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Abstract

In this paper we investigate the problem of minimizing a linear objective function subject to a fuzzy relational
equation constraint. A necessary condition for optimal solution is proposed. Based on this necessary condition, we
propose three rules to simplify the work of computing an optimal solution. Numerical examples are provided to illus-
trate the procedure. Experimental results are reported showing that our new procedure systematically outperforms
our previous work.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we consider the following mathematical model:

m
Minimize Z(x) = Zcixi, 1)
i=1
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subjecttox € X (A, b) :={x € [0, 1]"|x o A = b}, (2)

wherec; > 0,A = (a;j)mxn With0<a;; <1,b = (b1, ..., b,) is ann-dimensional vector with §5; <1,
and the operations” represents the max—min composition.

As an application, model (1)-(2) has been employed for the streaming media provider seeking a mini-
mum cost while fulfilled the requirements assumed by a three-tier framework. This three-tier framewaork
consists of an original multimedia servarregional servers, amiclients. The multimedia server is the
original streaming data provider which servigeslients throughm regional servers. Thgh client has
access to thih regional server through a network connection with bandwigthEach client is guaran-
teed to have at least one way of receiving the multimedia streaming data that meets its quality level. Client
j has quality requiremerst;. The multimedia server sends streaming data with quality lgvil theith
regional server through the virtual circuit. The min operations involved in constraints reflect the situation
that “if the streaming data transmitted frath regional server tgth client has a quality level; lower
than the bandwidth;;, the streaming data will be delivered without losing any information. In case the
streaming data has a quality level better than the bandwjgitsome data will be dropped which means
no streaming data that has a quality level higher than the bandwidth can be delivered completely.” The
max operations reflect that each client needs at least one regional server to fulfill its quality requirement.
In this application, all the quality levels;, b;, and bandwidthz;; have been normalized to be within
[0, 1]. The objective function is the service cost per unit time, measured in dollars per second. For detailed
description, we refer tfil2].

LetZ={1,2,...,m}andJ = {1, 2, ..., n} be two index sets, the constraint part of model (1)—(2) is
to find a set of solution vectoss € [0, 1] such that

meazxmin(a,-j,x,-)zbj,‘v’jej. 3)

1
Finding solutions of equation (3) belongs to the topic of fuzzy relational equation pr¢b|&if20,22]
Letx! = (x}), x? = (x?) be two vectors irf0, 1]™. If we assumerl, x2 € X (A, b) and definer! <x?
if and only if xl.lgxi2 for all i € Z, then the operator<” forms a partial order relation oX (A, b). A
solutionx € X (A, b) is called the maximum solution f<x forall x € X(A, b). On the other hand, an
x € X(A, b) is aminimal solution ivx € X (A, b), x <x implies thatx = x. A solutionx™ € X (A, b)
is optimalfor problem (1)—(2) ifZ(x*)< Z(x) forall x € X (A, b).

It is well-known [11] when the solution seX (A, b) is nonempty, theX (A, b) can be completely
determined by the unique maximum solution and a finite number of minimal sol{ii@)22] Moreover,
the maximum solution can be computed easily by the following Goedel implicgin

X =Aob=(min(a;; ©bj)icr, ()
jeg

where
1 if aij §bj;
ajj < bj = .
bj if ajj > bj.
Note thatX (A, b) # @ if and only if the vectorA ¢ b satisfies all equations in (3). We assume in this paper
thatX (A, b) is nonempty. Although the maximum solution of (3) can be easily computed, the procedure
of finding all minimal solutions may be tedious. We refef4¢b,9,16,18,19,21or algorithms to find
all minimal solutions of (3). Recently, there is a growing interest for more general research on fuzzy
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relational equations with max-t-norm composit[@8,24,26] Applications of fuzzy relational equations
can be found i1§5,6,10,21,23]

Our main aim for model (1)—(2) is to find its optimal solution. We note that the optimal solution of
model (1)—(2) is among the minimal solutionsXfA, b). Therefore, one possible way to find an optimal
solution is to comput@ll minimal solutions first (with the aid of algorithms in literature) and then by
enumeration to find the optimal solution.

The other approach to find an optimal solution has been documented in Fang[Zhdrbiey showed
that problem (1)—(2) can be converted into a 0-1 integer programming problem. Furthermore, Fang and Li
solved this associated 0-1 integer programming problem by branch and bound method with jump-tracking
technique. Wu et al28] improved Fang and Li's method by providing an initial upper bound for the
branch and bound part. Testing examples showed that their initial upper bound is sharp. In addition, with
this upper bound and rearranging the structure of problem (1)—(2), the branch and bound part in Wu, Guu
and Liu’s procedure visited much less nodes of the solution tree than that in Fang and Li. The initial upper
bound employed if28] is easy to compute, yet this upper bound is “fixed” in their procedure. That s, in
Wu, Guu and Liu’s procedure the initial upper bound is not updated by a better bound when possible. In
the present paper we shall update the current bound when a better bound is generated.

Variants of model (1)—(2) can be found in literature. If the objective function in (1) becares=
max cz{min(c;, x;)} with ¢; € [0, 1], the model is called the latticized linear programming problem
[27]. On the other hand, Wang5] explored the same mathematical problem (1)—(2) with multiple linear
objective functions. Wang characterized some properties of efficient points and transformed the problem
as a multi-attribute decision problem. Recently, Loetamonphong[@dlhave studied nonlinear multi-
objective optimization problem with a fuzzy relational equation constraint. And a genetic algorithm was
employed to find the Pareto optimal solutions. Lu and Haig proposed a genetic algorithm to solve
the problem (1)—(2) with single nonlinear objective function. We refdB1b3] for model (1)—(2) with
max-product composition in place of max-min composition.

The rest of this paper is organized as follows. Section 2 contains theorems in which necessary conditions
for an optimal solution are stated. We then derive three rules to simplify the work of finding an optimal
solution. Procedure for finding an optimal solution will be presented. Section 3 contains two examples
to illustrate the procedure. Conclusion is in Section 4.

2. Rules for reducing the problem

In this section, we shall present new results for optimal solution of problem (1)—(2)[28]iwe here-
inafter rearrange the coefficientsdandb in increasing order, namely we requireOcy <c2 < -+ - <
andb1<by< --- <by,.

Lemma 1 (Peevd?21]). Letx € X (A, b). Then for eachj € 7, there exists at least one index i such
thatmin(xi, aij) = bj.

Definition 1. For any solutionc € X (A, b), thex; is called abindingvariable if min(x;, a;;) = b; for
somej € J.
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Letx € X(A, b) andx; be a binding variable. The index gt min(x;, a;;) = b;,Vj € J}is denoted
by Ji (x). TheJ*(x) denotes the largest index in a nonemytx ). Note thaty; is nonbinding if and only
if Ji(x) =0.

Lemma 2. For any optimal solutionc™ € X (A, b), if x is a binding variablethen:* = by (x%).-

Proof. Sincex/ is a binding variable, we have niitf', a;;) = b; for all j € J;(x*). Hence, we
havex’>b; for all j € J;(x*). Since theb;s are increasing if we have in particular;;;“}b,i*(x*).
Sincec; > 0 andx* is an optimal solution, the” must be as small as possible. Hence, we have
x¥= b]*(x*). O

L i

Theorem 1. Letx* be an optimal solution of probled)—(2). Thenx = 0 or x* = by

Proof. If x is not a binding variable, we can assign Ocfodue toc; > 0. On the other hand, i is a
binding variable, then = by (xv) by Lemma 2.

The analysis so far implies that for any optimal solutidnif x is nonbinding, ther* can be assigned
to be zero. It turns out that the maximum solutioprovides information in searching for nonbinding
decision variables, to which we now turn.

Theorem 2. Let x be the maximum solution o€ (A, b). If x; is not a binding variablethen x; is
nonbinding for any € X (A, b). On the other handf x; is a binding variablethen

Ji(x) C Ji(x)Vx € X(A, D).

Proof. If x; is nonbinding, then we have nif}, a;;) < b; for all j € 7. Sincex is the maximum
solution, we have; <x; forall x € X (A, b). This implies that

min(x;, a,'j)§ min(x;, a,'j) < bj forall j € J.
Hence,x; is nonbinding as well for alt € X (A, b). O

On the other hand, suppose thatis a binding variable. Thed; (x) is nonempty. For any solution
x € X(A, b), if Ji(x) is empty, then the theorem holds obviously. Supposef{a) is nonempty and
considerj € J;(x), we need to show that € J;(x). Sincej € J;(x), we have milx;, a;;) = b;. We
have two cases to be considered. Cased; i= b, thenx; € [b;, 1]. Sincex is the maximum solution,
we havex; >x; >b;. Hence, we have mi;, a;;) = b;. Case 2: ila;; > b;, thenx; = b;. Sincex is the
maximum solution, we havé > x; = b;. On the other hand, sineg; > b; andx; = min;c;{a;; ¢ b;},
we havex; <a;; © b; = b;. Therefore, we have; = b;. It follows that min(x;, a;;) = b;. Both cases
imply thatj € J; (x).
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It follows from Theorem 2 that if; is nonbinding, then we can simply set= 0, wherex* = (x7) is
any optimal solution. If;; is binding, then/; (x*) € J;(x) for any optimal solutionx*. If x is binding,
thenx’ = by (x#) by Theorem 1. However, we have to first identify the index £ét*) in order to
compute the: . SinceJ; (x) contains/; (x*), we can limit our search withis; (x), to which we now turn.

Define a value matrid/ = (m;;) withi € Z and;j € J by
Cl'bj if ] € J,‘()E);
mij = .
oo  otherwise.

The numerical elements in tl row of M correspond to the contributions to the objectivediywhere
each of theb; with j € J;(x) is a possible candidate faf".

One of the new results in this paper is that with the maitiwe can create rules to reduce the problem.
Since for any optimal solution*, x is either O Oy () (by Theorem 1), the rules for reducing the
problem are to set as many optimal decision variables as possible 0,6 05.

Lemma 3. Letx; be a binding variable of a solution x. Thepy, = b; for all j € J;(x) \ B;(x), where
Bi(x) ={j € Jix)|bj = byrx)}-

Proof. Sincex; is binding, the index sef; (x) is nonempty. And mitx;, a;;) = b; for all j € J;(x).
Sinceb ;s are increasing with respectjtandx; >b; for all j € B;(x), we have

ajj = bj for aII] € Ji(x) \ Bi(x). O

Rules for reducing the problem: We are ready to present the rules to determine the values of as many
decision variables as possible in the optimal solution.

Rule 1. If @ # Js(x) C J;(x) for somes andt with ¢ < s, then there exists an optimal solutiot with
x;=0.

Proof. Letx* be any optimal solution. If7 = 0, then we are done. Suppose to the contraryithat O,
we shall establish a solution with a better objective value tfarhence a contradiction. We first note
that sincel # J,(x) C J;(x), by Lemma 3, we have

asj = bjforall j € Jy(x) \ By(x) anda;; = b; forall j € J;(x) \ B;(x).

Furthermore J; (x) \ By(x) € J;(x) \ B;(%).
Sincex} is nonzero, we have; a binding variable with/;(x*) # ¢. Moreover, by Theorem 1 and
Theorem 2, we have

)C;|< = b]s*(x*) and mir(x;“, asj) = bj Vje Js(x*). ]

Casel: If x; = 0, we consider the vectar= (x;) which equals ta:* excepty; = x; andx, = 0. We
then have mity;, a;;) = b; forall j € J;(x*). Hence the feasibility of| is maintained by, . Therefore,



152 Y.-K. Wu, S.-M. Guu / Fuzzy Sets and Systems 150 (2005) 147-162

X is a solution of the problem. Moreover

n n

* * *
E cix; — E cix; = csxy — crxy =0,

i=1 i=1

If csxf —cixf < 0, we have a contradiction to the assumptionxafIf c;x — ¢,xF = 0, thenx is an
optimal solution with zero in itsth element.

Case2: If x; > 0, thenx/ is binding as well and;" = b+ (.. We have two subcases to be considered.
Case 2-1: ifJ (x*) > JJ (x™), sinceJs(x) \ By(x) € J;(x) \ B;(x), the constraints satisfied by can
be sustained by;. Hence,x; is redundant. Since* is optimal, thex; should be zero. Case 2-2: if
JrE(x*) < JS(x*), we can seleck; = by++. Then the constraints satisfied by andx; can be
sustained by;. It follows that if we adjusi* by settingxy = 0 andx; by x; (denote the adjusted by
x*), then
n n

Z cix; — Z cix[ = cx| +cgx) —cxp = x| + (g —¢p)x} > 0.

i=1 i=1
Therefore, thec™ is not an optimal solution, a contradiction.

Rule 2. Suppose that the model (1)—(2) has solution. Let= {i € Z| min{x;, a;;} = b;},Vj € J.
If for somej € J thel; = {i} is a singleton set, then for any optimal solutioh we havex*>b;. If
a;j > bj, thenx* = b;. Moreover, we can delete tikéh constraint from further considerationkif< j
andi € I.

Proof. By Theorem 2, a singleton sgt = {i} implies that for any optimal solution® thejth constraint
is satisfied only by the decision variabt¢. That is, minx;", a;;) = b; and minx;, a,;) < b; for all

r # i.Thisimplies thak >b;. Obviously, ifa;; > b;, thenx = b;. On the other hand, since the model
(1)—(2) has solution andl; = {i}, thex; is a binding variable. Together with< j andi € I;, we have

min{i,-, al-j} = bj and mir[i,-, ajx} = bg. Il

We have two cases to discuss.

Casel. If x; = b;, then it follows thatx* = b; for any optimal solution:*. Hence,
min{x;, a;} = min{x;, a;x} = by.

Case2: If x; > bj, then byb; >b; and min(x;, a;x} = bx, we haven;; = by. Sincex’>b;, we have
min{x, a;x} = by. Both cases imply that thieh constraint can be satisfied automaticallyajyas long
as we detect thg; is the only binding variable in constraijt

Rule 3. Compute an initial upper bound for the optimal objective value. The procedure of computing an
initial upper bound for the optimal value is essentially the orj2&} (see appendix.) In the current paper,

the Rule 3 cooperates with Rules 1 and 2 to reduce the problem. Precisely, if there exists, say, an entry
m;; of M strictly larger than the current upper bound, we themsggt= oc. That is, thex can NOT be
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binding in thejth constraint. We note that the branch and bound part of Wu, Guu and Liu’s method did
not update their upper bound. Indeed, during the branch and bound part, the initial upper bound may be
improved by a better solution. We shall illustrate this point by Example 1 in next section.

We are ready to present a procedure for solving the problem.

Stepl: Rename the variables and arrange the order of constraints so tleas Hredb ;s are ordered
increasingly, if necessary.

Step2: Compute the vectot < b by (4).

Step3: Check the consistency of equations (2) by verifying wheterb) o A = b. Ifitis inconsistent,
then stop. Otherwise, set the maximum solutiog A ¢ b.

Step4: (Optional) Computd; for each;j € J.

Step5: Generate the value matri.

Step6: From the (current) matrikl compute the index sets = {j € J|m;; # oo} for all remaining
decision variables;.

Step7: Apply the Rule 1 and Rule 2 to determine the values of as many decision variables as possible.
Delete the corresponding rows and/or columnBli(Hence, the size of the problem is reduced.) Denote
the remaining submatrix byl again. If all decision variables have been set, go to Step 10.

Step8: Compute the initial upper bound frolh. Apply Rule 3 to set some entries Bfby oo, if any.

If some entries oM are set by, then go back to Step 6. Otherwise, go to Step 9.

Step9: Take the (remaining) value matri®. Employ the backward branch and bound method with
jump-tracking technique to solve for the remaining undecided decision variables (Details of this part are
illustrated in Example 1. In addition, the initial upper bound will be improved by a better solution during
the branch and bound part if possible.)

Stepl0: Generate an optimal solution for the original problem.

3. Two examples

In this section, we shall give two examples to illustrate our procedure. In particular, Example 1 is given
to illustrate that we may be able to improve the initial upper bound (as computed by Wu, Guu and Liu’'s
method) so that the visited nodes of the branch and bound part can be decreased. Example 2 is giver
to show the merit of our three rules. With these rules, we may be able to solve some problems without
invoking the branch and bound part in new procedure.

Example 1. Consider the following problem.
Minimize Z(y) =21.2y1 + 2.5y + 0.6y3 4+ y4 + 1.1y5

05 08 10 08 07]
05 09 10 08 02
subject to [yl Yo V3 V4 y5]o 04 09 10 06 07
05 095 07 03 06
| 045 06 10 08 07

—[05 09 10 08 07].
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Stepl: To make the;s andb;s be ordered increasingly, we rename the variatdes x1, ys — x2,
y5 — x3, y1 — x4 andy, — x5 and arrange the order of constraints. The renamed and arranged problem
is as follows:

Minimize Z(x)=0.6x1 + x2 + 1.1x3 + 1.2x4 + 2.5x5

04 07 06 09 107
05 06 03 09 07

subject to [xl X2 X3 X4 X5] o| 045 07 08 06 10
05 07 08 08 10

| 05 02 08 09 10

=[05 07 08 09 10].

Step2: Compute the vectot b =[1.0 09 10 10 10].

Step3: Direct computation shows thgt ob)o A = b. Hence, the system s consistent &, b) # @.
Set the maximum solutio = A © b.

Step4: (Optional) Compute the index setsfor all j. And they are

11 ={2,4,5}, 1, ={1,3,4}, 13=1{3,4,5}, 4, ={1,2,5}, Is = {1, 3,4, 5}.
Step5: Generate the value mati.
equation— 1 2 3 4 5
(xf) [ oo 042 oo 054 067
(x3) | 05 oo oo 09 o0
M = (x3) oo 077 088 oo 11
(xj) | 06 084 096 oo 12
(x¢) L125 oo 20 225 25
Step6: From the current matriM compute the index setk for all i. And they are

J1=1{2,4,5}, 2={L4},J3={2,3,5}, Ja={1,2,35}, s ={1,3,4,5}.

Step7: The Rules 1 and 2 cannot be applied.
Step8: Compute the initial upper bound frolh. First, we computé Z;,i € 7 = {1, 2, 3, 4, 5} by

17; = Eflaj?({cibj} + Cribgi +o +Cl/iib8/i{i'

1Z1= Jm{a_2X4 5}{C1bj} + c2b1 + ¢3b3 = max{0.42,0.54, 0.6} + 0.5+ 0.88 = 1.98,
JEJ1=14,4,

1Z;= ]ma{>l< 4}{0219]'} + c3b3 + c1bs = max{0.5, 0.9} + 0.88+ 0.6 = 2.38,
JEJ2=14,

I1Z3= max_ {c3bj}+ coby + c1bs = max{0.77,0.88, 1.1} + 0.5+ 0.54 = 2.14,
jeJz={2,3,5)



Y.-K. Wu, S.-M. Guu / Fuzzy Sets and Systems 150 (2005) 147-162 155

1Z4= ) {235{C4b}+c1b4_max{06 0.84,0.96,1.2} + 0.54=1.74,
jela=
175= Jrr}ax {csbj} + c1bp = max{1.25, 2.0, 2.25, 2.5} + 0.42 = 2.92.
J€J5=
Then, set

initial upper bound= min{/Z; :i € 7} = 1.74.

By Rule 3, we can set elemenis;s, ms4, mss of M which are larger than 1.74 to le. Therefore, the
resulting value matrix (still denoted k)

equation—~ 1 2 3 4 5

(xf) [ oo 042 oo 054 067

x3) | 05 oo oo 09 o0
M= (x3) | co 077 088 oo 11

(x;) | 06 084 09 oo 12

(x3) L125 oo 00 oo 0

With this value matrixM, we go back Step 6 to compute the current index detand discover
Js = {1} C J2 = {1, 4}. By Rule 1, we can set; = 0. Hence, the 5th row dl can be deleted from
further consideration. After deletion, the value matrix becomes

equation— 1 2 3 4 5

) [oo 042 oo 054 06
(x3) | 05 o0 oo 09 o©
T o) | o 077 088 o~ 11
;) L06 084 096 oo 12

Now, Rules 1, 2 and 3 can not be applied. We go to Step 9.

Step9: Employ the backward branch and bound method with jump-tracking technique to solve for the
remaining decision variables. The detailed steps within Step 9 is summarized InGmgeach node, the
branching process should be stopped when objective value there is larger than the current upper bound.
The “backward” indicates that the branch and bound method starts from the last column and toward to
the first column of value matrix. Since we add positive entry to the objective value during each branching
step and the finite entries in each row of the value mairece columnwise increasing, we expect that the
solution tree generated packwardbranch and bound process should be “smaller” than théarwyard
branch and bound method.

Now given the current value matriM, we havels = {1, 3, 4} from last column. This implies that
{x1, x3, x4} are three candidates for binding variables. (We can see three branches generated from Node
0 in Fig. 1.) If we selectxs, then its contribution to the objective is 0.6. On the other hand, if we select
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1.98/Stop 2.08/Stor 1.98/Stop 2.08/Stop

Fig. 1. Backward branch and bound method.

x3 (x4), then the objective value is 1.1 (1.2). So far, we have Nodes 1, 2, and 3 with objective values
0.6, 1.1, and 1.2, respectively. Along the branches to each node, we need to check whether the computec
binding variables satisfy all equations or not. So far, the identified binding variable on each of Nodes 1,
2, and 3 does not satisfy all equations, respectively. We need further branching to generate solutions. The
jump-tracking technique requires us to branch on the node with least objective value. Therefore, we shall
branch on Node 1.

We now move backward to the 4th columnMf Sincels = {1, 2}, {x1, x2} are two candidates for
binding variables. In FigL, the branch from Node 1 to Node 4 (Node 5) is generated(if,) is selected.
Since variabler; is currently binding, the objective value in Node 4 is still 0.6. On the other hand, the
objective value in Node 5 is updated to 1.5. The identified binding variables corresponding to the branches
to Node 4 and Node 5 do not satisfy all equations, respectively. Further branching is needed to generate
solutions. And up to now, we have four nodes (Nodes 2,3,4, and 5) to select for the next branching process.
By the jump-tracking technique, we select Node 4 to branch further because of least objective value there.

We move back to the 3rd column M. Sincels = {3, 4}, {x3, x4} are two candidates for binding
variables. In Figl we have two branches from Node 4 (that is, Nodes 6 and 7). And the objective value
in Node 6 (7) is updated to 1.48 (1.56). In each node, we need to check whether the computed binding
variables satisfy all equations or not. Along the branches to Node 6, we have identifieg) as binding
variables, yet not enough to satisfy all equations. Along the branches to Node 7, the corresponding binding
variables{x1, x4} satisfy all equations. Hencg = 1.0, x4 = 0.8, x = x3 = x5 = 0 is a solution with
objective value 1.56, which is better than the initial upper bound 1.74. We update the current upper bound
as 1.56. Now, we have four nodes (Nodes 2,3,5, and 6) to select for the next branching process. Again,
we select Node 2 due to jump-tracking technigue. Since Node 2 corresponds to the 5th colimveof
move back to the 4th column and generate Nodes 8 and 9, respectively. Note that the objective values
in both nodes are larger than current upper bound 1.56. Both nodes are fathomed. By continuing this
process, a tree with 20 nodes is generated as inlFig.
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Stepl0: Generate an optimal solution. From Figthe optimal objective value is 1.56, and the optimal
solution is

(x7,x5,x3,x;,x5) = (1.0,0,0,0.8, 0).
The optimal solution of original problem is

(y;_(’ y;? y;’ yza y;) = (08a 07 loa 07 0)

Indeed, Wu, Guu, and Liu’s method needs to visit 34 nodes for solving this problem. This simple
example illustrates that our new procedure visits less nodes than our previous method. It is our three
rules, the new upper bound and its updating that reduce the branches of the solution tree.

Example 2. Consider the following problem.

Minimize Z(x)=0.45x1 + 0.5x2 + 0.7x3 + x4 + 1.1xs + 1.4xg + 1.5x7 + 2xg + 3.6x9
subject to [xl X2 X3 X4 X5 Xg X7 X8 xg] oA

=[02 04 05 06 07 08 09 095 10],

025 04 04 06 01 08 08 09 10
012 01 05 05 06 08 09 08 08
02 015 02 06 07 05 01 04 04
015 02 05 06 05 08 03 09 10

where A=|01 014 05 06 06 02 09 04 10

02 04 04 02 07 08 09 098 05

015 025 05 06 02 08 08 075 10

02 04 045 02 07 085 05 09 06

| 0.15 035 05 06 065 07 09 095 09

Stepl: Both of thec;s andb ;s are ordered increasingly.

Step2: Computed ¢ b = [0.2 09 10 10 10 095 10 08 1.0].

Step3: Direct computation illustrates thah < b) o A = b. Hence, the system is consistent and
X (A, b) # . Set the maximum solution = A ¢ b.

Step4: (Optional) Compute the index satsfor all j. And they are

11={1,3,6,8},o={6,8},13={2,4,5,7,9}, 14 ={3,4,5,7,9}, Is = {3,6, 8},

I ={2,4,6,7,8},17=1{2,5,6,9}, Is = {6, 9}, Is = {4,5, 7}.
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Step5: Generate the value matri.

equation— 1 2 3 4 5 6 7 8 9

(xf) [009 o0 o0 o0 o0 o o0 00 00
(x3) o0 o 025 oo oo 04 045 o0 o0
(x3) | 014 oo oo 042 049 oo o0 oo 00
(x7) o0 oo 05 06 oo 08 o0 oo 10

M = (x2) o0 oo 055 066 o0 oo 099 o~ 11
(xg) |1 028 056 oo oo 098 112 126 133 oo
(x7) o0 oo 075 09 oo 12 o0 oo 15
(x3) | 0.4 08 oo (%) 14 16 ¢ oo 0
(xg) %) %) 1.8 216 o oo 324 342 o0

Step6: From the current matrikl compute the index setg for all i. And they are
J1={1}, /> =1{3,6,7},J3=1{1,4,5}, Ja=1{3,4,6,9}, J5s = {3,4,7, 9]},
Je=1{1,2,5,6,7,8},J7=1{3,4,6,9}, /s ={1,2,5,6}, Jo ={3,4,7, 8}.

Step7: Apply the Rules 1 and 2 to fix as many as possible the decision variables. We first note that
J7 = JpandJg C Js.

By Rule 1, we set7 = x5 = 0. Hence, we can delete the 7th and 8th rowMoAfter deletion, theV
becomes

equation— 1 2 3 4 5 6 7 8 9

(x}) 009 oo 00 o0 o0 00 00 00 0
(x3) o0 oo 025 o oo 04 045 o0 o0
(x3) | 0.14 oo oo 042 049 oo o0 (S IINC')
M = (x}) %) oo 05 06 oo 08 o 10

(x5) o0 oo 055 066 o0 oo 099 oo 11
(x§) | 0.28 056 oo oo 098 112 126 133 o0
(xg) | oo oo 18 216 o oo 324 342 oo

We note that now the index séi = {6}. By Rule 2, we havei; >b, = 0.4. Note thatxg is binding

in the first and second columns Bf now. This implies that at the optimal solution the corresponding
equations to these two columns are satisfied by binding varigbldence the first and second columns
can be deleted from further consideration. After deleting the first and second columnilfremnote
the remaining elements in the first row areadl It implies that thex] is nonbinding in any columns,
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hence we set; = 0. Therefore the first row ol is deleted as well. The remaining value matkix
becomes

equation— 3 4 5 6 7 8 9
(x3) 025 oo oo 04 045 o0 o0]
(x3) oo 042 049 oo o0 oo 00
Y (x;) | 05 06 o0 08 o oo 10
(x3) | 0.55 066 oo oo 099 oo 11
(x§) | oo oo 098 112 126 133 oo
(x§) L 1.8 216 oo oo 324 342 o0

Step8: At this stage, since there are some undecided decision variables, we need to compute an upper
bound for the optimal value of this reduced problem. By Wu, Guu and Liu’s method, an upper bound is
3. By Rule 3, we find botlmg7; = 3.24 andmgg = 3.42 are larger than this upper bound. We shalbset
to mg7 andmgg. Then the value matrix becomes

equation—~ 3 4 5 6 7 8 9
(x3) 025 oo oo 04 045 o0 o0]
(x3) oo 042 049 oo o0 0o 00
)| 05 06 oo 08 oo oo 10
M= @) | 055 066 o0 oo 099 oo 11
(xg) 00 oo 098 112 126 133

(xg) [ 1.8 216 oo (%) %) 00 00

From the currenM, we have the 8th constraint containing exact one binding varighl@hat is,
Ig = {6}. By Rule 2, we shall set; = bg = 0.95. We note that theg is binding in constraints 5,6,7 as
well. We then delete the 5th, 6th, 7th, and 8th constraints from further consideration. The reduced value
matrix M becomes

equation— 3 4 9
(x3) [025 o0 0]
(x3) oo 042 o0

M= (x;) | 05 06 10
(x¢) | 055 066 11
(x§) L 18 216 oo |

With the current matrisM, we go back Step 6 to compute index geand discover

Js = JpandJg C Ja.
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It follows from Rule 1 that we set; = x§ = 0. And the corresponding rows are deleted. The reduced
matrix M becomes

equation— 3 4 9

(x3) [025 o0 o0
M= (x3) oo 042 ~©
(x;) L0O5 06 10

Note again thalg = {4}. Hence, by Rule 2 we sét = 1.0 tox}. Sincex} appears in constraints 3 and
4 as a binding variable, we can delete the 3rd and 4th constraints from further consideration. Now there
is no element after deletion M. And two decision variables; andx3 are set to be zero.

Stepl0: An optimal solution yielded by our procedure is

x*=1(0,0,0,1.0,0,0.95,0,0,0) and the optimal value i€ (x*) = 2.33.

Now, using Wu, Guu and Liu’s method to solve Example 2 again, we find that their backward branch
and bound part has to be implemented. Moreover, there are 37 visited nodes in solution tree. This example
illustrates that our new procedure may solve the problem without invoking the branch and bound part of
the procedure.

Numerical experimentn Tablel, we have compared the performance of Wu, Guu and Liu’s approach
and our new procedure. Here we use the same test examples recorded in App¢R8ixTdfe current
experiment was programmed by Visual Basic 6.0 on a Pentium Il PC with 1000 MHZ and 256-MB
RAM. Each testing was terminated if the number of the visited nodes is more than 200,000. Note that
since our new procedure utilizes the rules to simplify the problem and update the upper bound as further
as possible, the “solution tree” generated by the branch and bound part is “smaller” than that by Wu, Guu
and Liu’s procedure. Tablealso illustrates that the new procedure visits less nodes in solution tree.

Note that the number with«* means that the initial upper bound is equal to the optimal objective value.
The initial upper bound of testing problems 1, 5-6, 8, 11-13 is updated by the new procedure. Problems
12 and 13 can not be solved by Wu, Guu and Liu’s procedure because their procedure visits more than
200,000 nodes, yet our new procedure solves them successfully. Problem 14 remains a challenge becaus
both procedures fail to report the final results.

4. Conclusion

In this paper, we considered an optimization problem involving the minimization of a linear cost
function subject to a fuzzy relational equation with max—min composition. We added new theoretical
results for the minimization problem. In particular, we established necessary conditions possessed by its
optimal solution. For the algorithmic consideration, we proposed three rules to simplify the problem.
Testing examples illustrated that our new procedure improved our previous work in a sense of visiting
less nodes in solution tree.
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Table 1
Performance between Wu, Guu and Liu’s procedure and the new procedure
No. Size of Wu et al.’s New procedure Optimal
problem procedure value
(m, n) No. of nodes Initial upper No. of nodes Incumbent
visited bound visited upper bound
1 (5,5) 46 2.0300 40 1.8200 1.8200
2 (6,6) 23 *2.6000 23 *2.6000 2.6000
3 (7,7) 97 *3.0700 75 *3.0700 3.0700
4 (8,8) 88 *2.2750 60 *2.2750 2.2750
5 (9,9) 135 2.5000 65 2.2600 2.2600
6 (10,10) 157 1.9250 119 1.7200 1.7200
7 (11,20) 37 *2.0410 5 *2.0410 2.0410
8 (12,10) 190 1.9250 145 1.7200 1.7200
9 (15,15) 246 *2.7971 225 *2.7971 2.7971
10 (16,15) 366 *1.0189 340 *1.0189 1.0189
11 (20,20) 8,377 24.8570 6,434 23.5720 23.5720
12 (30,30) Over 200,000 125.7491 304 125.4599 125.4599
13 (40,40) Over 200,000 95.4612 34,282 73.0557 73.0557
14 (50,50) Over 200,000 638.9283 Over 200,000 600.9779
Appendix

For easy reference, we shall cite the procedure of Wu, Guu, and Liu as follows.*Léénote the
minimum value in columf of matrix M. Precisely’; = min{m;; : i € I;}forall j € 7. Thearg[m?]
denotes the leasin columnj such thain; = mg,g,+;- Consider the followingn solutions defined as:
foreachi = 1,2,...,m, y;; = 1forj e J; andyarg[mjf]j = 1for j € J;. Assume that there are
distinctarg[mj] forall j ¢ J;, denoted by

i i
T

LetG, = {j ¢ Ji :arglmi] =i} foralls = 1,2, ..., k;. Letg; denote the largest elementdi. Then
the objective value, denoted BY;, yielded by thdth solution is computed by

17; = r]ne%l)({clbj} + Ctibgi 4+ .4 C’]il. bg;-ci .
We select our initial upper bound to be

initial upper bound = mifY Z4, ..., I Z,,}.
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