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Abstract

This study is concerned with the genetic development of logic-based fuzzy models (logic networks). The models
are constructed with the aid ofAND and OR fuzzy neurons. These neurons are logic-driven processing units realizing
s–t and t–s composition operations of fuzzy sets and fuzzy connections with “t” and “s” being triangular norms and
co-norms. The fundamental architecture of the network comprises a hidden layer formed by a collection of AND
neurons that is followed by an output layer consisting of OR neurons. We show that this structure of the network
directly translates into a collection of “if-then” statements. The learning procedure in such networks consists of two
main development phases. First, a blueprint of the network is constructed genetically (through the use of a genetic
algorithm) with the underlying intent of capturing the structural (logical) essence of the data and encapsulating it
into the network. At this development phase the resulting network is kept binary (Boolean) with anticipation that the
binary connections are a sound model of the blueprint of the logic nature of the data. The second phase of the design
of the network is aimed at it refinement in which we move from the binary connections and optimize them to reflect
the details of the data. There are two main optimization mechanisms applied in the above sequence: the structural
binary development uses a genetic algorithm (GA) while a parametric refinement of the network is realized through
a gradient-based learning. This organization of the optimization process exhibits several evident advantages. The
GA concentrates on a preliminary and rough binary optimization and in this way helps combat an eventual curse
of dimensionality. This curse is inherent to high-dimensional problems to which gradient-based learning is quite
vulnerable. Having the blueprint developed, further refinement being guided by gradient-based computing becomes
more effective. An interesting optimization aspect addressed in the genetic optimization environment deals with a
construction of optimal subspaces of the overall feature space: in highly dimensional spaces we can envision that
only a small subset of features is essential and their reduction may help develop a compact network. We introduce a
concept of network connectivity to quantify the aspect of feature reduction.A carefully presented numerical example
serves as a detailed illustration of the development approach.
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1. Introduction

The ongoing research challenges in system modeling lie in the transparency and accuracy of models.
These two main design requirements are highly conflicting. In the realm of fuzzy modeling, there have
been a number of main pursuits that attempted to meet these two fundamental requirements. Interestingly,
a way in which they are satisfied depends very much upon a synergy realized between fuzzy sets and
neural networks—two fundamental contributors to the area of neurofuzzy models. The leading role
of neural networks shifts emphasis on the learning abilities, higher approximation and accuracy with
lower interpretability of the resulting models. When fuzzy sets become dominant, the interpretability
and descriptive aspects of the model increase that happens at some expense of accuracy. Striking a
suitable balance (where the concept of suitability is profoundly application driven) is a delicate matter
and requires the right mix of technologies of fuzzy sets and neural networks. The panoply of existing
fuzzy (or neurofuzzy) and genetic models are an evident testimony to this diversity of synergies going
on in this area, cf.[2,3,5,6,8–10,14,15,17]. The addition of the genetic optimization to fuzzy modeling
is important and its role in global optimization is an evident asset of the Computational Intelligence (CI)
framework formed in this way.

The logic-based fabric of fuzzy models is an inherent facet of this modeling paradigm that need to be
preserved. While neurocomputing is an important technology contributing to the learning abilities and
subsequently to the parametric optimization of the fuzzy models, its is of paramount importance to develop
a synergistic environment in which the logic transparency of the ensuing models is not compromised.
The idea behind fuzzy neurons and fuzzy neural networks introduced and studied in[11] was to develop a
structure that is at the same time transparent and adaptive. The transparency facet is gained due to the logic
type of processing realized by the neurons. There are two fundamental classes of the neurons that is OR
and AND neurons. Interestingly, these are generalizations of standard OR and AND gates encountered
in digital systems. The neurons exhibit learning abilities as they come with a collection of adjustable
connectives (weights). In this setting of fuzzy neurons, the synergy of learning and transparency is well
articulated. Different application-oriented aspects of the resulting fuzzy neural networks were discussed
in detail in a number of previous studies[11,12].

An important design issue these networks face deals with the learning efficiency in the networks. In
particular, we are interested in investigating the behavior of such networks in case of highly variable
models. An impact of problem dimensionality on fuzzy models in general (including those of rule-based
structure) is still an open matter (as it becomes quite apparent from the literature, fuzzy models are quite
“modest” in terms of the number of the variables handled). The objective of this study is to introduce a
comprehensive learning environment. We anticipate that with the increasing number of variables, some
standard gradient-based learning applied to the fuzzy neural networks will start loosing efficiency quite
quickly when the dimensionality of the problem start increasing. In a nutshell, we need to resort ourselves
to more comprehensive learning schemes. Evolutionary computing is a legitimate avenue to explore here.
The global nature of the genetically inclined search and its potential scalability are important features
worth considering with the regard to the problem.
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In this study, we propose a unified genetic development environment for fuzzy neural networks. The
underlying methodology comprises two important phases. In the first phase, we are after a binary two-
valued blueprint of the network. Here the role of genetic optimization is profound. More specifically, we
consider genetic algorithms (GAs) to be used to construct the blueprint of the network. The second phase
is about a refinement of the binary structure. As the skeleton of the network has been already formed, the
gradient-based learning becomes more efficient even for large architectures as the connections present in
the binary version are refined and adjusted by following the gradient of the performance index.

In the numeric experiments we use a Boston dataset available at the Machine Learning (UC at Irvine,
http:// www.ics.uci.edu/∼mlearn/MLSummary.html). In this data, we treat a price of real estate as an
output variable while considering all remaining variables to be the inputs. In this form of the model
we predict the price on a basis of a number of characteristics of real estate such as year, distance from
main employment centers, pollution, etc. The example will be developed across the entire study and
discussed in subsequent sections. In this way we can fully illustrate the concepts and specific architectural
developments of the model as they become introduced.

The material is arranged into seven sections and its organization follows the main phases of the
genetic development of the models. The topology of fuzzy models with a clear specification of their
main functional modules is discussed in Section 2. This is followed by a detailed analysis and design of
logic-oriented processing implemented by means of fuzzy neurons (Section 3). In particular, we high-
light a number of essential learning challenges that are associated with the dimensionality of the problem
(number of variables) and severely affect the gradient-based learning in the logic networks. A two-phase
design of the logic networks is studied in Section 5; here we analyze how genetic optimization leads
to a blueprint (Boolean skeleton) of the network and how this structure becomes afterwards optimized
(refined) by gradient-based learning mechanisms. Conclusions are covered in Section 6.

The terminology and notation used within this study are standard. We use capital letters to denote
fuzzy sets. The logic operators on fuzzy sets are realized with the aid of t- and s-norms. In all numeric
experiments we consider these triangular norms and co-norms to be a product operation and probabilistic
sum, respectively.

2. The topology of fuzzy models

In general, fuzzy models comprise of two fundamental functional components: (a) input and output in-
terfaces and (b) a processing core. Fuzzy models being in essence aconceptualand logic-driven construct
interact with aphysicalworld of measurable variables. The input and output interface are used to make
this interaction between the two worlds possible. The input interface realizes a perception process: we
perceive and transform input variables (their specific numeric or granular values) into an internal format
of information granules being a language of the entities to be processed at the logic level. The output
interface communicates the results of the logic processing to the external world of numeric data. Quite
commonly following a long tradition in fuzzy controllers we refer to these interfaces as a fuzzification
(input interface) and defuzzification (output interface) (Fig.1).

There have been a number of theoretical and practical investigations into the nature of the interfaces
where numerous issues concerning the number of fuzzy sets, their distribution and ensuing optimization
have been discussed, cf.[11,12]. Quite visible was a discussion on setting up meaningful selection criteria
guiding processes of defuzzification. Apparently, the optimization of the fuzzy sets standing in these

http:// www.ics.uci.edu/~mlearn/MLSummary.html
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Fig. 1. A general topology of fuzzy models with clearly identified functional modules of input interfacing, logic processing at
the level of information granules and output interfacing with the external world. Note a visible distinction between the worlds
of physical and conceptual entities (fuzzy sets).
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Fig. 2. The optimization mode of the fuzzy model realized at the internal level of the processing core operating on membership
grades.

interfaces could be beneficial to the model and contribute to the enhancement of its quality. Accepting
this point of view, for the purpose of this study we assume that fuzzy sets of the input and output interfaces
are given in advance and left unchanged. Our focal point is the logic processing core of the fuzzy model
and its optimization. One can portray this identification scheme as shown in Fig.2; note that we assume
that the experimental data become available to the processing part after their transformation through the
interfaces. This simply means that the optimization of the processing core is guided by some performance
available at this internal level of the model as shown in Fig.2 (which means that we carry out optimization
at the level of the membership grades).

We do not claim that the selection and number of fuzzy sets forming the interfaces are not important
in general. For the purpose of this study, we keep this part fixed and this allows us to concentrate on the
core processing realized in fuzzy models.
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Moving on with the fuzzy model of the Boston housing data, all variables are transformed by means
of Gaussian like membership function described as exp(−(x −m)2/�2) with “m” standing for the modal
value of the linguistic term (fuzzy set) and� being its spread. The experiments are completed for 3 and
4 fuzzy sets defined for each variable being uniformly distributed across the corresponding universes
of discourse. The spread is chosen in such a way that two successive fuzzy sets overlap. The degree of
overlapping is controlled via the level at which two neighboring membership functions intersect. In the
experiments presented in this study this overlap is set at the level of 0.5.

3. The logic-based core of fuzzy models: a design with fuzzy neurons

The ultimate objective of a fuzzy model is to convert data into a logically transparent topology of the
model. To meet this objective, we have to confine ourselves to generic components of the model that
exhibit an evident logic character of processing. This is accomplished by building a model with the use of
logic-based neurons. They seamlessly combine the logic type of processing and learning abilities residing
supported by the adjustable parameters of these neurons.

3.1. Logic processing units- AND and OR fuzzy neurons

The AND and OR fuzzy neurons were introduced in[11] as basic logic processing elements. The
basic formulas governed the functioning of these elements are constructed with the aid of t- and s-norms.
AND neuron

y = n

T
i=1

(wisxi) (1)

OR neuron

y = n

S
i=1

(wi txi), (2)

wherex1, x2, . . . andxn are inputs whilew1, w2, . . . , wn denote connections of the neurons. Both the
inputs and connections (weights) are confined to the unit hypercube. Note that (1)–(2) are just t–s and s–t
compositions (convolutions) of two discrete fuzzy sets. We also use a shorthand notation by collecting the
inputs and connections in two vectors (x andw, respectively). This leads to the expressiony = AND(x; w)

andy = OR(x; w). Some obvious observations hold:
• for binary inputs and connections, the neurons transform to standard AND and OR gates
• the higher the values of the connections in the OR neuron, the more essential the corresponding inputs.

This observation helps eliminate irrelevant inputs: the inputs associated with the connections whose
values are below a certain threshold are eliminated.An opposite relationship holds for theAND neuron:
here the connections close to zero identify the relevant inputs.

• The change in the values of the connections of the neuron is essential to the development of the learning
capabilities of a network formed by such neurons; this parametric flexibility is an important feature to
be exploited in the design of the networks.

These two types of fuzzy neurons are fundamental building blocks used in the design of logic ex-
pressions supporting the development of logic-driven models. The weights equip the logic neurons
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Fig. 3. Characteristics of the OR neurons for selected combinations of the connections: (a)w = [1 1] (b) w = [0.9 0.2],
(c) w = [0.1 0.8].

with a significant parametric flexibility; as shown in Figs.3 and4 the changes in the connections af-
fect their characteristics. This becomes quite profound when inspecting their 2D plots of input–output
relationships.
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Fig. 4. Characteristics of the AND neurons for selected combinations of the connections: (a)w = [0 0], (b) w = [0.9 0.2],
(c) w = [0.1 0.8].
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Fig. 5. A general architecture of the logic-based network; refer to the text for the detailed notation.

3.2. The topology of the logic-based processing core of the fuzzy model

The evident transparency of the model is realized by adhering to the logic fabric of its building blocks. In
a nutshell, we use logic neurons being viewed here as a generic means of forming the skeleton (blueprint)
of the logic model. The topology of the model comes as a realization of the logic expressions capturing
the experimental data. In a nutshell, the rule-based description of data is a collection of if-then statements
combined altogether or-wise. The rules map directly onto the two-layer structure of the network, Fig.5.
The first layer consisting of AND neurons form a collection of conditions of the rules. The OR neurons
in the consecutive layer are aimed at the aggregation of the rules having the same conclusion.

The network is fully described by two matrices of connections (W andV) with the first one describing the
AND neurons while the second one captures the OR neurons. The above matrices collect the connections
of the individual neurons so we treatw1, w2, . . . , wh andv1, v2, . . . , vm as vectors of the connections
of the individual neurons. It means that theith AND neuron reads aszi = AND(x; wi). Similarly, the
notationyj = OR(z; vj ) applies to thej th neuron in the output layer(j = 1, 2, . . . , m).

4. Learning in fuzzy models: challenges and limitations

The gradient-based learning of this class of the fuzzy model comes with solid experimental evidence as
to the nature of the optimization. More importantly, the experimental studies help us quantify the limits
of this type of learning.

4.1. Computational challenges and dimensionality of the problem

The dimensionality of the problem arises as a major obstacle to the efficient learning of the network.
It is of interest to get a better and quantitative insight into the problem and understand why the learning
mechanisms collapse when the dimensionality of the problem increases. The critical part of the network
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Fig. 6. Plots of the output of the AND neuron treated as a function ofw andx for selected values ofn: n = 5 (a),n = 50
(b), andn = 100 (c).

are the AND neurons in the hidden layer. The number of the inputs of these neurons is directly implied
by the number of the input variables or being more precise their representations in terms of the fuzzy sets
defined for each original variable, refer to Fig.2. To quantify the dimensionality effect, we express the
output of the AND neuron treated as a function of the number of its inputs(n). Similarly, we express the
derivative of the output of this neuron taken with respect to the connection. To simplify the analysis, let
us consider all connections being the same (and equal tow). The same assumption is made with regard to
the inputs (these are viewed equal tox). Furthermore we specify t-norm as a product operation and take
the s-norm to be a probabilistic sum. Under these assumptions, the output of the neuron(z) reads as

z = (x sw)n

while its derivative is expressed as follows:

dz

dw
= (x sw)n−1(1 − x).

The plots of these two relationships for selected number of inputs are shown in Figs.6 and7. Noticeably,
bothzand its derivative are heavily affected by the increasing values of “n”; at some point both of them
turn out to be practically equal to zero. The character of these relationships explains why the learning
becomes inherently inefficient if not impossible for the higher dimensionality of the problem.
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Fig. 7. Plots of the derivative of the AND neuron taken with respect to the connection and treated as a function ofw andx for
selected values ofn: n = 5 (a),n = 50 (b), andn = 100 (c).

To illustrate this point, we consider a part of the Boston data treating it as a learning set and proceed with
a standard gradient-based learning. The learning is monitored by recording the values of the performance
index (sum of squared errors). The fuzzy discretization (quantization) involves three fuzzy sets for each
variable. This results in 3∗12 = 36 input variables and 3 output variables. In the experiments, the size of
the hidden layer is equal to 5 and 6 with an intent to investigate an effect this parameter of the structure
has on the efficiency of the learning process. The learning rate is equal to 0.05 (we keep this value low
on purpose; the experience shows that for higher values, the learning may not converge). As becomes
apparent, see Fig.8, the learning exhibits an interesting pattern: there is no significant optimization
for a number of initial iterations, then occurs a rapid jump in the performance index and after this the
performance does not improve. The learning requires more iterations (learning epochs) with the increased
size of the hidden layer.

With the increase of the size of the hidden layer, there is no convergence. We view this as a result of
the size of the network. A similar lack of convergence was observed for higher numbers of inputs to the
network. For instance, with four fuzzy sets defined for each variable (that leads to 48 input variables),
the learning was not successful (no convergence was reported).

To alleviate this problem, we have to develop a different learning strategy in which the gradient-based
learning is augmented by some structural learning.
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Fig. 8. Learning in the fuzzy neural network for two selected sizes of the hidden layer (5 and 6 AND neurons);a = 0.05 and
three fuzzy sets for each variable.

5. A two-phase design of the logic fuzzy models

Having identified the shortcomings of the learning in the fuzzy model, it becomes obvious that further
pursuits require a far more comprehensive optimization policy. What comes as an intuitively appealing
approach is a hybrid learning methodology comprising of two fundamental techniques, namely genetic
optimization and gradient-based optimization.

5.1. Structure and skeleton optimization via a genetic algorithm

To battle the dimensionality problem, we attempt to construct a skeleton of the network by detecting the
most essential connections that shape up the architecture and then concentrate on the detailed optimization
of these connections. As the blueprint of the network has to capture the essence of the logic mapping, for
the purpose of this optimization, the connections are binary (0-1). The optimization has to be global. In
light of these two requirements, genetic optimization is a suitable avenue to follow. More specifically, we
consider a standard version of a genetic algorithm (GA)[1,5,7,15]. The binary string is a representation
of the structure of the network. As the connections are two-valued, the entries of the string map directly
on the connections of the neurons. The arrangement of the connections is also evident as visualized in
Fig.9. The treatment of the connections as binary entities is highly desirable. By doing this, we concentrate
our effort on the determination of the most essential structure of the model that attempts to reveal the
crux of its topology. We anticipate that such structure will hold in spite of small variations in data and
therefore could be regarded as a Boolean “skeleton” of the processing core of the model.

Bearing in mind the form ofAND and OR processing realized by the logic neurons, it becomes obvious
that the binary connections of the neuron have a straightforward interpretation, refer also to Fig.5. In case
of the AND neuron: If the connection is equal to zero, this means that the corresponding input impacts the
output of this neuron. For the OR neuron a reverse situation occurs: the connection equal to one implies
that the specific input is essential and affects the output of the neuron. Noticeably, under these binary
conditions these two neurons behave like digital AND and OR gates.
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Fig. 9. A part of the network and its one-to-one correspondence with the binary string to be optimized by GA. The details of the
structure of the network pertain to the Boston housing data with 36 inputs (12 input variables with 3 fuzzy sets per variable) 3
outputs (that is 3 fuzzy sets defined for the output variable) and connectivity of 2 inputs per node in the hidden layer (suffixes
_1, _2 and _3 represent linguistic labelssmall,mediumandlarge, respectively).

From the design standpoint, we are at position to control the development of the topology of the
network. In particular, we can fix the level of connectivity between the input and hidden layer. We may
refer to a maximal number of connections from the input nodes to each node (AND neuron) in the hidden
layer as the networkconnectivity. For instance, if we have two inputs to the first AND neuron, four to the
second and three to the third, we say that the connectivity of the neuron is equal four.
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Table 1
Parameters of GA used in the experiment

Parameter Value
Population size 100
Selection process tournament
Mutation rate 0.8
Crossover rate 0.3

Such connectivity analysis helps understand the nature of data. First, the number of the meaningful
(zero) connections of the neuron determines a local dimensionality of the input space. The contributing
inputs form thislocalspace. The dimensionality of such space can vary from neuron to neuron. By varying
the maximal number of the connections that are allowed, we can gain a better insight into the intrinsic
dimensionality of the data space. The connections of the OR neuron indicate which of these local input
spaces contribute to the output of the network.

An initial configuration of the Boolean skeleton of the network is set up as follows. For the given
number of the neurons in the hidden layer and the connectivity level (that is the number of the inputs
going to each neuron in the hidden layer), we randomly initiate the connections of the AND neurons
(making sure that the number of the connections between the inputs and each neuron is as specified).
Initially, the connections of the OR neurons are all equal to one. Then we allow the genetic optimization
to adjust the connections.

Proceeding with the numeric data, we carry the genetic optimization of the network. The parameters
of the GA used in the experiment are summarized in Table 1 (note that these parameters were chosen
experimentally). The fitness function maximized by the GA is expressed in the form of the sum of squared
errors between target values (data) and outputs of the network. This fitness has to be minimized (it stands
in contrast with the “classic” way of using fitness functions in GAs whose values are maximized; if
necessary a simple transformation of taking a negative value of the fitness, -fitness, brings us in line with
the way of maximizing the fitness).

We carried out a series of experiments for two parameters controlling the structure of the network, that
is a level of connectivity and the number of AND nodes in the hidden layer. The results are presented
in Table2 and these concern both the training and testing set. The performance index reported there is
taken as an average error per data point. This measure helps us compare the results independently from
the size of the training and testing data sets.

We note that for a fixed connectivity, the increase of the size of the hidden layer results (in general) in
lower values of the performance index (as we can learn by scanning the columns of the two tables). It
is interesting to learn that the increased connectivity for a fixed size of the hidden layer gives rise to the
higher values of the performance index (and this tendency is very evident across all rows of the tables).
These two observations hold true for the increased number of the fuzzy sets, refer to Table3.

The way in which the genetic optimization led to the optimization of the model is reported through the
values of the fitness function in successive generations (Figs.10and11) (note that the fitness function is
minimized as we have already emphasized in the earlier discussion).

As already indicated, the “meaningful” connections of the AND neurons are those equal to zero. For
the OR neurons, the connections equal to 1 are essential. The architectural investigations lead us to two
interesting and important design observations
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Table 2
The results of the GA optimization (performance index) of the network for the training (a) and testing (b) set (3 membership
functions, case in boldface are used in further optimization of the model)
Hidden\connectivity 2 3 4 5
(a) training data set—after GA, before tuning
2 0.0784 0.0850 0.0909 0.1267
3 0.0604 0.0644 0.0853 0.1097
4 0.0590 0.0661 0.0816 0.1131
5 0.0617 0.0615 0.0842 0.1121
6 0.0577 0.0660 0.0829 0.1081
7 0.0584 0.0607 0.0818 0.1064
8 0.0587 0.0622 0.0684 0.1087
9 0.0586 0.0614 0.0735 0.1024

10 0.0591 0.0623 0.0737 0.1000

(b) testing data set—after GA, before tuning
2 0.0812 0.0868 0.0906 0.1269
3 0.0646 0.0649 0.0869 0.1064
4 0.0648 0.0690 0.0853 0.1055
5 0.0655 0.0648 0.0835 0.1127
6 0.0625 0.0673 0.0874 0.1046
7 0.0655 0.0644 0.0792 0.1048
8 0.0591 0.0638 0.0726 0.1066
9 0.0601 0.0653 0.0750 0.1011

10 0.0637 0.0650 0.0759 0.1002

Table 3
The results of the GA optimization of the network for the training (a) and testing (b) set (4 membership functions per variable)
Hidden\input 2 3 4 5
(a) training data set—after GA, before tuning
2 0.0764 0.1023 0.1134 0.1403
3 0.0708 0.0882 0.1144 0.1494
4 0.0655 0.0851 0.1102 0.1386
5 0.0724 0.0898 0.1099 0.1339
6 0.0628 0.0767 0.1111 0.1413
7 0.0724 0.0817 0.1067 0.1406
8 0.0654 0.0858 0.1104 0.1333
9 0.0669 0.0786 0.1098 0.1358

10 0.0742 0.0848 0.1184 0.1351

(b) testing data set—after GA, before tuning
2 0.0675 0.0945 0.1084 0.1393
3 0.0650 0.0836 0.1099 0.1554
4 0.0542 0.0759 0.1047 0.1361
5 0.0667 0.0869 0.1073 0.1289
6 0.0552 0.0648 0.1077 0.1411
7 0.0666 0.0710 0.1028 0.1389
8 0.0546 0.0833 0.1053 0.1278
9 0.0619 0.0740 0.1057 0.1304

10 0.0649 0.0792 0.1150 0.1359



W. Pedrycz, M. Reformat / Fuzzy Sets and Systems 150 (2005) 351–371 365

0 100 200 300 400 500
0.05

0.06

0.07

0.08

0.09

0.10

Generation number

Fig. 10. Performance index–fitness function (expressed as error per data point) for training data set in successive generations
(3 membership functions, the final value for training data set is 0.056 that is lower than the result for the testing data set being
equal to 0.066).
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Fig. 11. Performance index–fitness function (expressed as error per data point) for training data set in successive generations (4
membership functions, final value for training data set 0.060, the result for the testing data set is equal to 0.049).

AND neurons form local feature spaces: The zero connections of these neurons identify the inputs
that are essential locally for the given neuron. Such local feature space whose dimensionality is usually
far lower than the original space is termed in this way as it pertains to the region being captured by the
AND neuron. The local feature spaces help us rank features (more specifically fuzzy sets being the inputs
to the processing core of the model) as to their importance to the overall model. A simple count of the
occurrence of the features in the local spaces coming with the AND neurons is sufficient in this regard.
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Fig. 12. A network generated by GA optimization process (with 3 membership functions per variable).

As each AND neuron may have a different collection of the inputs, the input space is quite heterogeneous
by changing its properties from neuron to neuron.
OR neurons aggregate local feature spaces: The features originated at the level of the AND neurons

are combined by the OR neuron. Some subspaces are discarded if the corresponding connection of the
neuron is set to zero by the genetic optimization.

The Boolean blueprint of the network translates immediately into a series of rules (Fig.12). For instance
taking a rule with conclusion MEDV_1, we read the following rule:

if
NON-RETAIL BUSINESS islarge (INDUS_3)
and
PUPIL-TEACHER RATIO ismedium(PTRTO_2)

or
NON-RETAIL BUSINESS ismedium(INDUS_2)
and
% OF LOWER STATUS POPULATION ismedium(LSTAT_2)

or
CRIME RATE ismedium(CRIM_2)
and
AVERAGE ROOM NUMBER issmall(RM_1)

then
MEDIAN VALUE OF HOME is small(MEDV_1)

In the sequel, we discuss the second development phase of the fuzzy model.
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Fig. 13. Performance index for training data set in successive learning epochs (3 membership functions, final value for training
data set is equal to 0.042, the value of the performance index for the testing data is the same as for the training data).
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Fig. 14. Performance index for training data set in successive learning epochs (4 membership functions, training data — 0.046
testing data — 0.041).

5.2. Gradient-based optimization as parametric refinement of the logic structure

The GA produces a Boolean blueprint of the network. In this way some initial values of the connections
have been established. The data have been approximated by a Boolean formula. The role of the gradient-
based learning is to take from this point and move on with fuzzy set refinement. The refinement involves
transforming Boolean connections into the weights in the unit interval. This enhancement aims at further
reduction in the value of the performance index (Figs.13, 14).
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Table 4
The results of the parametric optimization of the network for the training (a) and testing (b) set (3 membership functions, case
in boldface will be used in further discussion)
Hidden\input 2 3 4 5
(a) training data set—after tuning
2 0.0540 0.0522 0.0466 0.0435
3 0.0403 0.0435 0.0454 0.0473
4 0.0438 0.0412 0.0404 0.0434
5 0.0412 0.0401 0.0429 0.0408
6 0.0438 0.0424 0.0381 0.0434
7 0.0392 0.0343 0.0373 0.0410
8 0.0380 0.0348 0.0402 0.0386
9 0.0406 0.0419 0.0369 0.0406

10 0.0353 0.0350 0.0358 0.0326

(b) testing data set—after tuning
2 0.0548 0.0520 0.0474 0.0467
3 0.0412 0.0451 0.0456 0.0478
4 0.0459 0.0428 0.0403 0.0451
5 0.0429 0.0407 0.0426 0.0409
6 0.0439 0.0429 0.0368 0.0442
7 0.0376 0.0307 0.0363 0.0415
8 0.0372 0.0317 0.0412 0.0377
9 0.0372 0.0429 0.0356 0.0410

10 0.0331 0.0322 0.0361 0.0309

To move from the Boolean structure obtained through genetic optimization to the gradient-based
learning, we introduce a maskM . The mask involves two matrices whose dimensionality coincides with
the size of the network as we started with. Its role is to focus on learning the connections that have been
identified through the genetic optimization as candidates for further optimization. The gradient-based
learning can be expressed in the concise manner as follows:

connection= (connection)M − �(∇connectionQ)M ,

where� is a positive learning rate while(.)M underlines that the connections identified by the mask
are affected. The mask appearing in the above expression states that the connections that have been
identified as meaningful during the genetic optimization are further refined while the remaining are not
optimized whatsoever. The minimized performance index Q is a standard sum of squared errors between
the output of the network and the target (training data). In the above expression, we use the shorthand
notationconnectionto collect all connections of the network. More specifically, more detailed formulas
distinguish between the OR and AND neurons and the connections to be modified
• for AND neurons the mask points at the connections close to zero that may be further refined with the

update of the(i, j)th connection�Wij expressed in the form withMij being the corresponding entry
of the maskM

�Wij =
{

0 if Mij = 0,
�Q

�Wij
if Mij �= 0,
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Table 5
The results of the parametric optimization of the network for the training (a) and testing (b) set (4 membership functions, case
in boldface to be used in further discussion)
Hidden\input 2 3 4 5
(a) training data set—after tuning
2 0.0650 0.0645 0.0653 0.0583
3 0.0512 0.0483 0.0586 0.0457
4 0.0473 0.0474 0.0501 0.0553
5 0.0530 0.0519 0.0531 0.0486
6 0.0454 0.0453 0.0491 0.0481
7 0.0447 0.0455 0.0419 0.0447
8 0.0426 0.0402 0.0493 0.0462
9 0.0433 0.0421 0.0426 0.0448

10 0.0417 0.0422 0.0466 0.0419

(b) testing data set—after tuning
2 0.0570 0.0553 0.0593 0.0500
3 0.0472 0.0450 0.0515 0.0409
4 0.0428 0.0434 0.0458 0.0500
5 0.0469 0.0469 0.0491 0.0410
6 0.0418 0.0410 0.0434 0.0459
7 0.0405 0.0388 0.0368 0.0410
8 0.0376 0.0373 0.0471 0.0417
9 0.0422 0.0393 0.0406 0.0390

10 0.0375 0.0371 0.0428 0.0396

Table 6
The weights of the GA-generated network, Fig.12, after tuning, only for connections between inputs and nodes from hidden
layer (x represents no connections, gray entries indicate valid connections—with weights lower than 0.5)

In #1 In #2 In #3 In #4 In #5 In #6 In #7 In #8 In #9 In #10 In #11
CRIM_1 CRIM_2 INDUS_2 INDUS_3 NOX_1 RM_1 DIS_2 PTRTO_1 PTRTO_2 PTRTO_3 LSTAT_2

Hidden node #1 0.00 x x x x x x x 0.39 x x
Hidden node #2 x x x x x x 0.00 x x 0.40 x
Hidden node #3 x x x 0.00 x x x x 0.25 x x
Hidden node #4 x x x x 0.43 x x 0.14 x x x
Hidden node #5 x x 0.64 x x x x x x x 0.00
Hidden node #6 x 0.00 x x x 0.72 x x x x x

• for the OR neurons the mask identifies the connections that are usually close to one and are still subject
to optimization

�Vij =
{

0 if Mij = 0,
�Q
�Vij

if Mij �= 0.

For the detailed learning formulas the reader may refer to[12]. The intensity of the overall refinement of
the network can be expressed by computing the following difference:

‖W[g] − W∼‖ + ‖V[g] − V∼‖,
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Table 7
The weights of the GA-generated network, Fig.12, after tuning, only for connections between nodes from hidden layer and
outputs (“x” represents no connection, gray entries indicate valid connections whose values are higher than 0.5)

Hidden Hidden Hidden Hidden Hidden Hidden
node #1 node #2 node #3 node #4 node #5 node #6

Out #1 MEDV_1 x x 0.67 x 0.52 1.00
Out #2 MEDV_2 0.78 0.77 0.05 0.31 x 0.00
Out #3 MEDV_3 x x 0.00 0.59 x x
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MEDV_3 

MEDV_2 
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Fig. 15. A network generated by GA optimization process and tuned by parametric optimization (case for 3 membership
functions). Shown are only “valid” connections, viz. those indicated by the gray entries from the two previous tables.

where‖.‖ denotes a distance between two matrices of the connections. The above expression states
how much the network was refined by computing a total departure from the Boolean connections. More
specifically we distinguish between the connections that have been genetically optimized (W[g] andV[g]
that are binary) and those arising after the gradient-based refinement, that isW∼ andV∼. The higher the
values of this index, the more modifications to the connections were necessary to enhance the quality of
the network during the gradient-based optimization phase (Tables4–7).

By contrasting Fig.15 with the Boolean structure we note that the refinement of the structure has
resulted in several connections being eliminated (or equivalently rules being reduced).

6. Conclusions

The proposed development of fuzzy models is an example of essential synergy of the contributing
technologies of Computational Intelligence. The architecture seamlessly combining the logic fabric of
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fuzzy set operations with parametric flexibility of the logic neurons is optimized in a genetic environment.
We have a comprehensive design environment consisting of two main phases of genetic (global) and
gradient-based optimization (parametric refinement). The important concept of network connectivity
associated with local properties of the input space has been introduced and used as an essential mechanism
of dimensionality reduction.

There are several open issues worth pursuing that have not been directly tackled in this study. First, the
matter of the input and output interfaces has been left out from the study. One can anticipate that the careful
design of the interfaces, see[13], can further enhance the performance of the fuzzy model. The related
question is that of simultaneous or separate optimization of the input and output interfaces. The ongoing
challenge of dealing with fuzzy models of high dimensionality is another point worth investigating.
Further extensions along the line of evolutionary optimization such as evolutionary programming and
evolutionary strategies are potential optimization vehicles to be exploited in the future studies.
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