag coefficient versus
√

N .

Fig. 10. Linear dependence of (top) pressure drag Cp; (bottom) pressure at rear stagnation point p(0, 0) with
√

N .
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Table 4
Results of fitting drag coefficient data CD to the linear relation CD = A + B

√
N

Reynolds number A B Correlation coefficient

100 0.2260 0.390 0.998
200 0.1127 0.343 0.996
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