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Abstract

In this paper a possibilistic approach to sequencing is proposed. For each parameter, whose value is not precisely
known, a possibility distribution is given. The objective is to calculate a sequence of jobs, for which the possibility
(necessity) of delays of jobs is minimal. Five sequencing problems are formulated and the computational complexity
of all of them is explored.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Sequencing problem is a special case of a more general scheduling problem, in which each schedule
can be represented by a sequence of jobs. A wide review of the classical sequencing models, together
with some complexity results, can be found1d. In the classical problems there are some parameters
given (processing times, due dates, weights, etc.), whose values must be fixed before the calculation of
the optimal solution. The assumption that all the parameters are precisely known may be restrictive. For
most of the real-world processes the exact values of parameters are not known a priori and this uncertainty
must be taken into account.
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The natural approach to modelling the uncertainty in scheduling is a stochastic one. Unfortunately,
stochastic models are often hard to solve. Moreover, it may be hard or expensive to assume any specific
probability distributions for unknown parameters. During the past decades an alternative approach to
modelling the uncertainty, based on the fuzzy sets theory, has been proposed. IshjiLe}, &lan
et al.[9] and Tanaka and Vlacli6] have studied the single machine problems in which the due dates
of jobs are fuzzy. The fuzzy due date of a job expresses the degree of satisfaction with completion time
of this job. The single machine problems with fuzzy processing times have been studied by Itoh and
Ishii [11], Wang et al[17], Sung and Vlaciil5] and Chanas and Kasper$R]. In these papers different
criteria have been applied to calculate the optimal solutiofdi€hanas and Kasperski have proposed
the indices of possible and necessary optimality of a given feasible sequence under uncertainty. In this
approach, the notion of “optimal” becomes imprecise and the degree of optimality of a given sequence
can be characterized by a number from the intef@al]. A lot of results on the fuzzy scheduling and
sequencing can also be found#j.

In this paper we propose an approach to sequencing, which is based on the possibility theory. For each
unknown parameter in the problem there is given a possibility distribution which expresses the uncertain
knowledge about this parameter. The interpretation of the possibility distribution and some methods of
obtaining it from the possessed knowledge are presented in dg@lil In order to calculate the optimal
solution the indices proposed by Dubois and Pri&liere applied. This paper is an extension of results
presented ifi3]. Some results obtained 8] are recalled and some new problems are investigated. The
main goal of this paper is to explore the computational complexity of all defined problems.

2. Basic notions of the possibility theory

In this section we recall some basic notions of the possibility theory, which will be used in the next part
ofthe paper. LeXbe a single-valued variable, whose value is not precisely known. There is given a normal,
guasi concave and upper semicontinuos functign R — [0, 1] called thepossibility distributionfor
X. The value ofuy(x) for x € R denotes the possibility of an event thatakes the value ox, i.e.
uy (x) = PogX = x). The possibilistic variablX is called &uzzy numbeA crisp number € R can be
viewed as a special case of the fuzzy number wjita) = 1 andy, (x) = Oforx # u.We say thatafuzzy
numberXis nonnegativef uy (x) = 0 for allx < 0. The interpretation of the possibility distribution and
some methods of obtaining it from the possessed knowledge about vafiabdeexplained in detail in
[6].

A trapezoidal fuzzy numbés a special case of the fuzzy number, whose possibility distribution is
defined as follows (see also Fib:

1 for x € [x, X],

l_{;x forx € [x —a, x),
=018 forx e (7 T+ fL

0 for x € (—o0, x — ) U (x + 8, 00).

Each trapezoidal fuzzy numbétcan be described by a quadrugle x, o, ), wherex>x, o > 0,
B > 0. The support 0K, i.e. the sefx — «, x + f], is chosen so as to be sure that the valuX will not
fall outside it. The core oK, i.e. the sefx, x], includes the most plausible valuesXf
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Fig. 1. A trapezoidal fuzzy numbef = (x, x, o, f3).

Consider two fuzzy numberX andY with possibility distributions, respectively,y andpy. The
possibility distribution of the fuzzy numbeéf = X + Y is defined by means of the Zadeh extension
principle as follows:

pz(z) = Sungmin{ux(x), py (z — x)}.

If X = (x,x,a, ) andY = (X’ v, 7y, 0) are trapezoidal fuzzy numbers, th&n= X + Y is also a
trapezoidal fuzzy number and
Z=X+Y=x+y,Xx+y 0+ f+9). 1)

Assume thaX andY are two fuzzy numbers. We are interested in compaXng, i.e. we want to
characterize the possibility of the event that the value takeK b§il be greater (or not less) than the
value taken by. In [6,7] Dubois and Prade proposed the following indices (see als®Fig.

PosX>Y) = f’;’? min{ux (x), uy (M}, 2
PogX > Y) = S;prigfx min{uy (x), 1 — uy (y)}. 3
It is easy to notice that the values of both indices belong to the intEdya].
Let
NeaX > Y) = 1—PogY >X). ()

ThusNed X > Y) characterizes the necessity of the event¥hatll be greater thaiY. It is easy to check
thatPog X >Y)>PogX > Y)>NedX > Y) for all fuzzy numbers andyY (seg[6]).
Let X = (x, ¥, f) andY = (y,, 7, 6) be two trapezoidal fuzzy numbers. Then it hole}

: X—y
PosX>7Y) = 0, 1,1+ —=1)), 5
og ) max( mm( ﬂ+y>> (5)
B . xX—y+5p
PogX >7Y) = max(o, min (1, —ﬁ+5 )) (6)

NedX > Y) = max(O, min (1, i;§)> . 7)
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Fig. 2. The indiceog X > Y) andPos X >7Y).

Letu € R be a crisp number and = (y, y, 7, §) be a trapezoidal fuzzy number. Then we have

Pos(u)Y):max(O, min (1,1+ M_X>>, (8)
Y

Posu > Y) =Nedu >Y) = max<0, min <1, ?)) . 9)

Finally, assume that,v € R are crisp numbers. Then, it is easy to check thafu > v) =
Nedu > v) = lifand only ifu > v and O otherwise. Thus, both indices can be viewed as a gen-
eralization of the relatios- to the fuzzy case.

We can also characterize the possibility of the event that the value takewithbe equal to the value
taken byY. It can be done by means of the following index:

PogX =Y) =min{PogX>Y), PogY > X)}. (20)
Let
NedX #Y)=1—PogX =Y7). (1D

Thus indexNed X # Y) characterizes the necessity of the event that the values tak&rabgy will
be different. IndeXNed X # Y) can be easily calculated X andY are trapezoidal fuzzy numbers (see
formulae ), (10) and (L1)). The following property holds:

Property 1. LetX = (x, X, «, f) andY = (y,y, y9) be two trapezoidal fuzzy numbers. Then (Nee:
Y)<Oifandonly if[x,X] N[y, y]1 # 0.

Proof. Assume thafx,x] N [y,y] # @. Thenx>y andy>x, which impliesPogX>Y) = 1 and
PogY >X) = 1 (see formulag)). From definition ofNeqX # Y) (see (0) and (L1)) we get that
NedX #Y)=0.

Assume now thaNed X # Y)<O0. Then, from {1) we getPogX >Y)>1 andPogY > X) > 1. From
(5) we get thafkc >y andy > x, which implies[x, x] N[y, y] # 9. O
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3. Formulation of the sequencing problems

We are given a set of johs = {1, ..., n} to be processed on a single machine. All the jobs are ready
for processing at time 0. Pre-emption of the jobs and idle machine times are not allowed. Each schedule
is represented by a sequence (permutation) of jobs(=(1), ..., n(n)), n(i) € J,i =1,...,n. There
may be given some precedence constraints between jobs: if, i, j € J, then jobi must appear before
jobj in eachfeasiblesequence (job j is called asuccessoof job i). We will denote byiT the set of all
the feasible sequences. For eachjob J there are given: a processing tinfe a due dateD; and a
weightw;. It is assumed that the processing times and the due dates are nonnegative fuzzy numbers anc
all the weights are positive, crisp numbers. The due date of ply expresses the desired completion
time of jobi and the weight expresses the importance ofijdtet C; (=), i € J, denote the completion
time of theith job in a given sequence If i = =(k),k =1, ..., n, thenC;(n) = Z’jf:l Pr(j)- Note that
completion timeC; (=), i € J, is a fuzzy number, whose membership function expresses the possibility
distribution for the completion time of thé&h job. Consider the following sequencing problems:

PS1: minmax{w;PoqC;(n) > D;)},
nell ieJ

PS2: minmax{w;NedC;(n) > D;)},
nell (el

PS3: min Y w;PogC;(n) > D;),
nell iel
PS4: min Z w;Ned C;(n) > D;).

nell iel

For a given jobi € J, the value ofPogC;(r) > D;) denotes the possibility of a tardy completion,

i.e. the possibility of the event that the completion time wfill exceed the due dat®;. Similarly, the

value ofNedC;(r) > D;) denotes the necessity of a tardy completion. In problems PS1 and PS2 the

greatest weighted possibility (necessity) of tardy completion is minimized, while in problems PS3 and

PS4 the sum of weighted possibilities (necessities) of tardy completions is minimized. Consider now the
following sequencing problem:

PS5: minmax{w;NedC;(n) # D;)}.
nell iel

Problem PS5 is different from problems PS1-PS4. In PS5 all the jobs should be completed as close to
their due dates as possible and the greatest weighted necessity of both tardy and early completion is
minimized. Thus problem PS5 belongs to the clagsistfin timesequencing problems.

Let us illustrate problems PS1-PS5 in a simple example. Assumé thdtl, 2, 3} with 1 — 2, thus
J consists of three jobs and job 1 must precede job 2 in every feasible sequence. Mhepsststs of
three feasible sequences, thatis= {(1, 2, 3), (1, 3, 2), (3, 1, 2)}. The processing times and the due
dates are given as trapezoidal fuzzy numb&s= (2,2,1,4), P, = (4,5,3,3), P3 = (5,6, 2,5),
D1 = (6,6,5,3), Do = (8,8,2,3), D3 = (5,7, 2, 2). Weights are given as positive crisp humbers:
w1 = 2, w2 = 1, w3 = 3. Consider the feasible sequence- (1, 2, 3). The completion times of all
the jobs inz can be calculated by means of formuld, thusC1(z) = (2, 2,1, 4), C2o(n) = (6,7, 4, 7),
C3(n) = (11, 13, 6, 12). The corresponding values of the indices#f@re presented in Table Using the
values presented in Tahldt is easy to evaluate the sequender all of problems PS1-PS5. In the same
way the other feasible sequences, thdilis3, 2) and (3, 1, 2), can be evaluated. One can easily verify
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Table 1

The values of the indices far= (1, 2, 3)

i Pos(C; () > D;) NedC;(m) > D;) NedC;(n) # D;)
1 0 0 0.44

2 0.6 0 0.11

3 1 0.5 0.5

that sequencél, 2, 3) is optimal to PS3, sequencg, 3, 2) is optimal to PS4 and sequen(® 1, 2) is
optimal to PS1, PS2 and PS5.

The aim of this paper is to explore the computational complexity of problems PS1-PS5. In the next
sections we will show that PS1 and PS2 can be solved in polynomial time, while PS3, PS4 and PS5 are
NP-hard even if all the weights are equal to 1 and there are no precedence constraints between jobs.

4. A polynomial algorithm for problems PS1 and PS2

An algorithm for solving PS1 and PS2 was constructef8]nso in this paper we only recall its for-
mulation. In order to simplify calculations we assume that (p Di» %, ;) andD; = (d;, di, v, 00,
i € J, are nonnegative trapezoidal fuzzy numbers. Then, , the algorithm for solving problem PS1 is
presented in the form of Algorithrh

Algorithm 1. The algorithm for solving PS1
Require: n, (P)!_;, (Di)?_4, prec
Ensure: n
1. S« {1,....n}
for k <— n downto 1 do
T « (ZieSBi’ Ziesﬁh Ziesai’ ZieSﬁi)
Find j € Swhich has no successor $and has a minimal value ;PoST > D)
n(k) < j
S<S\{J}
end for
return =

© N gk wN

Note that Algorithmlis very similar to the well-known Lawlers’algorithm, which is used for solving the
classical sequencing Problerptec| f,,.x With nondecreasing cost functions (§&€l2]). Algorithm 1
can be viewed as a generalization of Lawlers’ algorithm to the fuzzy case. In line 3 of Algdijttima
fuzzy numbeiT is a sum of the processing times of all jobs belongin§.t8ince all the processing times
are trapezoidal fuzzy numberB,s also a trapezoidal fuzzy number and its value can be calculated by
means of formulaX). In line 4 the value oPoST > D)), j € J, can be calculated by means of formula
(6). The computational complexity of Algoriththis O(n2) Algorithm 1 can be easily transformed to the
algorithm for solving problem PS2. It is enough to replace expressidbos(T > D;) in line 4 with
expressionw;Nec(T > Dj). The value oNedT > D), j € J, can be calculated by means of formula
(7). Thus, both problems PS1 and PS2 can be solvec{mﬁ)(nlme
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5. The complexity of problems PS3 and PS4

In this section we explore the computational complexity of problems PS3 and PS4. We will show that
these problems are much more hard to solve than problems PS1 and PS2 presented in the previous sectiol
Consider first the special cases of PS3 and PS4, in which all the processing times and all the due dates
are crisp numbers. Then, it is easy to observe that the completion times of all the jobs in a given sequence
© are also crisp numbers and for each job J it holds

1 if i D,‘,
POSC; (1) > D;) = NedCi(m) > Di) = Ui(m) = { o e (12)
From (12) it follows that:
> wiPosCi(n) > D;) = Y _w;NedCi(n) > D;) = Y _ w;Uj(m). (13)

ieJ ie ieJ

Note that (3) is a weighted number of late jobs inso, if all the parameters are crisp humbers, then
both problems PS3 and PS4 are equivalent to the classical sequencing prpptent X w; U;. Since
problem 1prec| )  w;U; is strongly N'’P-hard[1] it follows that the more general problems PS3 and
PS4 are also strongly/P-hard. Moreover, problems| grec| > U; and 1| > w,; U; are alsa\N'P-hard

[1], so PS3 and PS4 remaWP-hard even if there are no precedence constraints between jobs or all the
weights are equal to 1. But, if we assume that there are no precedence constraints and all the weights are
equal to 1 in problem|brec| Y w;U;, then we get problem|[L) " U;, which can be solved in @ logn)

time by Moor’s algorithn{14]. Thus, it is interesting to explore the complexity of the generalization of
1|1 Y U;. Let PS3and PS4be the special cases of problems PS3 and PS4, respectively, in which there
are no precedence constraints (keec = @) and all the weights are equal to 1 (iwg. = 1,i € J). Note

that PS3and PS4can be solved in polynomial time if all the parameters are crisp numbers since, in this
case, they are equivalent tj ¥ U;. The following theorem holds:

Theorem 1. Problem PS3is N'P-hard even if all the processing times are crisp numbers

Proof. We show that the classica\l/P-hard sequencing problen| 3" 7; is polynomially reducible to
PS3. Let us recall that an instance off 2 7; consists a set of jobh$ = {1, ..., n}, positive processing
times p; and positive due date given for all jobsi € J. It is assumed that there are no precedence
constraints between jobs. L&t(zr) = max(0, C;(n) — d;) denote the tardiness of jabe J in a given
sequencer. The objective is to calculate a sequenctr which the value o}, _; 7; () is minimal.
Problem 1| ) 7; is N'P-hard in the ordinary sen$8]. Let I = (n, (p;)’_,, (d;))!_,) be a given instance

of 1|| " T;. Let us definek = >, p;. The corresponding instanééof problem PS3is constructed

as follows:

o J={1 ..., n}

[ Pi =pl',i =l,...,n,

[ Di =(d,',di,l,K),i =1,...,n.

Let = be a given sequence of jobs. Since all the processing tinés= 1, ..., n, are crisp humbers it

follows that all the completion timeS; (n), i = 1, ..., n, are also crisp numbers. For each job J it
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holds (see formulad))

i(m) —d
Po9C;(n) > D;) = max<0, min <1, COT;{)) . (14)
SinceC;(n) <K andd; > 0, it holds(C;(n) — d;)/K < 1 and we can rewriteld) as follows:
Ci(n) — d; 1
PosC;(n) > D;) = max<0, ‘(”I)(’> == max (0, C;(n) — d;).
It holds
y Pos(Ci(n) > D;) = z n max(0, Ci(n) —d;) = z , Ti(m). (15)
=1 K =1 K =1

Equality (15) implies that the optimal solution td|L) _ 7; for instancd is the same as the optimal solution

to PS3for instancel’ (note thaK is a constant, whose value does not depend on the solution). It is clear
that instancé’ can be obtained frornin polynomial time. This means that having a polynomial algorithm
for problem PS3we would be able to solve th&P-hard problem [l }" 7; in polynomial time. This
means that problem PS8 A"P-hard. O

Theorem 2. Problem PS4is A'P-hard even if all the processing times are crisp numbers

Proof. If all the processing times are crisp numbers, then fr@nwe getPoqC;(nr) > D;) =
NedC;(n) > D;), i € J, so problem PS4is equivalent to PS3n this case. This means that prob-
lem PS4is alsoNP-hard. O

6. The complexity of problem PS5

In this section we will prove that problem PS5A8P-hard. Let us start by observing that PS5 is
a min—max problem so it is similar to problems PS1 and PS2 considered in Section 4. Despite this
similarity, problem PS5 cannot be solved by means of Algorithihe reason is as follows: A is a
nonnegative fuzzy number then the valueN®#q C; (n) + A # D;), i € J, can be less than the value
of NedC;(n) # D;). In other words, increasing the completion time of a job by a nonnegative fuzzy
numberA may result in decreasing of the value of the cost function. If such a situation may take place,
then Algorithml cannot be used (s€¢8}).

Consider a special case of problem PS5 in which there are no precedence constraints between jobs an
all the weights are equal to 1. Let us denote such a problem by PS5

Theorem 3. Problem PS5is A"P-hard.

Proof. We shall prove theV'P-hardness of PS®By a reduction from the following problem:

ParTITION
Instance: Collectiom = (as, ..., a,) of positive integers.
Question: Is there a subsét C {1,...,n} suchthat) ., a; = I3 L ai?
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PARTITION is known to be\VP-complete in the ordinary senfg&. We give a polynomial time reduction
from this problem to PSSuch that a proper subs@eexists if and only if there exists a sequence with the
costlessorequalto 0. Ldt= (ay, ..., a,) be agiveninstance ohRTiTION. Let us define = % Yoiqai.
The corresponding instance of P&5constructed as follows:

o J={1....,n,n+ 1},

o P,=1(a;,a;,1,D,i=1...,n,

o Pyi1=(apt1.an+1,1, D) =(1, 1,1 1),

e D;=(1,25+111),i=1,...,n,

e D1 =(S+1,5+111).

Note that all the parametess, D;,i = 1, ..., n + 1, are nonnegative, trapezoidal fuzzy numbers._et
be a given sequence of jobs. Let us denote’hy € J, the set of all the jobs processed beforeijat
the sequence. Using formula () we obtain

Cim=|> aj+a.Y aj+a. |o|+L|d[+1], i=1....n+1,

jen jen

where|z'| denotes the number of jobs processed before jobr. It is easy to notice that for each job
i=1,...,nitholds

dajtai Yy aj+ai |N[L2S+1]#0. (16)

jent jent
Thus, from Property 1 we conclude that for each sequerickolds
NedCi(n) # Dj))<0, i =1,...,n. (17)
Consider now jolx + 1. From Property 1 and equali®§,4+1 = (1, 1, 1, 1) we obtain

NeaCpia(m) # Dyy)<0 | > aj+1 Y aj+1|{N[S+1S+1]#0,

j€7'£”+l jen"+1

which is equivalent to the following condition:

NedCpi1(m) # Duy)<0& Y a; =S. (18)
jen"+l
From (17) and (L8) we conclude that
F(m) = max{NedC;(n) # D)}<0< Y aj=S5. (19)
ieJ R
jem

Now we shall prove that the answer terRiTIoN is yes if and only if there exists sequencsuch that
F(n)<0.

Assume that the answer ta1TIoN is yes, i.e. there exists a sub§gsuch that) ;. , a; = S. Let
o denote any permutation of the ggtandp any permutation of the s¢f, ..., n} \ Q. Consider the
sequence = (g, n + 1, p). It holdszjenm a; = S, so from (9), we conclude thaf'(n) <O0.
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Assume that there exists a sequencich thatF (z) <0. Consider jobn 4+ 1 processed im. From
(19) it follows thatZ,-enM aj=S.lLetQ = 7"*1 i.e.Q contains all the jobs processed befare 1 in
n. Itis clear thatQ is the subset of1, . .., n} for which the partition holds and the answer wrRTION
isyes. O

From Theoren8 we get at once that the more general problem P3&7#shard.

7. Conclusions

In this paper a possibilistic approach to sequencing problems with fuzzy parameters is proposed.
In this approach for each parameter, whose value is not precisely known, a possibility distribution is
given. In order to evaluate the solutions the indices proposed by Dubois and Prade are applied. Five,
different problems are formulated and the computational complexity of all of them is explored. It turns
out that two problems can be solved in polynomial time, while the remaining three probleM®ahard,
even in some restrictive cases. For fki@>-hard problems PS3—PS5 some heuristics or approximation
algorithms should be constructed.
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