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Abstract

An overview of rolling contact fatigue phenomena occurring at wheels and rails is given. The paper outlines mechanisms behind the various
phenomena, means of prediction, influencing parameters and possible means of prevention.
© 2004 Elsevier B.V. All rights reserved.
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. Introduction

Considering a number of criteria such as capacity, speed
nd environment, railway is a superior mean of transporta-

ion. Specifically, it has gained a crucial role in limiting traf-
c congestion in heavily crowded regions. In this perspec-
ive, rolling contact fatigue (RCF) of railway components is

most crucial subject. RCF-caused accidents may not only
ause personal injuries and economical costs, they may also
end people to commute by car, which further increases traffic
ongestion, causes environmental problems and eventually
ay lead to an increase in personal injuries since car traffic

s significantly more unsafe than railway transportation.
In this concept, also non-catastrophic RCF failures are of

mportance since they cause unplanned maintenance which
ventually causes decreased capacity and delays in the train
raffic.

The current paper is aiming at an overview of RCF fail-
res. Topics covered are failure mechanisms of railway com-
onents, possibilities and means of numerical modelling and
rediction of RCF, and possibilities to prevent RCF.

2. Specific issues in rolling contact fatigue

The analysis of rolling contact fatigue differs from
‘classic’ fatigue analysis in several aspects:

• The rolling contact loading causes a multiaxial stat
stress with out-of-phase stress components and ro
principal stress directions.

• As they grow longer, cracks subjected to a multiaxial lo
ing normally deviate into a Mode I dominated growth
follow a weak path in the structure). This is not the cas
rolling contact fatigue, due to the large confining press
under the contact which normally suppresses any Mo
deformation of the crack in the absence of trapped flu
etc., see Section3.2. Instead cracks propagate mainly i
mixed Mode II–Mode III.

• In a predominantly compressive loading, the validity
traditional fatigue models may be questioned. As an i
tration, Paris’ law predicts zero crack growth under c
pressive loading in its original form since it employs
range of the Mode I stress intensity factor, cf the ab
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point.
• Due to the compressive loading, crack face friction will

control the crack propagation, cf[1]. The magnitude of
operational crack face friction is, however, hard to quantify.
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• A similar effect of the compressive loading is that crack
face deflection increases with crack length and may cause
complete locking between the crack faces for part(s) of the
crack[2–4].

• Occasional overloads may slightly accelerate crack
growth, in contrast to the behavior in tensile loading, see
[5,6]. This may lead to non-conservative fatigue life pre-
dictions.

For railway components, the issue is further complicated
by the fact that there are major randomness (and systematic
deviations) in acting loads[7], contact geometries and fatigue
strengths (the latter due to the influence of material defects
[5,8] and the large stressed volumes).

Overviews of rolling contact fatigue in general and of rail-
way components in particular can be found in Refs.[9–23].

3. Surface initiated cracks

Below is a summary of mechanisms behind the initiation
and growth of cracks from the surface of a component in
rolling contact (with focus on railway wheels and rails). Some
influencing factors are discussed.
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plastically, seeFig. 1. If the deformation occurs in a dominant
direction, the microstructure will show clear signs of being
“rolled out”, seeFig. 2a. If material hardening and residual
stresses are not sufficient to prevent further accumulation of
plastic strains, cracks will eventually form when the fracture
strain is exceeded. This fracture strain is far above that of ten-
sile tests, the reason being the beneficial influence of the com-
pressive stresses, cf[24]. Such a mode of fracture is referred
to as ratchetting, and is frequently studied in twin-disc tests
(although it has also been studied by biaxial testing[25]). The
ratchetting strain has been shown to be a non-linear function
of contact pressure and number of contact cycles, see[26].

In the case of alternating directions of frictional loading
(for instance due to alternating traction/braking), the material
will not ratchet in the same manner since plastic deformations
will occur in both directions causing the accumulated plastic
strain to be close to zero. Failure will instead be caused by
low-cycle fatigue. For combinations of low-cycle fatigue and
ratchetting, fatigue and ratchetting can be seen as competitive
mechanisms[20,27].

The theory of crack initiation due to plastic deformation of
the surface material has a strong support from metallographic
studies of fractured surfaces, seeFig. 2a. In rails surface ini-
tiated fatigue typically occurs at the gauge corner, whereas
on wheels the surface fatigue damage can be spread all over
t
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.1. Crack initiation due to surface plasticity

When a railway component in rolling contact is subjec
o repeated applications of high friction loads (due to t
ion, braking, curving, etc.), the surface material will defo

ig. 1. Schematic sketch of plastic deformation of the surface mat
eformation.
Fig. 2. (a) Deformed microstructure and crack growth in rolling co
he tread, seeFig. 2b.

.2. Crack growth

Surface initiated cracks initially grow into the materia
shallow angle (corresponding to the texture of the pl

a railway wheel. The dashed lines indicate material planes befor
ntact. (b) Surface damage due to surface initiated fatigue (from[3]).
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Fig. 3. Schematic representation of growth of surface initiated fatigue cracks
in wheels. Once initiated, the crack will deviate to an almost radial direction.
At a depth of about half a millimeter, the crack will tend to deviate (or
branch) towards a circumferential growth. Final fracture will typically occur
as deattachment of a piece of the surface material when the cracks deviate
towards the surface.

cally deformed surface material) which soon deviates into an
almost radial direction. In railway wheels, the cracks then nor-
mally deviates (or branches) again and continues to propagate
in a circumferential direction at depths of some 0.5–5 mm,
see[3] andFig. 3. Final fracture typically occurs as a branch-
ing of the crack towards the surface, breaking off a piece
of the surface material, seeFigs. 2b and 3. A more uncom-
mon failure mode is radial growth towards the hub of surface
initiated cracks. Such a mode is promoted by high thermal
loading, see[28] and Section3.6.

In rails, surface cracks typically propagate a longer dis-
tance before deviation to vertical growth occurs. It is also not
uncommon that surface cracks continue to propagate down-
wards until a complete failure of the rail occurs. Such a trans-
verse fracture is promoted by global bending and tensile bulk
stresses in the rail (for instance due to cooling of a welded
track).

Branching of multiaxially loaded test specimens was stud-
ied in [29]. The resulting proposal was that branching of rail
cracks are governed by the effective stress intensity range and
the degree of overlap between the loading modes (shear and
compression). Further experimental studies of the propaga-
tion of shear loaded cracks are reported in[30]. Also here, the
control of mode overlapping was found to be very important
to get cracks to grow in shear.

ding
i

text, compressive overloads may be detrimental in crushing
crack face asperities and thus reducing the crack face friction
[6].

3.2.1. The influence of lubrication
There are different theories on the mechanisms behind

surface crack propagation. Most theories emphasize the in-
fluence of lubrication on crack growth. Lubrication is here
used in a wide sense including all fluid matters that may en-
ter the crack, e.g. water, grease, oil, etc.

Three possible mechanisms to explain the role of lubrica-
tion have been put forward, see[32]:

• Crack face lubrication which decreases crack face friction
and increases the crack driving forces. This effect has been
confirmed by numerical (finite and boundary element) sim-
ulations, see[1,33].

• The influence of a fluid forced into the crack distributing
the contact pressure acting on the fluid at the crack mouth
to a ‘hydraulic pressure’ on the crack faces. This effect will
also prevent crack closure.

• The influence of a trapped fluid as shown inFig. 4. This ef-
fect causes a marked increase in the Mode I stress intensity
factor.

The empirical findings that support an influence of lubri-
c
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In general, crack propagation under rolling contact loa
s very influenced by crack face friction[1,31]. In this con-

Fig. 4. Mechanism of crack pro
ation include:

Experimental findings concluding that lubrication (p
ceded by a number of, more or less, dry cycles) is ess
for surface cracks to grow, see[24,34–37]and reference
in [11,17,32]. Further, the crack propagation is depend
on the lubricant viscosity[38].
Surface fatigue of rails is rare in tunnels, see[36,39].
Large seasonal variations in wheel reprofilings,
[19,40].
Preferred growth in the direction of the motion. This
easily understood, since a contact moving from righ
left in Fig. 4will ‘squeeze’ the water out of the crack. Al
crack face lubrication will cause a direction depende
as a result of the altered sequence of loading accordi
[32].
Propagating surface cracks are also more frequent o
driven surface, see[36]. This can be understood by noti
that a traction applied from the wheel (upper body inFig. 4)
will open the mouths of a crack in the rail (lower body
Fig. 4) before the crack enters the contact area, allow

n by the pressure of a trapped fluid.
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lubrication to pour into the crack. In the same manner,
cracks on wheels will be closed by a traction and opened
by a braking torque. The effect has also been shown in
numerical simulations, see[32].

It should be clarified that the role of the lubrication in the
propagation of surface cracks does not imply that lubrication
should be abandoned. Instead, a proper use of lubrication has
the beneficial effect of reducing friction, which will reduce
the risk of crack initiation (possibly including the growth of
small cracks) and also decrease wear rates and noise radia-
tion.

3.2.2. Corrosion
It could be suspected that crack growth is promoted by

rust formation, which has been found to occur at the crack
tip. Such a mechanism cannot explain why cracks grow in a
preferred direction or the influence of traction and is not active
when the lubrication consists of e.g. grease or oil. However,
for deep cracks, where fluid penetration all the way to the
crack tip is unlikely, the influence of corrosion may well be
of interest. This effect has, to the authors’ knowledge, not
been studied for rolling contact fatigue, although it is well
studied for plain fatigue.

3.3. Predictive models
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The shakedown map is based on Hertzian theory[45]. To
obtain a better prediction of acting contact stresses “exact” or
“approximate” elastic modelling[43,46–49]or elasto-plastic
(FE-) modelling[50] can be employed. A fatigue criterion
can then be employed to quantify the fatigue impact from the
evaluated stresses and strains. A combination of a multiax-
ial low-cycle fatigue criterion[51] and a ratchetting criterion
[27] has proven to be very successful in predicting fatigue
initiation in rails, see[52,53]. “Extended” uniaxial criteria
can also be found in the literature, but have proven to be less
efficient[20]. More simplified models have also been devel-
oped to try to relate the fatigue life to parameters such as the
contact pressure. Such an approach has proven to be difficult
since the relation between two parameters will depend on, for
instance, the applied friction, cf[34]. An overview of some
predictive models including a discussion of factors such as
impact loading, thermal loading, martensite formation, etc.
is given in[54].

An interesting aspect is the analysis of contact stresses and
pertinent subsurface stress field. To this end, methods based
on Hertzian theory[42,45], “exact” or “approximate” elas-
tic modelling [43,46–49]or elasto-plastic (FE-) modelling
[50,55] can be employed. A problem with the non-Hertzian
elastic modelling is that very localized extreme stress mag-
nitudes may occur as a result of mismatching contact pro-
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.3.1. Crack initiation
To predict surface initiated rolling contact fatigue, sha

own maps[17,41] may be used. These maps require a
nput acting loads, contact geometry (i.e., Hertzian semi-a
ee[42,43]) and material strength in terms of the yield lim
n shear (including hardening, which may be substanti
olling contact[24,44]). The location of the work point i
he shakedown map, seeFig. 5, indicates whether surfa
lasticity (implying surface fatigue) will occur.

ig. 5. Shakedown map. Surface fatigue is predicted if the working poin
defined by the material yield stress in shear, contact geometry and a
oading) is outside the thick line.
les. This results in unrealistically conservative fatigue
ictions. On the other hand, Hertzian presumptions ma
rossly violated in some cases. The third option, ela
lastic simulations are normally to time consuming to
f practical use except for selected case studies. It sh
e noted that complex constitutive models are needed
ect the plastic material response in a reliable way[56–58]
n particular when ratchetting is studied. This calls for t
onsuming elasto-plastic simulations. A faster approach
een suggested[59] where the material response is evalua

n reference to the moving load, meaning that time-deriva
re replaced by space derivatives in the constitutive equa

.3.2. Crack propagation
For the propagation of long surface cracks, linear e

ic fracture mechanics models can be employed. Analy
odels, e.g.[60–62], typically include simplifications, suc
s 2D loading, simplified crack and contact geometry
lastic conditions. Further, simplifications (or omissions)

ypically needed to account for crack face friction and the
uence of trapped lubricants. To simulate more realistic
itions, FE-analysis can be used[31,33,63–66]. Overviews
f work on predictive modelling of crack propagation can

ound in[67,68].

.4. Prevention

A surface fatigue index based on the shakedown ma
een outlined in[69]. This index can be expressed as

Isurf ≡ µ − 1

ν
= µ − 2πabk

3Fz

(1)
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Here, µ is the applied friction,a and b the semi-axes in
Hertzian contactk, the yield limit in shear andFz the vertical
load magnitude. The higher the index, the higher the risk for
surface fatigue. Various means of preventing surface fatigue
initiation can be identified from this fatigue index. The first
option is to increase the material resistance (k) and controlling
the contact geometry (a, b) by the introduction of materials
with a higher yield limit[70–72], grinding of rails[39,73,74],
surface coating[75] and rim quenching of wheels to intro-
duce beneficial compressive stresses[76]. Another option is
to decrease the acting frictional loads (µ) by lubrication and
brake controls. See also[16,19,77]for in-depth discussions
on fatigue prevention.

3.5. Additional factors

3.5.1. Surface asperities
An explanation to crack initiation and growth that does not

rely on the occurrence of plastic deformations and subsequent
propagation under the influence of lubricants has been put
forward in the literature, see[78,79]. It is proposed that cracks
will form and grow in the tensile stress field that is introduced
below asperities.

A material surface that appears smooth on the macro-scale
will show roughness on the micro-scale, seeFig. 6a. An as-
p two
s s will
i in-
c aller
a

peri-
t ding
m may

cause cone cracks to initiate due to the tensile radial stress
resulting in the material outside the contact, see[78,79]and
Fig. 6b.

The asperity model is most useful when there are no or
little plastic deformation at the surface, since plastic defor-
mation of the surface tends to smooth out the surface, cf
results in[34]. Fully elastic contact conditions is normally
not the case in railway applications, but rather for gear and
rolling bearing contacts.

Lubrication will suppress asperity contact[80]. Whether
asperity models fully explain the empirically found influence
of lubrication as discussed above is questionable. As for the
preferred growth direction, crack propagation towards the ap-
proaching contact will be suppressed by the global contact
pressure. Traction will introduce additional stresses which
will be compressive on the driving side and tensile on the
driven side. This explains the influence of traction by the as-
perity model. However, the most useful feature of the asperity
models is the explanation of the effect of surface roughness
on the fatigue life[70,81]. It should be noted that similar
effects occur locally on a macroscopic scale in contacts be-
tween wheels and rails with damaged surfaces, such as in
Fig. 2b.

3.5.2. Surface defects
De-

p ness,
t de-
f uent
c

nta-
t ts
o tions

ifferen
erity is a small elevated part of the surface. When the
urfaces are pressed together, only the largest asperitie
nitially be in contact. Gradually as the load magnitude
reases, the contact will spread out to smaller and sm
sperities.

However, also at higher pressures, relatively large as
ies will take a larger portion of the load than the surroun
aterial. This may be seen as a local point load and

Fig. 6. (a) Roughness of a material surface on d
The influence of surface defects on RCF is complex.
ending on the shape of the defect, the material hard

he lubrication etc., the defect may either be plastically
ormed, worn away or act as an initiation spot for subseq
racking, see[38,70,82–84].

A special type of surface defects is caused by inde
ions, e.g. of gravel, seeFig. 7. Investigations of such defec
n wheels indicate that they are mainly spherical indenta

t scales. (b) Loading of an asperity causing a cone crack.
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Fig. 7. Surface defects caused by gravel indentation on a railway wheel.

and likely to be benign. Another special case is the repara-
tion of running surfaces by surfacing (i.e. additional material
welded to the surface). Failures of wheels caused by such
procedures are discussed in Ref.[85].

3.6. Thermal loading

The initiation and propagation of surface cracks is highly
influenced by the presence of thermal loads, cf[86]. In rail-
way wheels, the thermal load is normally due to tread braking.
When brakes are applied, the temperature rises, causing the
fatigue strength of the material to drop, see[19,87]. Thermal
loading may induce cyclic and residual tensile stresses near
the running surface of the wheel[88–91]which will promote
both the initiation and the early growth of a surface crack. It
should be noted that resulting residual stresses due to thermal
loading are also influenced by the geometrical design of the
wheel[92]. When thermal loading is the dominant cause to
fatigue, resulting surface cracks tend to be radial. However,
the point of initiation of such cracks is not restricted to the
tread, but varies and even includes the bottom of the flange
side, see[90]. For rails, thermal damages are more rare, but
can occur as “wheel burns” when wheels are sliding at stop
signals, see[18].

Martensite formation on the wheel tread normally indi-
c high
e
[ ,
m cting,
s ck-
i ves
o and
o tion
o the
t peed
w tec-
t eat

affected zone (HAZ) may act at initiation spots for fatigue
cracks. This is further emphasized since martensite forma-
tion includes a volumetric expansion that will form high ten-
sile residual stresses below the martensite[96]. The brittle
martensite may also break off from the wheel, forming a
wheel flat. Such wheel flats will cause high vertical load mag-
nitudes which may cause secondary damage to the wheel, rail,
bearings, etc. As a side-note, a possibility to avoid martensite
problems may be the introduction of bainitic steels which are
unable to form brittle martensite[97].

Examples of studies on thermal loading reported in the
literature include: thermal damages from more or less con-
trolled operations[22,95,98,99], experimental evaluation of
high temperature fatigue resistance of wheel steel[87], mea-
surements of tread face temperatures in operation[100] and
in brake rigs[88,101], analysis of stresses and strains due
to thermal and mechanical loading[28,89,102], experimen-
tal studies of the effects of tread braking on fatigue[91,98]
and the development of numerical fatigue prediction mod-
els based on continuum mechanics[28,54]and fracture me-
chanics[103]. As for martensite and wheel flat formation,
the issue is discussed in[19,54,77,93,99]. There are re-
ports in the literature of controlled full-scale tests of the
development of wheel flats with analyses of the resulting
wheel flats[93,104]. Further, analytical and numerical mod-
e rived
[

4

4

effi-
c s
t pro-
m

ates a previous history of temperatures which were
nough to austenite the material (above some 700◦C, see

93]) and fast cooling of the wheel, see[94]. However
artensite can also form due to rapid shear under impa

ee[19]. Extensive martensite is typically caused by lo
ng and sliding of the wheel due to frozen breaks, lea
n the track, etc. More localized martensite formation (
ther thermal damage) may be promoted by the forma
f hot-spots, i.e. very localized, highly heated spots on

read. Such localized martensite can also occur on high s
heels as a result of a poorly adjusted wheel sliding pro

ion system[95]. The martensite and the surrounding h
ls of the process of martensite formation have been de
94,105].

. Subsurface crack initiation and growth

.1. Mechanisms in railway wheels

For cases of moderate surface friction (a utilized co
ient of friction below approximatelyµ < 0.3), fatigue crack
end to initiate below the surface. Such an initiation is
oted by the occurrence of material defects[2,3,8,106]. An
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additional factor that may promote crack initiation is contact
close to the field side of the wheel, see[2].

According to elastic analysis, the largest alternating shear
stress in a railway wheel due to rolling contact (of nom-
inal profiles) is typically some 4–5 mm below the surface
[107]. However, the point of initiation of subsurface cracks
in railway wheels may be from 4 mm down to some 20 mm
[2,106,108–110]. There are several reasons for this, some of
which are:

• Material hardening is more pronounced at the surface[3].
• Residual compressive stresses at the surface due to man-

ufacturing and operational loading may tend to suppress
shallow fatigue crack initiation[66].

• Material defects may cause very high localized stresses
even at considerable depths[5,8,108].

The deeper the point of initiation, the more important the
effect of material defects. Below some 10 mm, the global
stress magnitudes are very low. Still, a material defect will
introduce a very high stress concentration that may trigger fa-
tigue initiation, see[5]. In contrast, the closer to the surface,
the more important the influence of the contact geometry, cf
[111]. It should be noted that since the crack grows in com-
pression and shear, which rubs the crack faces, the material
defects that acted as crack initiators may be worn away dur-
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will eventually occur as branching towards the surface as in
Fig. 8a or, more seldom, towards the wheel hub as inFig. 8b.
In both cases (and also in fatigue of rails), the crack surfaces
show a characteristic ‘beach mark’. See also[2,3,15,23,106]
for more information.

4.2. Mechanisms in rails

For rails, subsurface initiated fatigue is most common in
heavy haul lines, predominantly in the high rail in curves
[14]. The largest shear stress range in rails (as evaluated for a
plane which is oriented 60◦ to the vertical) has been reported
to occur at the gauge corner at a depth of approximately 3 mm
below the surface[112,113]. Points of initiation reported in
the literature are normally deeper: values of 3–15 mm below
the running surface have been reported[11,14,114,115]. The
reason that cracks initiate at these significant depths is likely
to be the large tensile stresses here[14,115,116]. The location
of initiation is typically above the depth of maximum residual
tension, but may coincide with the depth of maximum cyclic
tension[117]. Subsurface cracks typically occur at the gauge
corner of the high rail in curves[18] due to the high loading
and often small contact area. It should also be noted that the
boundary effect of the gauge corner will have a detrimental
effect, cf contact close to the field side of a wheel as discussed
a
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ng crack propagation. In particular, this is an issue for
aterial defects, such as MnS, and defects located clo

he surface. This could explain the lack of material def
n some cases reported, e.g.[109]. The difficulty of finding

nS-defects is also due to their small sizes. However,
re known to form clusters[3,108] and have been found
eform to very long, needle-shaped strings[93].

At shallow initiation of fatigue cracks in wheels, the cra
ypically grows downward towards the wheel hub in the s
equent propagation, as inFig. 8a. It then deviates at a depth
ome 20 mm with a continous growth in the circumferen
irection. When initiated at a larger depth, the crack t
ally continues to grow at this depth,Fig. 8b. Final fracture

ig. 8. Typical appearance of subsurface fatigue cracks in railway w
a) shallow initiation and (b) deep initiation at a defect.
bove.
There are strong indications that material def

re important for subsurface fatigue initiation in r
14,16,18,118,119], but also reports of no large non-meta
nclusions at initiation sites[115,116](cf the discussion o
ear of material defects in the section on wheels ab
ote that welds may introduce additional material def

as well as locally high vertical loads and detrimental resi
tresses) and thus may be weak points[18,39]. Further, hydro
en may have a detrimental effect in propagating cracks
ubsurface defects in both wheels and rails, see[3,16,18].

Due to the different fatigue mechanisms, it is convenie
istinguish between cracks initiated at fairly shallow de
nd more deep cracks. In the first case, contact stresses
ominating cause, whereas the deeper the point of initia

he more important issues such as material defects (or
tress concentrations), global bending, residual and th
tresses will become. The failure then turns more tow
plain fatigue”. There are even reports in the literature
rack initiation at thelowergauge corner[120]. The initiation
hen occurs at a stress concentration (typically a weld
ow lip with a notch) and the propagation is immedia
ransverse due to global bending and tensile residual str

Shallow subsurface induced fatigue cracks in rails t
ally propagate parallel to the surface up to a critical le
here they may deviate and cause a complete failu

he rail if not detected in time[14,16,117]. Tensile residua
tresses and (in all-welded tracks) thermal cooling will
ote such a failure. A more benign failure mode is when

rack deviates towards the surface and breaks loose a
f the rail material.
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4.3. Predictive models

The initiation of subsurface cracks has been modelled by
the use of multiaxial fatigue criteria of varying complexity,
see[1,13,54,121,122]. As compared to surface initiation, the
amount of plastic deformation is much reduced, which justi-
fies an assumption of elastic shakedown[17] and the use of
an elastic fatigue criterion.

If the Dang Van criterion is used, it has been shown[69],
that the criterion for fatigue initiation (presuming Hertzian
contact condition and no boundary effects) can be approxi-
mated as

FIsub = Fz

4πab
(1 + µ2) + aDVσh,res > σe (2)

Here,Fz is the vertical load magnitude,a andb the Hertzian
semi-axes,µ the traction coefficient,aDV a material parame-
ter,σh,resthe hydrostatic part of the residual stress andσe the
equivalent fatigue limit, often taken as the material’s fatigue
limit in shear.

A complicated issue is to account for the influence of ma-
terial defects. To relate the amount of subsurface defects in
rails to the fatigue resistance, a “shell index” has been em-
ployed in the literature[11]. This index is based on the oxide
volume fraction, the oxide size and the Brinell hardness. In
t
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4.4. Prevention

For deep fatigue initiation, material defects are of high
importance. It should be noted that it is the largest defect
size, in contrast to some average defect size, that is of impor-
tance, see[108]. Further, overloads should be avoided since
they will cause high localized stresses at material defects[5]
which may trigger fatigue initiation. Here, it is the extreme
load magnitudes (and not average load levels) that are of im-
portance.

Controlling the contact geometry is vital to counteract
shallow fatigue initiation, as can be seen from Eq.(2). In par-
ticular hollow wear of wheels has been found to be detrimen-
tal [109,111]. The influence is due to the resulting small con-
tact patch combined with resulting high longitudinal creepage
[131].

As for material strength, it should be of importance, but it
is fairly unclear which material parameters that correlates the
best to the resistance against subsurface cracks. An educated
guess would be that fatigue limit, crack growth characteristics
and fracture toughness[18] are of importance.

4.5. Residual stresses

Residual stresses in rails and wheels have been extensively
s l de-
t wide
r state
o s in-
c ly cut
s
t
u
a FE-
s
s g into
s s can
b nic,
m d in
[ id
w ly to
c t that
b -
e ments
a

e re-
s high
c rite-
r
T rac-
t will
b idual
s la-
t ce
o s, on
t com-
he literature there are also examples[2,3,123]of accounting
or material defects by using the semi-empirical Murak
riterion[124]. However, it should be noted that this criter
s originally derived for uniaxial loading. Recent research
icates that adoption of such uniaxial criteria may be do

ul [125]. There are also more fundamental studies on
ssue of material defects with simulations using both ela
126–128]and elasto-plastic[5,8,129]material models.

An important issue is the effect of occasional impact lo
ng. High transient loads may trigger the onset of cr
rowth and the coalescing of material defects. It may
ause a slight detrimental history effect[5]. There are als
ndications in the literature that the fatigue strength ma
ecreased when impact loading is applied[110].

The subsequent propagation of subsurface initiated c
as been modelled by fracture mechanics models

1,4,108] and the overview in[68]. In contrast to surfac
racks, which typically propagate predominantly in M
due to the lubrication induced pressure[33,63], subsur

ace cracks propagate predominantly due to a mixed M
I–Mode III loading after an initial stage of Mode I propag
ion [108]. A complicating issue is the influence of crack f
riction, which seems to have a profound effect[1,4], but is
ard to quantify. This is especially important if design is
e made towards the crack growth threshold.

The issue of crack branching, has also been studied
iterature, e.g.[1,130]. An interesting finding from fractur

echanics simulations and field studies[130], was that th
ighest tendency to branching was achieved at a fairly
tage. At continued growth, this tendency decreased.
tudied in the literature. The first issue is the experimenta
ermination of residual stress magnitudes. There are a
ange of destructive methods of determining the residual
f stress based on cutting of rails and wheels. Example
lude methods where displacements of the transverse
urface are derived from interferometry[132], from longi-
udinal cutting in combination with interferometry[133], by
se of surface coating and heat treatment[133] or by evalu-
ting opening displacements and deriving stresses from
imulations or analytical solutions[22]. To obtain the 3D
tate of stress, Batelle technique (consecutive sectionin
tress-free dices and rods) or oblique slicing technique
e used[134]. Non-destructive methods include ultraso
agnetic and X-ray diffraction techniques, as discusse

76,135–141]. A rough, but efficient way of identifying sol
heels that have been heavily braked and thus are like
ontain high tensile residual stresses is the use of pain
urn when subjected to high temperatures[138]. More gen
ral overviews on the subject of residual stress measure
re given in[134,142,143].

As for the influence of the residual stresses on fatigu
istance, it has been shown to be easily accounted for if
ycle fatigue initiation is analyzed using the Dang Van c
ion, see[69] and Eq.(2). The issue is also discussed in[135].
o predict the influence on crack propagation and final f
ure is more cumbersome since the residual stress field
e redistributed during crack propagation. Further, res
tresses will influence the crack face friction with simu
ions[33,61,66]showing a quite marked beneficial influen
f a compressive residual stresses. Experimental studie

he other hand, have shown correlations where a higher
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pressive residual stress leads to a shorter fatigue life, see[36].
However, as pointed out by the authors of that paper, this re-
sult is likely not to reflect the influence of the residual stress,
but rather that high compressive stresses are detrimental and
also will cause high residual stresses.

5. Concluding remarks

This overview has only given a brief glance at problems
related to RCF of rails and wheels. There are some issues
that have not even been touched upon, such as the influence
of climate, the interaction between wear and fatigue, etc.

As always when trying to give an overview, there is a
practical need to separate various phenomena and parame-
ters in order to prevent complete chaos in the presentation.
This often gives the false impression of a very structured dis-
cipline. In reality, this is not the case. Various phenomena
and parameters interact in the most intriguing ways. To the
railway engineer challenged with the task of predicting or
analyzing rolling contact fatigue, this is naturally a problem.
Further, physically sound predictive models found in the liter-
ature typically are too complex for general adoption. In con-
trast, rules of thumbs and empirical knowledge can be used
to characterize, but seldom to predict or analyze problems.
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Fig. 9. Fatigue indices for subsurface fatigue according to Eq.(2) evaluated
for a train operating: (a) a regular track section and (b) a corrugated track
section.

With the development of this tool, it is hoped that the anal-
ysis of RCF can be an integrated part of any MBD-simulation.
However, the mystery of RCF is far from solved. There are
several issues that are currently not fully understood or pos-
sible to model. And finally, it should be remembered that
there are more dimensions to the problem: If the cause of a
RCF problem is pin-pointed to, say, friction the question still
remains; what caused the friction. . .
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