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Abstract

Artificial neural networks were applied to the design of rubble mound breakwater. Five neural

networks with different network structures were trained with the same training data. Then they were

compared with conventional empirical model and one another. It was found that the neural network

technique gives more accurate results than conventional empirical model and the extent of accuracy

can be affected by the structure of neural network. After that, how to integrate the trained neural

network into reliability analysis technique is proposed. Since the neural network technique shows

better performance than empirical model based approach in breakwater design, it is expected that the

neural network integrated reliability analysis gives more improved results for probability of failure

than it is done with empirical model.

q 2005 Elsevier Ltd. All rights reserved.

Keywords: Breakwater; Stability; Neural network; Reliability based design; Monte Carlo simulation

1. Introduction

The stability of rubble mound breakwater is usually analyzed by the well-known

empirical formulae by Hudson (1958) and van der Meer (1988a). Those formulae are used

to determine the individual weight of armor blocks of a breakwater. Although those

formulae were derived from a number of experimental data, they show too much
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disagreement between the measured stability numbers and the predicted ones. The

uncertainties in the empirical formulae inevitably increase the factor of safety and,

eventually, the construction cost. Therefore, a number of studies have been carried out to

develop an advanced empirical formula for breakwater stability.

Kaku (1990) and Kaku et al. (1991) proposed an empirical formula for damage level

prediction based on the van der Meer’s experimental data. Smith et al. (1992) compared

their own test results with the prediction by Kaku et al. (1991). Hanzawa et al. (1996)

proposed an empirical formula for stability number based on their own test data. Although,

several empirical formulae have been proposed for decades, remarkable improvement

cannot be seen. Recently, Mase et al. (1995) proposed a new stability evaluation method

by using neural network. The neural network technique seems to make a breakthrough in

the design of rubble mound breakwater. Actually, the damage levels predicted by the

neural network agree better than those by the van der Meer’s. The stability number,

however, still need to be improved.

In this study, several neural network models are proposed to predict the stability

number of armor blocks of breakwater. The same training data set is used for the neural

networks but the structures of neural network, the number of nodes at input and hidden

layer, differ from one another. Based on the numerical examples, it was shown that the

neural network technique gives more accurate results than conventional empirical model

and the extent of accuracy can be affected by the structure of neural network.

After that, a new reliability analysis technique is proposed by combining the trained

neural network with Monte Carlo simulation. Since the neural network technique shows

better performance than empirical model based approach in breakwater design, it is

expected that the neural network integrated reliability analysis gives more improved

results for probability of failure than it is done with empirical model.
2. Empirical formula for stability

van der Meer proposed a stability model by analysing a large number of irregular wave

tests on rock stability in his Thesis van der Meer (1988b). He first surveyed the influential

design parameters which should be included in the empirical model such as the significant

wave height (Hs), the mean wave period (Tm), the relative density of stone

(DZrs=rw K1), the nominal diameter of stone (Dn50), the permeability of breakwater

(P), the number of wave attack (Nw), the slope angle (a), etc. The stability formula using

these parameters was given by
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where Ns is the stability number defined as

Ns Z Hs=DDn50 (2)
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and Sd is the damage level defined by using the eroded area (A) of the breakwater cross-

section as

Sd Z
A

D2
n50

(3)

and xm is the surf similarity parameter of the following form

xm Z
tan affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pHs=gT2
m

p (4)

The transition condition of surf similarity is expressed as

xc Z ð6:2P0:31
ffiffiffiffiffiffiffiffiffiffi
tan a

p
Þð1=ðPC0:5ÞÞ (5)

Fig. 1 shows the predicted stability numbers together with the measured ones for van

der Meer’s 641 data. As can be seen in the figure, the degree of agreement between the

measured stability numbers and the predicted ones is not so good. The scattering of

the predicted stability numbers from the measured ones cannot be negligible. Due to the

uncertainty of the prediction results, unnecessary increases in the factor of safety, and

simultaneously, the construction cost is inevitable. Hence, a new prediction model with

higher accuracy is certainly required.
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Fig. 1. Stability numbers predicted by van der Meer’s formula.
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3. Stability model using neural network
3.1. Neural network

Neural network is an information processing unit that was invented by modeling the

human brain. It has ability to reproduce any kind of input–output relationship after it is

properly trained. Due to the learning capability, the neural network has been widely used

in many engineering problems, which cannot be easily solved by conventional

mathematical approaches. Stability assessment of rubble mound breakwater is one of

the suitable examples to which the learning capability of neural network is well applied.

Fig. 2 shows the typical layout of neural network. It consists of input layer, hidden

layer, and output layer. And each layer has some nodes, which is the basis of information

process. If there are nx, ny, nz nodes at each layers, and the neural network receives

x(nx!1) as input, the output of hidden layer can be obtained as

y Z f ðW1x Cb1Þ (6)

where W1(ny!nx) is the weighting matrix between input and hidden layer and b1(ny!1) is

the bias vector at hidden layer, and f denotes an activation function, with constant u0,

which is given as

f ðuÞ Z
1

2
1 C tanh

u

u0

� �	 

(7)

Likewise, the out of neural network can be obtained simply as

z Z f ðW2y Cb2Þ (8)

where W2(nz!ny) is also the weighting matrix between hidden and output layer, b2(nz!1)

is the bias vector at output layer. When the neural network is applied to breakwater design,

x includes the design parameter such as wave height, period, etc. and z is the stability

number (Ns) to be estimated.

With initially chosen weights, the neural network cannot estimate the required output.

Therefore, the weights should be first found in a reasonable way that is the so-called

training. To train a neural network, error function is defined as

E Z kt Kzk2 (9)
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Fig. 2. A typical layout of neural network.
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where t is the target value to be sought. By steepest gradient approach, it was already

shown that if the weight matrix is updated according to the following rule, the error

function can be minimized.

DW2 Z ad2yT (10)

DW1 Z ad1xT (11)

where a denotes the learning rate, T means the transpose of a vector, and d2 and d1 can be

written as

d2 Z ðt KzÞ5z0 (12)

d1 Z ½WT
2 d2�5y0 (13)

In the above equation, prime denotes the derivative of a function and 5 is the element-by-

element operator that can be expressed as
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3.2. Mase et al.’s approach (1995)

Using randomly chosen 100 data from the experimental data of van der Meer (1988a),

Mase et al. trained two neural network models to predict the stability number and damage

level, respectively. The neural network consisted of six input nodes such that P, Nw, Sd, xm,

dimensionless water depth (h/Hs), and spectral shape (SS). They newly added h/Hs and SS

to the neural network input to improve the prediction accuracy. The predicted damage

levels actually agree better to the calculated ones than van der Meer’s. The correlation

coefficient for damage levels was increased from 0.7 (van der Meer’s formula) to 0.81

(neural network). However, the stability numbers still need to be improved. Actually the

correlation coefficient was decreased from 0.92 (van der Meer’s formula) to 0.91 (neural

network). For design purpose, the stability number is much more useful. Therefore, an

advanced prediction model for the stability number is required.

More valuable finding in the study is that there exist some optimal numbers of training

epoch. In common sense, it can be thought that the more training iteration gives the better

prediction results. However, it is not true in case of the breakwater design. The numerical

examples showed that too many training iteration could lead the network to be over-

trained. Therefore, the training iteration was restricted to 5000 times in the study.
3.3. Neural network models for benchmarking

To compare the performance of neural network for stability prediction, five neural

network models were employed. Each model has its own input parameters as in Table 1.



Table 1

Input parameters of neural network models

Model Input parameters

ANN I P, N, Sd, xm, h/Hs, SS

ANN II P, N, Sd, xm, SS

ANN III P, N, Sd, xm, h/Ls, SS

ANN IV P, N, Sd, cos q, Hs/Ls, h/Hs, SS

ANN V P, N, Sd, cos q, Hs, Ts, h/Hs, SS
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ANN I was first proposed by Mase et al. and it is used in this study for comparison with

other models. ANN II is presented to identify the effect of water depth parameter, h/Hs, on

the prediction performance. In ANN III, the water depth parameter is replaced by h/Ls

where Ls is the period of significant wave. ANN IV is to show the effect of expansion of

input dimension of neural network. Usually, the predictability of neural network increases

to some extent when the input dimension increases. Therefore, the surf similarity is

replaced by cot q and Hs/Ls. ANN V is to identify whether the performance can be

improved or not when the neural network input is further expanded to include the wave

height and the wave period.

To evaluate the stability models in more reasonable way, the so-called index of

agreement of the following equation is used (Willmott, 1981).

Ia Z 1 K

Pn
iZ1ðei KmiÞ

2Pn
iZ1½jei K �mjC jmi K �mj�2

(15)

where ei and mi denotes the estimated and the measured stability number; �m is the average

of measured stability. As Ia closes to one, the predicted set agree well to the measured set.

The correlation coefficient has been widely used in many engineering data analysis. But it

is not thought to be the best criterion for the problems whose purpose is to check how well
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Fig. 3. Index of agreement during training (ANN I).
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Fig. 4. Index of agreement during training (ANN II).
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the predicted values agree to the measured ones. The correlation coefficient is basically

defined to evaluate not the coincidence but the linearity between any two data sets.

Therefore, the index of agreement is more suitable for the evaluation of estimation

accuracy.

The same 100 data randomly chosen from the van der Meer’s 641 data are used to train

the five neural network models. Then, the accuracy of the trained neural network is

evaluated with 641 data. Figs. 3–7 show the index of agreements during training. The index

of agreements of all the models are larger than that of van der Meer’s at above 1!104

training epochs and they increase with further training. ANN I is, however, optimal at

1!104 training epochs and get worse with further training. The optimal condition for five
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Fig. 5. Index of agreement during training (ANN III).
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models are summarized in Table 2. The index of agreement of ANN I is more closer to one

than that of ANN II. It implies that the water depth parameter, h/Hs, is effective in estimating

the stability number. In addition, ANN IV and ANN V are better than ANN I–ANN III

implying that any neural network becomes effective when using the design parameters as

independent network input rather than using artificial parameters such as the surf similarity

as one input. It is well-known characteristics of neural network. The stability numbers

predicted by the optimal neural network models are shown in Figs. 8–12, respectively.

However, one should note that the stability models are trained by using the data

obtained from the scale model test. Actually, the training wave height data ranges from

0.0461 to 1.18 m and the mean wave period from 1.24 to 4.4 s which are quite small

compared with practical design ranges. Usually, when a neural network receives input
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Fig. 7. Index of agreement during training (ANN V).



Table 2

Performance of stability models

Criteria Model

VM ANN I ANN II ANN III ANN IV ANN V

Index of

agreement

0.926 0.951 0.947 0.944 0.954 0.975

(Epoch) – (1!104) (5!104) (5!104) (5!104) (5!104)

(Hidden

layer node)

– (4) (4) (4) (20) (12)

Correlation

coefficient

0.876 0.914 0.906 0.902 0.915 0.952

(Epoch) – (1!104) (5!104) (5!104) (5!104) (5!104)

(Hidden

layer node)

– (4) (20) (4) (20) (12)
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data, which out-range the data used in the training, it cannot predict proper output. So, the

ANN V cannot be considered to be useful for design purposes. This can be seen from

Fig. 12. The design weights of armor units are calculated according to the damage level.

The other design parameters are fixed as (case I): hZ6 m; HsZ3.5 m; TmZ10.0 s; TpZ
11 s; TsZ10.406 s; cot qZ3.0; PZ0.5; NZ1000; DZ1.63; SSZPierson Moskowitz

Spectrum. As can be seen from the figure, the weights of amour layer cannot be accepted

as physically meaningful ones (Fig. 13).
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Fig. 8. Stability numbers predicted by ANN I.
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Fig. 9. Stability numbers predicted by ANN II.
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Fig. 10. Stability numbers predicted by ANN III.
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Fig. 12. Stability numbers predicted by ANN V.
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On the other hand, ANN I–ANN IV give physically acceptable results as shown in

Fig. 14. It can be concluded, therefore, that ANN IV is the most effective and practically

useful model among the five models.

In case I, the van der Meer’s formula gives much conservative results than neural

network models. But, for a second case (case II) where the parameters are selected as: hZ
3 m; HsZ2.0 m; TmZ5.0 s; TpZ5.5 s; TsZ5.2 s; cot qZ3.0; PZ0.5; NZ1000; DZ1.63;

SSZPierson Moskowitz Spectrum; the weights of amour blocks by ANN III and ANN IV

give much conservative design results than van der Meer’s as shown in Fig. 15. Likewise,

it is case by case whether van der Meer’s formula and neural network model give

relatively lighter or heavier design weights. Therefore, it may be dangerous to design a

breakwater based only on an empirical formula such as van der Meer’s. It is recommended

that advanced stability model such as neural network models should be used to design a

armor units in more economic and safer way.
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Fig. 14. Weight of amour layer by ANN I–ANN IV (case I).
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4. Reliability analysis combined with neural network

Reliability based design approach using the trained neural network model is proposed.

The so-called Monte Carlo simulation, one of the level III approach, is used to analyze the

probability of failure for a given design point. The flow chart of Monte Carlo simulation is

described in Fig. 16.

The n set of design parameters can be generated by using the distribution

parameters such as means and standard deviations. Then, the stability numbers can be

predicted by the trained neural network, or by the empirical formula for each n set.

Using the predicted stability number, the reliability function value, Z, is calculated. If

Z is positive, then the design set is considered to be safe. But if Z is negative, then it

is expected to be in failure. Repeat this process until i equals n. The failure

probability is finally obtained by dividing the failure cases (f) by the total populations

(n).

In the case of neural network approach, the reliability function is defined by

ZNN Z NNN
s DDn50 KHs (16)

where NNN
s denotes the stability number predicted by neural network. For empirical

stability model, the following reliability function is used

Z Z
6:2P0:18 Sffiffiffi

N
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1:0PK0:13 Sffiffiffi
N
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� �0:2 ffiffiffiffiffiffiffiffiffiffi
cot a

p
xP

m DDn50 KHs xm Rxc

8><
>: (17)

For random simulation, 2!104 design parameter sets are generated. Some of them are

constants and others show normal distribution with means and standard deviations listed in
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Fig. 16. Flow chart of Monte Carlo simulation.
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Table 3 (case I). For simplicity, the peak wave period and significant wave period are

assumed to be TpZ1.3Tm; TsZ0.946Tp.

While, the wave height shows Weibull distribution of the following form

Prob½HRHs� Z exp K
Hs KC

B

� �g� �
(18)

in which B is the scale parameter; C is the background noise level; g is the shape

parameter.



Table 3

Distribution of design parameters used in reliability analysis (case I)

Parameter Distribution Average Standard deviation

Sd Normal 6.0 1.0

Dn50 Normal 1.0 0.03

Hs Weibull (BZ0.3, CZ2.53, gZ1.0)

Tm Normal 7.0 0.5

cot a Normal 3.0 0.15

D Normal 1.63 0.05

h Normal 6 0.2

Nw Const. 1000

P Const. 0.1

SS Const. Pierson Moscowitz spectrum
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Fig. 17 shows the probability density functions constructed with 2!104 data sets. In the

graph, the failure probability equals the integrated area below the curve from ZZ0 to

negative infinite. The failure probabilities and reliability indices are summarized in

Table 4. The failure probability by van der Meer’s formula is the largest among the

models. In this case, van der Meer’s formula gives conservative failure probability. On the

other hand, for the design case (case II) with parameter distributions of Table 5,

probability density function and failure probabilities are shown in Fig. 18 and Table 6.

On the contrary to case I, failure probability with ANN IV is the largest among

them. Therefore, it can be said that the failure probability based on only one empirical

formula may lead absolutely conservative (case I) or dangerous (case II) design results.
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Fig. 17. Probability density functions of Z (case I).
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Table 5

Distribution of design parameters used in reliability analysis (case II)

Parameter Distribution Average Standard deviation

Sd Normal 6.0 1.0

Dn50 Normal 0.8 0.03

Hs Weibull (BZ0.2, CZ2.2, gZ1.0)

Tm Normal 4.0 0.5

cota Normal 3.0 0.15

D Normal 1.63 0.05

h Normal 3.0 0.1

Nw Const. 1000

P Const. 0.1

SS Const. Pierson Moscowitz spectrum

Table 4

Failure probabilities and reliability indices (case I)

Stability model Failure probability (%) Reliability index (b)

van der Meer 6.84 1.488

ANN I 0.005 3.891

ANN II 1.05 2.308

ANN III 2.64 1.937

ANN IV 0.17 2.929
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Table 6

Failure probabilities and reliability indices (case II)

Stability model Failure probability (%) Reliability index (b)

van der Meer 0.04 3.353

ANN I 0.00 N
ANN II 0.005 3.891

ANN III 0.245 2.814

ANN IV 2.36 1.985
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To avoid this situation, one should adopt more advanced stability models such as

neural network models in designing a armor units rather than using only one empirical

formula.
5. Conclusions

In numerical examples, it was shown that the neural network technique gives more

advanced results than the empirical model in estimating the stability number of

breakwater and the estimation performance can be affected by the neural network

structures employed. Especially, the neural network using wave steepness and slope

angle as separate inputs shows better performance than those with surf similarity. The

neural network with inputs such as wave height and mean wave period turned out to be

useless in practical design because the parameters are usually beyond the range of

training data set.

It was shown that the trained neural network model can be embedded into Monte Carlo

simulation technique which estimates the failure probability of breakwater.

Since the neural network technique shows better performance than empirical model

based approach in breakwater design, it is expected that the neural network integrated

reliability analysis gives more advanced results for probability of failure than it is done

with empirical model.
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