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Abstract

In this paper we investigate the problem of minimizing a linear objective function subject to a fuzzy relational
equation constraint. A necessary condition for optimal solution is proposed. Based on this necessary condition, we
propose three rules to simplify the work of computing an optimal solution. Numerical examples are provided to illus-
trate the procedure. Experimental results are reported showing that our new procedure systematically outperforms
our previous work.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we consider the following mathematical model:

Minimize Z(x) =
m∑

i=1

cixi, (1)
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subject tox ∈ X(A, b) := {x ∈ [0, 1]m|x ◦ A = b}, (2)

whereci > 0,A = (aij )m×n with 0�aij �1,b = (b1, . . . , bn) is ann-dimensional vector with 0�bj �1,
and the operation “◦” represents the max–min composition.

As an application, model (1)–(2) has been employed for the streaming media provider seeking a mini-
mum cost while fulfilled the requirements assumed by a three-tier framework. This three-tier framework
consists of an original multimedia server,m regional servers, andn clients. The multimedia server is the
original streaming data provider which servicesn clients throughm regional servers. Thejth client has
access to theith regional server through a network connection with bandwidthaij . Each client is guaran-
teed to have at least one way of receiving the multimedia streaming data that meets its quality level. Client
j has quality requirementbj . The multimedia server sends streaming data with quality levelxi to theith
regional server through the virtual circuit. The min operations involved in constraints reflect the situation
that “if the streaming data transmitted fromith regional server tojth client has a quality levelxi lower
than the bandwidthaij , the streaming data will be delivered without losing any information. In case the
streaming data has a quality level better than the bandwidthaij , some data will be dropped which means
no streaming data that has a quality level higher than the bandwidth can be delivered completely.” The
max operations reflect that each client needs at least one regional server to fulfill its quality requirement.
In this application, all the quality levelsxi , bj , and bandwidthaij have been normalized to be within
[0, 1]. The objective function is the service cost per unit time, measured in dollars per second. For detailed
description, we refer to[12].

Let I = {1, 2, . . . , m} andJ = {1, 2, . . . , n} be two index sets, the constraint part of model (1)–(2) is
to find a set of solution vectorsx ∈ [0, 1]m such that

max
i∈I

min(aij , xi) = bj , ∀j ∈ J . (3)

Finding solutions of equation (3) belongs to the topic of fuzzy relational equation problem[1,17,20,22].
Let x1 = (x1

i ), x2 = (x2
i ) be two vectors in[0, 1]m. If we assumex1, x2 ∈ X(A, b) and definex1�x2

if and only if x1
i �x2

i for all i ∈ I, then the operator “�” forms a partial order relation onX(A, b). A
solutionx̄ ∈ X(A, b) is called the maximum solution ifx� x̄ for all x ∈ X(A, b). On the other hand, an
x ∈ X(A, b) is a minimal solution if∀x ∈ X(A, b), x�x implies thatx = x. A solutionx∗ ∈ X(A, b)

is optimalfor problem (1)–(2) ifZ(x∗)�Z(x) for all x ∈ X(A, b).
It is well-known [11] when the solution setX(A, b) is nonempty, theX(A, b) can be completely

determined by the unique maximum solution and a finite number of minimal solutions[5,9,22]. Moreover,
the maximum solution can be computed easily by the following Goedel implication[22]:

x̄ = A � b = (min
j∈J

(aij � bj ))i∈I , (4)

where

aij � bj :=
{

1 if aij �bj ;
bj if aij > bj .

Note thatX(A, b) �= ∅ if and only if the vectorA�b satisfies all equations in (3). We assume in this paper
thatX(A, b) is nonempty. Although the maximum solution of (3) can be easily computed, the procedure
of finding all minimal solutions may be tedious. We refer to[4,5,9,16,18,19,21]for algorithms to find
all minimal solutions of (3). Recently, there is a growing interest for more general research on fuzzy
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relational equations with max-t-norm composition[2,3,24,26]. Applications of fuzzy relational equations
can be found in[5,6,10,21,23].

Our main aim for model (1)–(2) is to find its optimal solution. We note that the optimal solution of
model (1)–(2) is among the minimal solutions ofX(A, b). Therefore, one possible way to find an optimal
solution is to computeall minimal solutions first (with the aid of algorithms in literature) and then by
enumeration to find the optimal solution.

The other approach to find an optimal solution has been documented in Fang and Li[7]. They showed
that problem (1)–(2) can be converted into a 0-1 integer programming problem. Furthermore, Fang and Li
solved this associated 0-1 integer programming problem by branch and bound method with jump-tracking
technique. Wu et al.[28] improved Fang and Li’s method by providing an initial upper bound for the
branch and bound part. Testing examples showed that their initial upper bound is sharp. In addition, with
this upper bound and rearranging the structure of problem (1)–(2), the branch and bound part in Wu, Guu
and Liu’s procedure visited much less nodes of the solution tree than that in Fang and Li. The initial upper
bound employed in[28] is easy to compute, yet this upper bound is “fixed” in their procedure. That is, in
Wu, Guu and Liu’s procedure the initial upper bound is not updated by a better bound when possible. In
the present paper we shall update the current bound when a better bound is generated.

Variants of model (1)–(2) can be found in literature. If the objective function in (1) becomesZ(x) =
maxi∈I{min(ci, xi)} with ci ∈ [0, 1], the model is called the latticized linear programming problem
[27]. On the other hand, Wang[25] explored the same mathematical problem (1)–(2) with multiple linear
objective functions. Wang characterized some properties of efficient points and transformed the problem
as a multi-attribute decision problem. Recently, Loetamonphong et al.[14] have studied nonlinear multi-
objective optimization problem with a fuzzy relational equation constraint. And a genetic algorithm was
employed to find the Pareto optimal solutions. Lu and Fang[15] proposed a genetic algorithm to solve
the problem (1)–(2) with single nonlinear objective function. We refer to[8,13] for model (1)–(2) with
max-product composition in place of max-min composition.

The rest of this paper is organized as follows. Section 2 contains theorems in which necessary conditions
for an optimal solution are stated. We then derive three rules to simplify the work of finding an optimal
solution. Procedure for finding an optimal solution will be presented. Section 3 contains two examples
to illustrate the procedure. Conclusion is in Section 4.

2. Rules for reducing the problem

In this section, we shall present new results for optimal solution of problem (1)–(2).As in[28], we here-
inafter rearrange the coefficients incandb in increasing order, namely we require 0< c1�c2� · · · �cm

andb1�b2� · · · �bn.

Lemma 1 (Peeva[21] ). Let x ∈ X(A, b). Then for eachj ∈ J , there exists at least one index i such
thatmin(xi, aij ) = bj .

Definition 1. For any solutionx ∈ X(A, b), thexi is called abindingvariable if min(xi, aij ) = bj for
somej ∈ J .
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Let x ∈ X(A, b) andxi be a binding variable. The index set{j | min(xi, aij ) = bj , ∀j ∈ J } is denoted
by Ji(x). TheJ ∗

i (x) denotes the largest index in a nonemptyJi(x). Note thatxi is nonbinding if and only
if Ji(x) = ∅.

Lemma 2. For any optimal solutionx∗ ∈ X(A, b), if x∗
i is a binding variable, thenx

∗
i = bJ ∗

i (x∗).

Proof. Sincex∗
i is a binding variable, we have min(x∗

i , aij ) = bj for all j ∈ Ji(x
∗). Hence, we

havex∗
i �bj for all j ∈ Ji(x

∗). Since thebjs are increasing inj, we have in particular,x∗
i �bJ ∗

i (x∗).
Sinceci > 0 andx∗ is an optimal solution, thex∗

i must be as small as possible. Hence, we have
x∗
i = bJ ∗

i (x∗). �

Theorem 1. Letx∗ be an optimal solution of problem(1)–(2).Thenx∗
i = 0 or x∗

i = bJ ∗
i (x∗).

Proof. If x∗
i is not a binding variable, we can assign 0 tox∗

i due toci > 0. On the other hand, ifx∗
i is a

binding variable, thenx∗
i = bJ ∗

i (x∗) by Lemma 2.
The analysis so far implies that for any optimal solutionx∗, if x∗

i is nonbinding, thenx∗
i can be assigned

to be zero. It turns out that the maximum solutionx̄ provides information in searching for nonbinding
decision variables, to which we now turn.

Theorem 2. Let x̄ be the maximum solution ofX(A, b). If x̄i is not a binding variable, then xi is
nonbinding for anyx ∈ X(A, b).On the other hand, if x̄i is a binding variable, then

Ji(x) ⊂ Ji(x̄) ∀x ∈ X(A, b).

Proof. If x̄i is nonbinding, then we have min(x̄i , aij ) < bj for all j ∈ J . Sincex̄ is the maximum
solution, we havexi � x̄i for all x ∈ X(A, b). This implies that

min(xi, aij )� min(x̄i , aij ) < bj for all j ∈ J .

Hence,xi is nonbinding as well for allx ∈ X(A, b). �

On the other hand, suppose thatx̄i is a binding variable. ThenJi(x̄) is nonempty. For any solution
x ∈ X(A, b), if Ji(x) is empty, then the theorem holds obviously. Suppose thatJi(x) is nonempty and
considerj ∈ Ji(x), we need to show thatj ∈ Ji(x̄). Sincej ∈ Ji(x), we have min(xi, aij ) = bj . We
have two cases to be considered. Case 1: ifaij = bj , thenxi ∈ [bj , 1]. Sincex̄ is the maximum solution,
we havex̄i �xi �bj . Hence, we have min(x̄i , aij ) = bj . Case 2: ifaij > bj , thenxi = bj . Sincex̄ is the
maximum solution, we havēxi �xi = bj . On the other hand, sinceaij > bj andx̄i = minj∈J {aij � bj },
we havex̄i �aij � bj = bj . Therefore, we havēxi = bj . It follows that min(x̄i , aij ) = bj . Both cases
imply thatj ∈ Ji(x̄).
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It follows from Theorem 2 that if̄xi is nonbinding, then we can simply setx∗
i = 0, wherex∗ = (x∗

i ) is
any optimal solution. If̄xi is binding, thenJi(x

∗) ⊆ Ji(x̄) for any optimal solutionx∗. If x∗
i is binding,

thenx∗
i = bJ ∗

i (x∗) by Theorem 1. However, we have to first identify the index setJi(x
∗) in order to

compute thex∗
i . SinceJi(x̄) containsJi(x

∗), we can limit our search withinJi(x̄), to which we now turn.
Define a value matrixM = (mij ) with i ∈ I andj ∈ J by

mij =
{

cibj if j ∈ Ji(x̄);
∞ otherwise.

The numerical elements in theith row ofM correspond to the contributions to the objective byx∗
i , where

each of thebj with j ∈ Ji(x̄) is a possible candidate forx∗
i .

One of the new results in this paper is that with the matrixMwe can create rules to reduce the problem.
Since for any optimal solutionx∗, x∗

i is either 0 orbJ ∗
i (x∗) (by Theorem 1), the rules for reducing the

problem are to set as many optimal decision variables as possible to 0 orbJ ∗
i (x∗).

Lemma 3. Let xi be a binding variable of a solution x. Thenaij = bj for all j ∈ Ji(x) \ Bi(x), where
Bi(x) = {j ∈ Ji(x)|bj = bJ ∗

i (x)}.

Proof. Sincexi is binding, the index setJi(x) is nonempty. And min(xi, aij ) = bj for all j ∈ Ji(x).
Sincebjs are increasing with respect toj andxi �bj for all j ∈ Bi(x), we have

aij = bj for all j ∈ Ji(x) \ Bi(x). �

Rules for reducing the problem:We are ready to present the rules to determine the values of as many
decision variables as possible in the optimal solution.

Rule 1. If ∅ �= Js(x̄) ⊆ Jt (x̄) for somesandt with t < s, then there exists an optimal solutionx∗ with
x∗
s = 0.

Proof. Let x∗ be any optimal solution. Ifx∗
s = 0, then we are done. Suppose to the contrary thatx∗

s �= 0,
we shall establish a solution with a better objective value thanx∗, hence a contradiction. We first note
that since∅ �= Js(x̄) ⊆ Jt (x̄), by Lemma 3, we have

asj = bj for all j ∈ Js(x̄) \ Bs(x̄) andatj = bj for all j ∈ Jt (x̄) \ Bt(x̄).

Furthermore,Js(x̄) \ Bs(x̄) ⊆ Jt (x̄) \ Bt(x̄).
Sincex∗

s is nonzero, we havex∗
s a binding variable withJs(x

∗) �= ∅. Moreover, by Theorem 1 and
Theorem 2, we have

x∗
s = bJ ∗

s (x∗) and min(x∗
s , asj ) = bj ∀ j ∈ Js(x

∗). �

Case1: If x∗
t = 0, we consider the vectorx = (xi) which equals tox∗ exceptxt = x∗

s andxs = 0. We
then have min(xt , atj ) = bj for all j ∈ Js(x

∗). Hence the feasibility ofx∗
s is maintained byxt . Therefore,
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x is a solution of the problem. Moreover

n∑
i=1

cix
∗
i −

n∑
i=1

cixi = csx
∗
s − ctx

∗
s �0.

If csx
∗
s − ctx

∗
s < 0, we have a contradiction to the assumption ofx∗. If csx

∗
s − ctx

∗
s = 0, thenx is an

optimal solution with zero in itssth element.

Case2: If x∗
t > 0, thenx∗

t is binding as well andx∗
t = bJ ∗

t (x∗). We have two subcases to be considered.
Case 2-1: ifJ ∗

t (x∗)�J ∗
s (x∗), sinceJs(x̄) \ Bs(x̄) ⊆ Jt (x̄) \ Bt(x̄), the constraints satisfied byx∗

s can
be sustained byx∗

t . Hence,x∗
s is redundant. Sincex∗ is optimal, thex∗

s should be zero. Case 2-2: if
J ∗

t (x∗) < J ∗
s (x∗), we can selectxt = bJ ∗

s (x∗). Then the constraints satisfied byx∗
t and x∗

s can be
sustained byxt . It follows that if we adjustx∗ by settingx∗

s = 0 andx∗
t by xt (denote the adjustedx∗ by

x∗∗), then
n∑

i=1

cix
∗
i −

n∑
i=1

cix
∗∗
i = ctx

∗
t + csx

∗
s − ctxt = ctx

∗
t + (cs − ct )x

∗
s > 0.

Therefore, thex∗ is not an optimal solution, a contradiction.

Rule 2. Suppose that the model (1)–(2) has solution. LetIj := {i ∈ I| min{x̄i , aij } = bj }, ∀j ∈ J .
If for somej ∈ J theIj = {i} is a singleton set, then for any optimal solutionx∗, we havex∗

i �bj . If
aij > bj , thenx∗

i = bj . Moreover, we can delete thekth constraint from further consideration ifk < j

andi ∈ Ik.

Proof. By Theorem 2, a singleton setIj = {i} implies that for any optimal solutionx∗ the jth constraint
is satisfied only by the decision variablex∗

i . That is, min(x∗
i , aij ) = bj and min(x∗

r , arj ) < bj for all
r �= i. This implies thatx∗

i �bj . Obviously, ifaij > bj , thenx∗
i = bj . On the other hand, since the model

(1)–(2) has solution andIj = {i}, thex̄i is a binding variable. Together withk < j andi ∈ Ik, we have

min{x̄i , aij } = bj and min{x̄i , aik} = bk. �

We have two cases to discuss.

Case1: If x̄i = bj , then it follows thatx∗
i = bj for any optimal solutionx∗. Hence,

min{x∗
i , aik} = min{x̄i , aik} = bk.

Case2: If x̄i > bj , then bybj �bk and min{x̄i , aik} = bk, we haveaik = bk. Sincex∗
i �bj , we have

min{x∗
i , aik} = bk. Both cases imply that thekth constraint can be satisfied automatically byx∗

i as long
as we detect thēxi is the only binding variable in constraintj.

Rule 3. Compute an initial upper bound for the optimal objective value. The procedure of computing an
initial upper bound for the optimal value is essentially the one in[28] (see appendix.) In the current paper,
the Rule 3 cooperates with Rules 1 and 2 to reduce the problem. Precisely, if there exists, say, an entry
mij of M strictly larger than the current upper bound, we then setmij = ∞. That is, thex∗

i can NOT be
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binding in thejth constraint. We note that the branch and bound part of Wu, Guu and Liu’s method did
not update their upper bound. Indeed, during the branch and bound part, the initial upper bound may be
improved by a better solution. We shall illustrate this point by Example 1 in next section.

We are ready to present a procedure for solving the problem.
Step1: Rename the variables and arrange the order of constraints so that thecis andbjs are ordered

increasingly, if necessary.
Step2: Compute the vectorA � b by (4).
Step3: Check the consistency of equations (2) by verifying whether(A�b)◦A = b. If it is inconsistent,

then stop. Otherwise, set the maximum solutionx̄ = A � b.
Step4: (Optional) ComputeIj for eachj ∈ J .
Step5: Generate the value matrixM.
Step6: From the (current) matrixM compute the index setsJi = {j ∈ J |mij �= ∞} for all remaining

decision variablesxi .
Step7: Apply the Rule 1 and Rule 2 to determine the values of as many decision variables as possible.

Delete the corresponding rows and/or columns inM (Hence, the size of the problem is reduced.) Denote
the remaining submatrix byM again. If all decision variables have been set, go to Step 10.
Step8: Compute the initial upper bound fromM. Apply Rule 3 to set some entries ofM by ∞, if any.

If some entries ofM are set by∞, then go back to Step 6. Otherwise, go to Step 9.
Step9: Take the (remaining) value matrixM. Employ the backward branch and bound method with

jump-tracking technique to solve for the remaining undecided decision variables (Details of this part are
illustrated in Example 1. In addition, the initial upper bound will be improved by a better solution during
the branch and bound part if possible.)
Step10: Generate an optimal solution for the original problem.

3. Two examples

In this section, we shall give two examples to illustrate our procedure. In particular, Example 1 is given
to illustrate that we may be able to improve the initial upper bound (as computed by Wu, Guu and Liu’s
method) so that the visited nodes of the branch and bound part can be decreased. Example 2 is given
to show the merit of our three rules. With these rules, we may be able to solve some problems without
invoking the branch and bound part in new procedure.

Example 1. Consider the following problem.

Minimize Z(y) = 1.2y1 + 2.5y2 + 0.6y3 + y4 + 1.1y5

subject to
[
y1 y2 y3 y4 y5

] ◦




0.5 0.8 1.0 0.8 0.7
0.5 0.9 1.0 0.8 0.2
0.4 0.9 1.0 0.6 0.7
0.5 0.95 0.7 0.3 0.6
0.45 0.6 1.0 0.8 0.7




= [
0.5 0.9 1.0 0.8 0.7

]
.
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Step1: To make thecis andbjs be ordered increasingly, we rename the variablesy3 → x1, y4 → x2,
y5 → x3, y1 → x4 andy2 → x5 and arrange the order of constraints. The renamed and arranged problem
is as follows:

Minimize Z(x) = 0.6x1 + x2 + 1.1x3 + 1.2x4 + 2.5x5

subject to
[
x1 x2 x3 x4 x5

] ◦




0.4 0.7 0.6 0.9 1.0

0.5 0.6 0.3 0.95 0.7

0.45 0.7 0.8 0.6 1.0

0.5 0.7 0.8 0.8 1.0

0.5 0.2 0.8 0.9 1.0




= [
0.5 0.7 0.8 0.9 1.0

]
.

Step2: Compute the vectorA � b = [
1.0 0.9 1.0 1.0 1.0

]
.

Step3: Direct computation shows that(A�b)◦A = b. Hence, the system is consistent andX(A, b) �= ∅.
Set the maximum solution̄x = A � b.
Step4: (Optional) Compute the index setsIj for all j. And they are

I1 = {2, 4, 5}, I2 = {1, 3, 4}, I3 = {3, 4, 5}, I4 = {1, 2, 5}, I5 = {1, 3, 4, 5}.
Step5: Generate the value matrixM.

equation→ 1 2 3 4 5

M =

(x∗
1)

(x∗
2)

(x∗
3)

(x∗
4)

(x∗
5)




∞ 0.42 ∞ 0.54 0.6

0.5 ∞ ∞ 0.9 ∞
∞ 0.77 0.88 ∞ 1.1

0.6 0.84 0.96 ∞ 1.2

1.25 ∞ 2.0 2.25 2.5




.

Step6: From the current matrixM compute the index setsJi for all i. And they are

J1 = {2, 4, 5}, J2 = {1, 4}, J3 = {2, 3, 5}, J4 = {1, 2, 3, 5}, J5 = {1, 3, 4, 5}.
Step7: The Rules 1 and 2 cannot be applied.
Step8: Compute the initial upper bound fromM. First, we computeIZi, i ∈ I = {1, 2, 3, 4, 5} by

IZi = max
j∈Ji

{cibj } + cti1
bgi

1
+ · · · + ctiki

bgi
ki

.

IZ1 = max
j∈J1={2,4,5}{c1bj } + c2b1 + c3b3 = max{0.42, 0.54, 0.6} + 0.5 + 0.88 = 1.98,

IZ2 = max
j∈J2={1,4}{c2bj } + c3b3 + c1b5 = max{0.5, 0.9} + 0.88+ 0.6 = 2.38,

IZ3 = max
j∈J3={2,3,5}{c3bj } + c2b1 + c1b4 = max{0.77, 0.88, 1.1} + 0.5 + 0.54 = 2.14,
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IZ4 = max
j∈J4={1,2,3,5}{c4bj } + c1b4 = max{0.6, 0.84, 0.96, 1.2} + 0.54 = 1.74,

IZ5 = max
j∈J5={1,3,4,5}{c5bj } + c1b2 = max{1.25, 2.0, 2.25, 2.5} + 0.42 = 2.92.

Then, set

initial upper bound= min{IZi : i ∈ I} = 1.74.

By Rule 3, we can set elementsm53, m54, m55 of M which are larger than 1.74 to be∞. Therefore, the
resulting value matrix (still denoted byM)

equation→ 1 2 3 4 5

M =

(x∗
1)

(x∗
2)

(x∗
3)

(x∗
4)

(x∗
5)




∞ 0.42 ∞ 0.54 0.6

0.5 ∞ ∞ 0.9 ∞
∞ 0.77 0.88 ∞ 1.1

0.6 0.84 0.96 ∞ 1.2

1.25 ∞ ∞ ∞ ∞




.

With this value matrixM, we go back Step 6 to compute the current index setsJi and discover
J5 = {1} ⊂ J2 = {1, 4}. By Rule 1, we can setx∗

5 = 0. Hence, the 5th row ofM can be deleted from
further consideration. After deletion, the value matrix becomes

equation→ 1 2 3 4 5

M =

(x∗
1)

(x∗
2)

(x∗
3)

(x∗
4)




∞ 0.42 ∞ 0.54 0.6

0.5 ∞ ∞ 0.9 ∞
∞ 0.77 0.88 ∞ 1.1

0.6 0.84 0.96 ∞ 1.2


 .

Now, Rules 1, 2 and 3 can not be applied. We go to Step 9.
Step9: Employ the backward branch and bound method with jump-tracking technique to solve for the

remaining decision variables. The detailed steps within Step 9 is summarized in Fig.1. On each node, the
branching process should be stopped when objective value there is larger than the current upper bound.
The “backward” indicates that the branch and bound method starts from the last column and toward to
the first column of value matrix. Since we add positive entry to the objective value during each branching
step and the finite entries in each row of the value matrixM are columnwise increasing, we expect that the
solution tree generated bybackwardbranch and bound process should be “smaller” than that byforward
branch and bound method.

Now given the current value matrixM, we haveI5 = {1, 3, 4} from last column. This implies that
{x1, x3, x4} are three candidates for binding variables. (We can see three branches generated from Node
0 in Fig. 1.) If we selectx1, then its contribution to the objective is 0.6. On the other hand, if we select
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Fig. 1. Backward branch and bound method.

x3 (x4), then the objective value is 1.1 (1.2). So far, we have Nodes 1, 2, and 3 with objective values
0.6, 1.1, and 1.2, respectively. Along the branches to each node, we need to check whether the computed
binding variables satisfy all equations or not. So far, the identified binding variable on each of Nodes 1,
2, and 3 does not satisfy all equations, respectively. We need further branching to generate solutions. The
jump-tracking technique requires us to branch on the node with least objective value. Therefore, we shall
branch on Node 1.

We now move backward to the 4th column ofM. SinceI4 = {1, 2}, {x1, x2} are two candidates for
binding variables. In Fig.1, the branch from Node 1 to Node 4 (Node 5) is generated ifx1 (x2) is selected.
Since variablex1 is currently binding, the objective value in Node 4 is still 0.6. On the other hand, the
objective value in Node 5 is updated to 1.5. The identified binding variables corresponding to the branches
to Node 4 and Node 5 do not satisfy all equations, respectively. Further branching is needed to generate
solutions.And up to now, we have four nodes (Nodes 2,3,4, and 5) to select for the next branching process.
By the jump-tracking technique, we select Node 4 to branch further because of least objective value there.

We move back to the 3rd column ofM. SinceI3 = {3, 4}, {x3, x4} are two candidates for binding
variables. In Fig.1 we have two branches from Node 4 (that is, Nodes 6 and 7). And the objective value
in Node 6 (7) is updated to 1.48 (1.56). In each node, we need to check whether the computed binding
variables satisfy all equations or not. Along the branches to Node 6, we have identified{x1, x3} as binding
variables, yet not enough to satisfy all equations.Along the branches to Node 7, the corresponding binding
variables{x1, x4} satisfy all equations. Hencex1 = 1.0, x4 = 0.8, x2 = x3 = x5 = 0 is a solution with
objective value 1.56, which is better than the initial upper bound 1.74. We update the current upper bound
as 1.56. Now, we have four nodes (Nodes 2,3,5, and 6) to select for the next branching process. Again,
we select Node 2 due to jump-tracking technique. Since Node 2 corresponds to the 5th column ofM, we
move back to the 4th column and generate Nodes 8 and 9, respectively. Note that the objective values
in both nodes are larger than current upper bound 1.56. Both nodes are fathomed. By continuing this
process, a tree with 20 nodes is generated as in Fig.1.
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Step10: Generate an optimal solution. From Fig.1, the optimal objective value is 1.56, and the optimal
solution is

(x∗
1, x∗

2, x∗
3, x∗

4, x∗
5) = (1.0, 0, 0, 0.8, 0).

The optimal solution of original problem is

(y∗
1, y∗

2, y∗
3, y∗

4, y∗
5) = (0.8, 0, 1.0, 0, 0).

Indeed, Wu, Guu, and Liu’s method needs to visit 34 nodes for solving this problem. This simple
example illustrates that our new procedure visits less nodes than our previous method. It is our three
rules, the new upper bound and its updating that reduce the branches of the solution tree.

Example 2. Consider the following problem.

Minimize Z(x) = 0.45x1 + 0.5x2 + 0.7x3 + x4 + 1.1x5 + 1.4x6 + 1.5x7 + 2x8 + 3.6x9

subject to
[
x1 x2 x3 x4 x5 x6 x7 x8 x9

] ◦ A

= [
0.2 0.4 0.5 0.6 0.7 0.8 0.9 0.95 1.0

]
,

where A =




0.25 0.4 0.4 0.6 0.1 0.8 0.8 0.9 1.0

0.12 0.1 0.5 0.5 0.6 0.8 0.95 0.8 0.8

0.2 0.15 0.2 0.6 0.7 0.5 0.1 0.4 0.4

0.15 0.2 0.5 0.6 0.5 0.8 0.3 0.9 1.0

0.1 0.14 0.5 0.6 0.6 0.2 0.9 0.4 1.0

0.2 0.4 0.4 0.2 0.7 0.8 0.9 0.98 0.5

0.15 0.25 0.5 0.6 0.2 0.8 0.8 0.75 1.0

0.2 0.4 0.45 0.2 0.7 0.85 0.5 0.9 0.6

0.15 0.35 0.5 0.6 0.65 0.7 0.9 0.95 0.9




.

Step1: Both of thecis andbjs are ordered increasingly.
Step2: ComputeA � b = [

0.2 0.9 1.0 1.0 1.0 0.95 1.0 0.8 1.0
]
.

Step3: Direct computation illustrates that(A � b) ◦ A = b. Hence, the system is consistent and
X(A, b) �= ∅. Set the maximum solution̄x = A � b.
Step4: (Optional) Compute the index setsIj for all j. And they are

I1 = {1, 3, 6, 8}, I2 = {6, 8}, I3 = {2, 4, 5, 7, 9}, I4 = {3, 4, 5, 7, 9}, I5 = {3, 6, 8},

I6 = {2, 4, 6, 7, 8}, I7 = {2, 5, 6, 9}, I8 = {6, 9}, I9 = {4, 5, 7}.
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Step5: Generate the value matrixM.

equation→ 1 2 3 4 5 6 7 8 9

M =

(x∗
1)

(x∗
2)

(x∗
3)

(x∗
4)

(x∗
5)

(x∗
6)

(x∗
7)

(x∗
8)

(x∗
9)




0.09 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ 0.25 ∞ ∞ 0.4 0.45 ∞ ∞

0.14 ∞ ∞ 0.42 0.49 ∞ ∞ ∞ ∞
∞ ∞ 0.5 0.6 ∞ 0.8 ∞ ∞ 1.0

∞ ∞ 0.55 0.66 ∞ ∞ 0.99 ∞ 1.1

0.28 0.56 ∞ ∞ 0.98 1.12 1.26 1.33 ∞
∞ ∞ 0.75 0.9 ∞ 1.2 ∞ ∞ 1.5

0.4 0.8 ∞ ∞ 1.4 1.6 ∞ ∞ ∞
∞ ∞ 1.8 2.16 ∞ ∞ 3.24 3.42 ∞




.

Step6: From the current matrixM compute the index setsJi for all i. And they are

J1 = {1}, J2 = {3, 6, 7}, J3 = {1, 4, 5}, J4 = {3, 4, 6, 9}, J5 = {3, 4, 7, 9},
J6 = {1, 2, 5, 6, 7, 8}, J7 = {3, 4, 6, 9}, J8 = {1, 2, 5, 6}, J9 = {3, 4, 7, 8}.

Step7: Apply the Rules 1 and 2 to fix as many as possible the decision variables. We first note that

J7 = J4 andJ8 ⊂ J6.

By Rule 1, we setx∗
7 = x∗

8 = 0. Hence, we can delete the 7th and 8th rows ofM. After deletion, theM
becomes

equation→ 1 2 3 4 5 6 7 8 9

M =

(x∗
1)

(x∗
2)

(x∗
3)

(x∗
4)

(x∗
5)

(x∗
6)

(x∗
9)




0.09 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ 0.25 ∞ ∞ 0.4 0.45 ∞ ∞

0.14 ∞ ∞ 0.42 0.49 ∞ ∞ ∞ ∞
∞ ∞ 0.5 0.6 ∞ 0.8 ∞ ∞ 1.0

∞ ∞ 0.55 0.66 ∞ ∞ 0.99 ∞ 1.1

0.28 0.56 ∞ ∞ 0.98 1.12 1.26 1.33 ∞
∞ ∞ 1.8 2.16 ∞ ∞ 3.24 3.42 ∞




.

We note that now the index setI2 = {6}. By Rule 2, we havex∗
6 �b2 = 0.4. Note thatx∗

6 is binding
in the first and second columns ofM now. This implies that at the optimal solution the corresponding
equations to these two columns are satisfied by binding variablex∗

6. Hence the first and second columns
can be deleted from further consideration. After deleting the first and second columns fromM, we note
the remaining elements in the first row are all∞. It implies that thex∗

1 is nonbinding in any columns,
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hence we setx∗
1 = 0. Therefore the first row ofM is deleted as well. The remaining value matrixM

becomes

equation→ 3 4 5 6 7 8 9

M =

(x∗
2)

(x∗
3)

(x∗
4)

(x∗
5)

(x∗
6)

(x∗
9)




0.25 ∞ ∞ 0.4 0.45 ∞ ∞
∞ 0.42 0.49 ∞ ∞ ∞ ∞
0.5 0.6 ∞ 0.8 ∞ ∞ 1.0

0.55 0.66 ∞ ∞ 0.99 ∞ 1.1

∞ ∞ 0.98 1.12 1.26 1.33 ∞
1.8 2.16 ∞ ∞ 3.24 3.42 ∞




.

Step8: At this stage, since there are some undecided decision variables, we need to compute an upper
bound for the optimal value of this reduced problem. By Wu, Guu and Liu’s method, an upper bound is
3. By Rule 3, we find bothm97 = 3.24 andm98 = 3.42 are larger than this upper bound. We shall set∞
to m97 andm98. Then the value matrix becomes

equation→ 3 4 5 6 7 8 9

M =

(x∗
2)

(x∗
3)

(x∗
4)

(x∗
5)

(x∗
6)

(x∗
9)




0.25 ∞ ∞ 0.4 0.45 ∞ ∞
∞ 0.42 0.49 ∞ ∞ ∞ ∞
0.5 0.6 ∞ 0.8 ∞ ∞ 1.0

0.55 0.66 ∞ ∞ 0.99 ∞ 1.1

∞ ∞ 0.98 1.12 1.26 1.33 ∞
1.8 2.16 ∞ ∞ ∞ ∞ ∞




.

From the currentM, we have the 8th constraint containing exact one binding variablex∗
6. That is,

I8 = {6}. By Rule 2, we shall setx∗
6 = b8 = 0.95. We note that thex∗

6 is binding in constraints 5,6,7 as
well. We then delete the 5th, 6th, 7th, and 8th constraints from further consideration. The reduced value
matrixM becomes

equation→ 3 4 9

M =

(x∗
2)

(x∗
3)

(x∗
4)

(x∗
5)

(x∗
9)




0.25 ∞ ∞
∞ 0.42 ∞
0.5 0.6 1.0

0.55 0.66 1.1

1.8 2.16 ∞




.

With the current matrixM, we go back Step 6 to compute index setJi and discover

J5 = J4 andJ9 ⊂ J4.
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It follows from Rule 1 that we setx∗
5 = x∗

9 = 0. And the corresponding rows are deleted. The reduced
matrixM becomes

equation→ 3 4 9

M =
(x∗

2)

(x∗
3)

(x∗
4)




0.25 ∞ ∞
∞ 0.42 ∞
0.5 0.6 1.0


 .

Note again thatI9 = {4}. Hence, by Rule 2 we setb9 = 1.0 tox∗
4. Sincex∗

4 appears in constraints 3 and
4 as a binding variable, we can delete the 3rd and 4th constraints from further consideration. Now there
is no element after deletion inM. And two decision variablesx∗

2 andx∗
3 are set to be zero.

Step10: An optimal solution yielded by our procedure is

x∗ = (0, 0, 0, 1.0, 0, 0.95, 0, 0, 0) and the optimal value isZ(x∗) = 2.33.

Now, using Wu, Guu and Liu’s method to solve Example 2 again, we find that their backward branch
and bound part has to be implemented. Moreover, there are 37 visited nodes in solution tree. This example
illustrates that our new procedure may solve the problem without invoking the branch and bound part of
the procedure.
Numerical experiment: In Table1, we have compared the performance of Wu, Guu and Liu’s approach

and our new procedure. Here we use the same test examples recorded in Appendix of[28]. The current
experiment was programmed by Visual Basic 6.0 on a Pentium III PC with 1000 MHZ and 256-MB
RAM. Each testing was terminated if the number of the visited nodes is more than 200,000. Note that
since our new procedure utilizes the rules to simplify the problem and update the upper bound as further
as possible, the “solution tree” generated by the branch and bound part is “smaller” than that by Wu, Guu
and Liu’s procedure. Table1 also illustrates that the new procedure visits less nodes in solution tree.

Note that the number with “∗” means that the initial upper bound is equal to the optimal objective value.
The initial upper bound of testing problems 1, 5–6, 8, 11–13 is updated by the new procedure. Problems
12 and 13 can not be solved by Wu, Guu and Liu’s procedure because their procedure visits more than
200,000 nodes, yet our new procedure solves them successfully. Problem 14 remains a challenge because
both procedures fail to report the final results.

4. Conclusion

In this paper, we considered an optimization problem involving the minimization of a linear cost
function subject to a fuzzy relational equation with max–min composition. We added new theoretical
results for the minimization problem. In particular, we established necessary conditions possessed by its
optimal solution. For the algorithmic consideration, we proposed three rules to simplify the problem.
Testing examples illustrated that our new procedure improved our previous work in a sense of visiting
less nodes in solution tree.
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Table 1
Performance between Wu, Guu and Liu’s procedure and the new procedure

No. Size of Wu et al.’s New procedure Optimal
problem procedure value

(m, n) No. of nodes Initial upper No. of nodes Incumbent
visited bound visited upper bound

1 (5,5) 46 2.0300 40 1.8200 1.8200
2 (6,6) 23 * 2.6000 23 * 2.6000 2.6000
3 (7,7) 97 * 3.0700 75 * 3.0700 3.0700
4 (8,8) 88 * 2.2750 60 * 2.2750 2.2750
5 (9,9) 135 2.5000 65 2.2600 2.2600
6 (10,10) 157 1.9250 119 1.7200 1.7200
7 (11,10) 37 * 2.0410 5 * 2.0410 2.0410
8 (12,10) 190 1.9250 145 1.7200 1.7200
9 (15,15) 246 * 2.7971 225 * 2.7971 2.7971

10 (16,15) 366 * 1.0189 340 * 1.0189 1.0189
11 (20,20) 8,377 24.8570 6,434 23.5720 23.5720
12 (30,30) Over 200,000 125.7491 304 125.4599 125.4599
13 (40,40) Over 200,000 95.4612 34,282 73.0557 73.0557
14 (50,50) Over 200,000 638.9283 Over 200,000 600.9779

Appendix

For easy reference, we shall cite the procedure of Wu, Guu, and Liu as follows. Letm∗
j denote the

minimum value in columnj of matrixM. Precisely,m∗
j = min{mij : i ∈ Ij } for all j ∈ J . Thearg[m∗

j ]
denotes the leasti in columnj such thatm∗

j = marg[m∗
j ]j . Consider the followingmsolutions defined as:

for eachi = 1, 2, . . . , m, yij = 1 for j ∈ Ji andyarg[m∗
j ]j = 1 for j �∈ Ji . Assume that there areki

distinctarg[m∗
j ] for all j �∈ Ji , denoted by

t i1, . . . , t
i
ki
.

Let Gi
s = {j /∈ Ji : arg[m∗

j ] = t is } for all s = 1, 2, . . . , ki . Letgi
s denote the largest element inGi

s . Then
the objective value, denoted byIZi , yielded by theith solution is computed by

IZi = max
j∈Ji

{cibj } + cti1
bgi

1
+ · · · + ctiki

bgi
ki

.

We select our initial upper bound to be

initial upper bound = min{IZ1, . . . , IZm}.
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