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Abstract

Decreasing warpage is a very significant topic to improve the quality of injection-molded parts. Dimensional

stability is an important factor for the minimum warpage of thin shell plastic part. In this study, efficient

minimization of warpage on thin shell plastic parts by integrating finite element analysis, statistical design of

experiment method, response surface methodology and genetic algorithm is investigated. A thin shell plastic part

model is considered as an example. To achieve the minimum warpage, optimum process condition dimensional

parameters are determined. X dimension, Y dimension, and Z dimension are considered as model variables.

Another parameters of effecting minimum warpage are taken into consideration as constant, such as mold

temperature, melt temperature, injection time, injection pressure, etc. Finite element analyses are conducted for

combination of process parameters organized using statistical three-level full factorial experimental design. A

predictive model for warpage is created using response surface methodology exploiting finite element analysis

results. Response surface model is interfaced with an effective genetic algorithm to find the optimum process

parameter values.
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1. Introduction

As the wall thickness of plastic parts become thinner, the injection molding operation becomes more

difficult. However, the industry demand for techniques of plastic injection molding to produce plastic

parts with thin wall features. The procedure of injection molding is described, such as plastication,

injection, packing, cooling, ejection and process part/part quality control applications. When the interior

of cavity has become stable, the product is ejected from the mold. Defects of the products, such as

warpage, shrinkage, sink marks, and residual stress, are caused by many factors during the production

process. These defects influence the quality and accuracy of the products. Dimensional stability is an

important factor for the minimum warpage of thin shell plastic part. Reducing warpage is one of the top

priorities to improve the quality of injection-molded parts [1–7]. During production of plastic parts, the

quality problems arise from dimensional ratio of the parts designed. Designs of dimensional process

parameters are investigated from several aspects in the literature. Several researches have been

conducted on the warpage of thin shell plastic parts [8,9]. However, very few of them are devoted to the

optimization of such parts [10,11]. In this study, an efficient optimization method by coupling finite

element analysis, response surface methodology and genetic algorithm is introduced to minimize

warpage of thin shell plastic parts. The developed optimization method is applied to a thin shell plastic

part model. During the optimization process, finite element (FE) analyses of the part model base are

conducted for combination of process parameters organized based on statistical full factorial

experimental design. X dimension, Y dimension, and Z dimension are considered as process conditions

dimensional parameters influencing warpage. Another parameters of effecting minimum warpage are

taken into consideration as constant, such as mold temperature, melt temperature, injection time,

injection pressure, etc. A predictive model for warpage in terms of the critical process parameters is then

created using response surface methodology. Response surface model is coupled with an effective

genetic algorithm to find the optimum process parameter values. The following sections explain in detail

the generation of predictive models for minimum warpage.
2. Experimental study

Design of experiment (DOE) has been implemented to select manufacturing process parameters

that could result in a better quality product. The DOE is an effective approach to optimize the
Fig. 1. (a) Base and (b) mesh geometry of thin shell plastic model.



Table 1

Properties of the material used

Commercial product names Bayer ABS Limited, Absolac 300, ABS

Density of solution (g/cm3) 1.0574

Viscosity (Pa s) VI(240)91

Recommended die temperature (8C) 60

Recommended solution temperature (8C) 235

Material characteristics Amorphous
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various manufacturing process parameters [12]. Three independent variables consist of injection

parameters, each with three levels, for warpage were applied total of 33=27 experimental runs [12].

In this study, three independent variables, such as X dimension (Xd), Y dimension (Yd), and Z

dimension (Zd) had total of 33=27 experimental runs. The simulation model of the thin shell plastic

part was designed using Pro/Engineering 2001 CAD software. Base and mesh geometry are shown in

Fig. 1a,b. To develop a simulation model, the geometry of the thin shell plastic part is executed using

Fusion mesh with MoldFlow. It is created by MoldFlow Plastic Insight 3.0 which is a commercial

software based on hybrid finite-element/finite-difference method for solving pressure, flow and

temperature fields. The part is made of ABS (Absolac 300 Bayer Limited) [13]. Material details are

shown in Table 1.

Impax supreme was used as the die material. Mold density of 7.8 g/cm3, mold specific heat of

460 J/kg 8C, and mold thermal conductivity of 29 W/m 8C were considered [13]. Sprue of conic,

runner of circular, and gate of conic were used to inject the melted material into cavity (constant

dimension taken into consideration). In this study, in order to keep the mold temperature constant,

cooling water’s inlet temperature of 20 8C was used. Simulation modeling’s cooling channel

diameter of d (6 mm), cooling channel’s center distance of 3d (18 mm) in horizontal direction,

cooling channel center and parting surface distance of 10 mm were taken into consideration (as
Fig. 2. Finite element modal with cooling channel for thin shell plastic part model.



Table 2

Manufacturing parameters employed in MoldFlow analysis

Injection time (s) 1.45

Injection pressure (MPa) 85

Packing pressure (MPa) 90

Packing time (s) 10

Cooling time (s) 12

Cooling channel diameter (mm) 6

Between cooling channel’s center distance (mm) 18

Number of gate 1

Between cooling channel’s (circuit) center and parting surface distance (mm) 10

Cooling channel of only one section departure length (mm) According to Xd values varies

Water inlet temperature (8C) 20

Water flow/rate (l/min) 2.29

Reynolds number 10,000
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shown in Fig. 2). Manufacturing parameters employed in MoldFlow analysis were shown in

Table 2.
3. Response surface model for warpage

Computationally cost FE model is not suitable for large number of repetitive analyses which are often

required in an optimization process. Therefore, in this study, the FE model for warpage is replaced by a

simpler and more efficient predictive model created by response surface methodology (RSM). RSM is a

model building technique based on statistical design of experiment and least square error fitting. Steps

taken in creating response surface (RS) models by RSM are illustrated in Fig. 3. RSM creates

polynomial models for the available data set as follows:

f ¼ a0 þ
Xn

i¼1

aixi þ
Xn

i¼1

Xn

j¼1

aijxixj þ N ð1Þ

where a0, ai and aij are tuning parameters and n is the number of model parameters (i.e. process

parameters). The polynomial models generated by RSM are often referred to as response surface (RS)
Selection of Order of Polynomial Model

Selection of Analysis Points by Design 
of Experiment Method 

Carrying out Analyses at Selected Points

Model Fitting for Analysis Results 

Fig. 3. Steps taken in creating a response surface model by RSM.



Table 3a

Three factors and three levels

Factors Level 1 Level 2 Level 3

Xd 30 85 160

Yd 5 45 85

Zd 0.8 1.2 1.6
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models in the literature. RSM was originally developed for the model fitting of physical experiments by

Box and Draper [14] and later adopted in other fields. To cerate RS models, a computer program has

been written in MATLAB language. The program has the capability of creating RS polynomials up to

10th order if sufficient data exist. All cross terms in the models can be taken into account. RS models can

also be generated in terms of inverse of parameters. That is, xi can be replaced as 1/xi (i.e. inversely) in

RS model if desired. RS models of varying orders from first order to third order are created and tested

with the developed program. The data set consists of 33=27 analysis results and corresponds to the

combination of three-dimensional parameters affecting the warpage. Therefore, RS models generated

describe warpage in terms of the dimensional parameters (X dimension (Xd), Y dimension (Yd), and Z

dimension (Zd)). The data set is divided into two parts; one part to create the model, other part to check

the accuracy of the created model. These data sets are shown in Tables 3a–3c.
Table 3b

Training data sets blocks

Experiment no. Training data sets blocks and results

X dimension, Xd (mm) Y dimension, Yd (mm) Z dimension, Zd (mm) Warpage (mm)

1 30 5 0.8 0.0977

2 95 5 0.8 0.3017

3 160 5 0.8 0.4978

4 30 45 0.8 0.1737

5 95 45 0.8 0.3063

6 160 45 0.8 0.5101

7 95 85 0.8 0.3871

8 160 85 0.8 0.5411

9 30 5 1.2 0.0990

10 95 5 1.2 0.3106

11 160 5 1.2 0.5011

12 30 45 1.2 0.1758

13 95 45 1.2 0.3491

14 30 85 1.2 0.2905

15 95 85 1.2 0.4173

16 160 85 1.2 0.5578

17 30 5 1.6 0.0995

18 95 5 1.6 0.3160

19 160 5 1.6 0.5062

20 30 45 1.6 0.1766

21 160 45 1.6 0.5227

22 30 85 1.6 0.2917

23 95 85 1.6 0.4201

24 160 85 1.6 0.5699



Table 3c

Check data sets blocks

Experiment no. Check data sets blocks and results

X dimension, Xd (mm) Y dimension, Yd (mm) Z dimension, Zd (mm) Warpage (mm)

1 30 85 0.8 0.2847

2 160 45 1.2 0.5149

3 95 45 1.6 0.3524
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Afterwards, each factor was made of symbol digit 0 (directly) and 1 (inversely). Factor statement was

changed directly and inversely on function base (23=8). Linear, parabolic, and cubic polynomial

functions were used to see check data sets result percentage error. Accuracy of the created RS models is

shown in Table 4. As seen from Table 4, cubic polynomial, where all dimensional parameters are

included directly, gives the least error of acceptable value (1.43%) and this model is therefore utilized in

the warpage optimization with genetic algorithm in the following section. Approximately empirical Eq.

(2) is shown as:

f ¼ a0 þ a1Xdþ a2Xd
2 þ a3Xd

3
� �

þ a4Ydþ a5Yd
2 þ a6Yd

3
� �

þ a7Zdþ a8Zd
2 þ a9Zd

3
� �

þ a10XdYdþ a11YdZdþ a12XdZdþ a13XdYdZdþ N ð2Þ

where a0, ai and aij are tuning parameters and X dimension (Xd), Y dimension (Yd), and Z dimension

(Zd) are significant dimensional parameters of minimum warpage for a thin shell plastic parts. The

minimum warpage was predicted by 1.43% error using cubic polynomial function (Tables 5a and 5b).
4. Warpage optimization by genetic algorithm

4.1. Optimization problem formulation and solution

In this research, the best (optimum) warpage condition within the range given in Tables 3a–3c is

determined by using an optimization method. For this purpose, minimum warpage process is defined in
Table 4

Comparison check data sets result percentage error

Reciprocal flag Polynomial function types and percentage error

Linear

(needed training data is 4)

Parabolic

(needed training data is 10)

Cubic

(needed training data is 20)

[0 0 0] 22 7.2 1.43

[0 1 0] 33.17 13.58 2.74

[0 0 1] 23.15 8.04 1.98

[1 0 0] 28.32 2.01 1.94

[1 1 0] 39.31 10.71 3.28

[0 1 1] 34.27 14.47 1.82

[1 0 1] 28.83 2.16 4.94

[1 1 1] 40.05 11.23 3.04



Table 5a

Comparison of training data sets results for cubic polynomial function and FE

Experiment no. Comparison of training data sets results (mm)

FE results Cubic polynomial function results

1 0.0977 0.0998

2 0.3017 0.2959

3 0.4978 0.5002

4 0.1737 0.1683

5 0.3063 0.3202

6 0.5101 0.5038

7 0.3871 0.3853

8 0.5411 0.5417

9 0.0990 0.1004

10 0.3106 0.3091

11 0.5011 0.5034

12 0.1758 0.1769

13 0.3491 0.3432

14 0.2905 0.2943

15 0.4173 0.4117

16 0.5578 0.5618

17 0.0995 0.0979

18 0.3160 0.3191

19 0.5062 0.5034

20 0.1766 0.1767

21 0.5227 0.5248

22 0.2917 0.2898

23 0.4201 0.4234

24 0.5699 0.5672
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the standard optimization problem format that can be solved by a numerical optimization algorithm.

Standard optimization problem definition requires an objective function to be minimized or maximized

and constraint functions to be satisfied in terms of optimization parameters. For a thin shell plastic part

model, optimization problem can be defined as follows:

Find : Xd; Yd; Zd ð3aÞ

Minimize : Warpage Xd; Yd; Zdð Þ ð3bÞ

Subjected to constraints : WarpageV0:0977 mm ð3cÞ
Table 5b

Comparison of check data sets results for cubic polynomial function and FE

Experiment no. Comparison of check data sets results (mm)

FE results Cubic polynomial function results Error (%)

1 0.2847 0.2842 0.17

2 0.5149 0.5188 0.75

3 0.3524 0.3574 1.43



FE Analysis
(MoldFlow)

Response Surface Model
Program

Genetic
Algorithm

Fig. 4. Interaction of simulation software, RS model and GA during warpage optimization.
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Within ranges:

30 mmVXdV160 mm ð3dÞ

5 mmVYdV85 mm ð3eÞ

0:8 mmVZdV1:6 mm ð3fÞ

Ranges of variables for Xd/Zd ratio of ABS material based on the minimum and maximum values that

should be used in MoldFlow User manual were selected [13]. Ranges of variable for Yd were selected to

take into consideration Xd/Zd ratio, randomly. There are several numerical optimization algorithms

available to solve the above optimization problem. In this study, a global optimization method, genetic

algorithm (GA) [15], is used to converge a global optimum among several possible local optimums. To

solve the above optimization problem, an effective GA is coupled with the response surface model for

warpage to yield a global optimum as shown in Fig. 4.

Genetic algorithm (GA) simulates biological evolution process; Darwin’s theory of survival of the

fittest. The solution of the optimization problem with genetic algorithm begins with a set of potential

solutions or chromosomes (usually in the form of bit strings) that are randomly generated or selected.

The entire set of these chromosomes comprises a population. The chromosomes evolve during several

iterations or generations. New generations (offspring) are generated using the crossover and mutation

technique. Crossover involves splitting two chromosomes and then combining one half of each

chromosome with the other pair. Mutation involves flipping a single bit of a chromosome. The

chromosomes are then evaluated using a certain fitness criteria and the best ones are kept while the

others are discarded. This process repeats until one chromosome has the best fitness and thus is taken as

the best solution of the problem.

The critical parameters of genetic algorithm in solving an optimization problem effectively are the

size of the population, mutation rate, number of iterations (i.e. generations), etc. In this study, population

size of 50, crossover rate of 1.0, mutation rate of 0.1, bit number for each variable of 16, and number of

generations of 500 are employed.

4.2. Optimization results

Optimization problem in Eqs. (3a)–(3f) is solved with and without constraints to search the effect of

several what-if scenarios such as the existence/non-existence and the magnitude of constraint limits on
Table 6

Dimension parameters of minimum warpage condition values and after optimization

Injection molding process parameters

Xd (mm) Yd (mm) Zd (mm)

After optimization 30 5 0.9
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Fig. 5. Optimization history with iterations for warpage.
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optimum values of parameters. In the with constraint option, solutions are conducted for variety of

constraint limits. Constraint upper limits for maximum warpage are 0.0977 mm. With a solution, a set of

optimum values is obtained to provide the user with a wide range of selection of warpage dimensional

parameters. Validation of the optimum values obtained from the GA program with FE simulations is

performed for some values. These values are shown in Table 6. Optimization history has 500 iterations

and these are demonstrated in Fig. 5. Warpage distribution on the thin shell plastic part model based on

optimum dimensional parameter set result according to Table 6 is shown in Fig. 6.

When maximum warpage is considered, it is seen that maximum warpage on the thin shell plastic

parts model, according to Table 3b is 0.0977 mm before the optimization, is reduced to 0.0582 mm by

40.4% after optimization. The constraint of minimum warpage imposed is seen in Table 6.
5. Conclusions

In this study, an efficient optimization methodology using RSM and genetic algorithm was introduced

in minimizing warpage of thin shell plastic parts manufactured by injection molding. A thin shell plastic
Fig. 6. Warpage distribution on the thin shell plastic part model based on optimum dimensional parameters.
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part model was designed. To achieve the minimum warpage, the appropriate dimensional parameters

were determined. X dimension (Xd), Y dimension (Yd), and Z dimension (Zd) were considered as

dimensional parameters. Finite element analyses were conducted for combination of dimensional

parameters organized using statistical three-level full factorial experimental design method. A predictive

model for warpage was created in terms of the dimensional parameters (X dimension (Xd), Y dimension

(Yd), and Z dimension (Zd)) using response surface methodology to reduce the computational cost of the

optimization process. Response surface model was interfaced with an effective genetic algorithm to find

the optimum process parameter values. GA had reduced the warpage of the initial model significantly.

Warpage was improved by 40.4%. This indicated that the optimization methodology in this study could

also be employed to improve other thin shell plastic parts.
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