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Abstract

The paper considers the free vibration of a Jeffcott rotor whose shaft has a strong non-linear elastic prop-

erty. The mathematical model of the Jeffcott rotor is a second-order non-linear differential equation with a

complex deflection function. An analytic procedure based on the Krylov–Bogolubov method is developed
to solve this differential equation. Two different types of initial conditions are considered. The obtained

solution describes the oscillatory motion of the rotor center. The influence of the damping, hydrodynamic

and gyroscopic force and the variation of the mass of the rotor on the vibrations of the rotor is then

analyzed.

� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

There are many papers dealing with the problem of vibration of Jeffcott rotor. The Jeffcott
rotor is modelled as a shaft-disc system where the mass of the shaft is negligible in comparison
to the mass of the disc. Thus, the motion of the rotor corresponds to the motion of the mass center
of the disc. Usually it is assumed that the vibration of the mass center is an in-plane motion with
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two-degrees-of-freedom. That motion is mathematically described with a two coupled linear sec-
ond-order ordinary differential equations. This system of differential equations has the closed
form analytical solution (see for example [1–4]). Analyzing the obtained mathematical solution
the vibration behavior of the model i.e., the Jeffcott rotor is discussed. Unfortunately, the men-
tioned model is a simplified one, and is not always suitable for investigating dynamic behavior
of the real rotor. Namely, forces such as the rubbing force [5], hydrodynamic force [6], viscous
damping force [7] and forces which appear due to coupling and connections in the system [8],
forces in magnetic bearings [9], etc., are all non-linear and their inclusion in the model requires
the rotor to be assumed as a non-linear one. The mathematical model of the vibration of the
non-linear Jeffcott rotor is a system of two coupled non-linear differential equation.

While describing the vibration of the Jeffcott rotor various methods for solving two coupled
second-order non-linear differential equations are applied. Bonello et al. [10] use the integrated
approach applying the harmonic balance method to obtain the dynamic response of the rotor sys-
tem with squeeze film dampers. The same method is adopted by Kim and Noah [11] to determine
the quasi-periodic response for a non-linear Jeffcott rotor with radial rubbing. Kim and Choi [12]
employed the multiple harmonic balance method for obtaining the steady-state vibration of a Jeff-
cott rotor with a piecewise-linear non-linearity at the bearing support. Karpenko et al. [13] con-
sider two approximate analytical methods for calculating non-linear dynamic responses of an
idealized model of a whirling rotor and a massless snubber ring which has much higher stiffness
than the rotor. The system is modelled by two second-order differential equations which are linear
for non-contact and non-linear for contact scenarios. The method which has been developed for
solving the first system of differential equation has been named one point approximation and uses
only one point in the first-order Taylor expansion of the non-linear term. The method used for
solving the second set of differential equation is named multiple point approximation and can
be followed for calculating chaotic responses. Ganesan [14] employed the method of multiple
scales for obtaining the dynamic response and stability criteria of a rotor-support system with
non-symmetric bearing clearances. Ji and Hansen [15] adopted the same method to determine
the non-linear oscillations of a rotor with active magnetic bearings. Cveticanin [16,17] used the
multiple scales method to obtain the vibrations of a textile machine rotor with and without action
of non-linear forces and discussed the resonant vibration of the rotor with variable mass [18]. Fur-
thermore, Cveticanin [19,20], adopted the Bogolubov–Mitropolski method for differential equa-
tion with complex function and weak non-linearity and applied that method for obtaining the
approximate solution of a time-dependent differential equation (see [21]) which describes the rotor
vibration.

In the contemporary mechanical industry the shafts of the high speed rotors are made of non-
metallic materials or of aluminium, copper, titanium or other alloys. Such rotors have application
in aero engines, chemical industry, etc. The rheological model of these materials is a non-linear
function and it causes the elastic force of the shaft to be a non-linear function, too. The aim of
this paper is to analyze the influence of the material properties of the shaft on the rotor vibrations.
Therefore, rotor simplification and idealization are done in order to determine the importance of
the influence of the material properties of the shaft on rotor vibration. The rotor is assumed to be
a symmetric shaft-disc system (a Jeffcott rotor supported in two rigid bearings), i.e., an one-mass
system with two-degrees-of-freedom. The mathematical model of this rotor is a system of two
coupled second-order ordinary strong non-linear differential equations. An analytic method,
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based on the well known Krylov–Bogolubov procedure described in the paper [22], is developed
for solving that differential equation with complex function which describes the rotor vibration.
Depending on the initial conditions, two types of solutions are introduced. The suggested proce-
dure is applied for analyzing of vibrations of the non-linear shaft-disc system with the external
and internal damping force, gyroscopic force and hydrodynamic force. The rotor vibration with
non-periodic time variable mass is also considered.
2. The model of the rotor

The symmetrical Jeffcott rotor consists of a disc with mass m� which is settled in the middle of
an elastic but massless shaft. Due to rotor system symmetry, the center C moves in the x–y plane,
i.e., in x and y directions. The displacement of the rotor center given in terms of the real and imag-
inary coordinate axes is z� = x� + iy�, where i ¼

ffiffiffiffiffiffiffi
�1

p
is an imaginary number. The elastic force in

the shaft, which is made of aluminium, titanium, copper or their alloys or some nonmetallic mate-
rial, is a non-linear function of deflection. Namely, experiments made for these materials (see [23],
[24]) show that the elastic force F �

e is a pure cubic function of shaft deformation z� as follows:
F �

e ¼ b�3z
�ðz��z�Þ, where b�3 is the coefficient of the elasticity, ðz��z�Þ ¼ x�2 þ y�2 and �z� is the complex

conjugate deflection function. The other forces which act on the rotor are generally functions of
the rotor centre displacement z� and velocity _z�. The complex form of the forces is
F � ¼ Z�ðz�; _z�; cc�Þ where cc� are the complex conjugate functions. Using the aforementioned
properties of the rotor the mathematical model of the vibration is
m�€z� þ b�3z
�ðz��z�Þ ¼ Z�ðz�; _z�; cc�Þ ð1Þ
Eq. (1) is a strong non-linear ordinary second-order differential equation with complex function.
For some rotors the parameters m�, b�3 and the force Z� are time dependent. The rotor with time

variable parameters is the fundamental working element of many machines in paper, textile, car-
pet, cable industry, etc. The parameter variation is a slow and non-periodical function of time.
The mathematical model of vibration for this rotor is
m�ðs�Þ€z� þ b�3ðs�Þz�ðz��z�Þ ¼ Z�ðz�; _z�; s�; cc�Þ ð2Þ

where �s� ¼ et� is the �slow� time for a small coefficient e � 1. The differential equation (2) is a
second-order strong non-linear differential equation with time variable parameters.

Two types of initial conditions which are usually considered in practice are:

1. the rotor center has an initial deflection z�0 and an initial circular velocity xz�0, i.e.,
z�ð0Þ ¼ z�0; _z�ð0Þ ¼ ixz�0 ð3Þ

2. the rotor center has only an initial deflection z�0, i.e.
z�ð0Þ ¼ z�0; _z�ð0Þ ¼ 0 ð4Þ
For simplification, let us introduce the following dimensionless parameters:
z ¼ z�

L
; t ¼ t�

T
; m ¼ m�

M
; b3 ¼

b�3L
2T 2

M
ð5Þ
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where L is the length of the rotor, T is the period of vibration and M is the unit mass. The
differential equations (1) and (2) transform to non-dimensional differential equations
m€zþ b3zðz�zÞ ¼ Zðz; _z; ccÞ ð6Þ
and
mðsÞ€zþ b3ðsÞzðz�zÞ ¼ Zðz; _z; s; ccÞ ð7Þ
with the initial conditions
zð0Þ ¼ z0; _zð0Þ ¼ ixz0 ð8Þ

and
zð0Þ ¼ z0; _zð0Þ ¼ 0 ð9Þ

where Z is the dimensionless complex forcing function.
3. Non-linear elastic rotor

The model of the rotor with non-linear elastic force is given by
m€zþ b3zðz�zÞ ¼ 0 ð10Þ

The exact analytic solution of the differential equation (10) depends on the initial conditions.

For the initial conditions given in Eq. (8) the analytical solution is
z ¼ A exp½iðxt þ hÞ� ð11Þ

where A and h are
A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x20 þ y20

q
; h ¼ arctan

y0
x0

ð12Þ
and
x ¼ A

ffiffiffiffiffi
b3
m

r
ð13Þ
A is the initial deflection of rotor center, h is the initial phase angle and x is the frequency of vibra-
tion, and x0 and y0 are the initial deflections in x and y direction.

For the initial conditions given in Eq. (9) the solution of Eq. (10) is a function of the Jacobi
elliptic function cn [25] and is
z ¼ A expðihÞcnðxt; 1=2Þ ð14Þ

where A, h and x are given with Eqs. (12) and (13). The modulus of the Jacobi elliptic function cn

is constant and its value is 1/2.
Comparing Eqs. (11) and (14) it can be seen that Eq. (10) has different solutions for various

initial conditions (8) and (9). In Fig. 1 the solutions (11) and (14) for the initial conditions (1)
x0 = 0.6, y0 = 0.8, _x0 ¼ �0:8; _y0 ¼ 0:6 and (2) x0 = 0.6, y0 = 0.8, _x0 ¼ 0, _y0 ¼ 0 are plotted. For
the first group of initial conditions the orbital motion of the rotor center is a circle, and for the
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Fig. 1. The oribital motion of the non-linear elastic rotor for initial conditions: (1) x0 = 0.6, _x0 ¼ �0:8, y0 = 0.8,

_y0 ¼ 0:6; (2) x0 = 0.6, _x0 ¼ 0, y0 = 0.8, _y0 ¼ 0.
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second group it is a line. For the both cases the amplitude of vibration depends on the initial con-
ditions and does not depend on the properties of the rotor (m and b3). The frequency of vibration
depends on m and b3 (as for the linear case) but also on the amplitude of vibration and initial
parameters.
4. Analytical solving procedure

To analyze the rotor vibration it is necessary to know the solution of the differential equation
(6). The solution can be obtained analytically and numerically. The advantage of the analytic
solution is that it gives an opportunity to discuss the influence of the parameters of the system
much more conveniently than by applying of the numerical solution. Namely, the numerical solu-
tion is an �exact� one, but a numerous numerical experiments have to be done to obtain the
required conclusion.

In this paper the analytical solution of Eq. (6) is obtained by a new procedure developed for the
non-linear differential equation with complex function z. The procedure is based on the Krylov–
Bogolubov method [22]. The differential equation (6) represents the perturbed version of Eq. (10)
which is called the generating equation. The solution of Eq. (6) is the perturbed version of the gen-
erating solutions (11) and (14) for various initial conditions. Introducing the assumption that the
form of the solution of the differential equation (6) and its first time derivative has the same form
as the generating solution and its first time derivative, the differential equation (6) is transformed
into a system of first-order differential equations. Their solution represents the solution of the Eq.
(6). If the closed form analytic solution of the first-order differential equations is not possible to be
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obtained an averaging procedure is introduced and the approximate solution is determined. In the
next section the suggested procedure is extended for two different initial conditions: (1) the rotor
has an initial bending and also an initial velocity, (2) the rotor has only an initial bending. These
two initial conditions are the most often ones in real systems.

4.1. Solution for initial conditions z(0) = z0 and _zð0Þ ¼ ixz0

Based on the generating solution (11) the analytical solution is assumed as its perturbed
version, and it is
z ¼ AðtÞ expðiwðtÞÞ ð15Þ
where wðtÞ ¼
R t
0
xðsÞdsþ hðtÞ, A(t), x(t) and h(t) are time dependent. To obtain the solution (15)

the functions A(t) and h(t) have to be denoted. To fulfill this requirement the differential equation
(6) has to be transformed into a system of two first-order ordinary differential equations with time
variable functions A(t) and h(t). Then the following constraint has to be satisfied: the first time
derivative of (15) has the form of the first time derivative of the solution (11)
_z ¼ �AðtÞixðtÞ expðiwðtÞÞ ð16Þ
where xðtÞ ¼ AðtÞ
ffiffiffiffiffiffiffiffiffiffiffi
b3=m

p
. Then the following relation exists
_AðtÞ expðiwðtÞÞ þ AðtÞihðtÞ expðiwðtÞÞ ¼ 0 ð17Þ
Substituting the solution (15) and the time derivative of (16) into Eq. (6), using the relation (17)
and separating the real and imaginary parts, a system of two first-order differential equations is
obtained
m½2 _AðtÞxðtÞ þ AðtÞ _xðtÞ� ¼ ImðZ expð�iwÞÞ ð18Þ

_hðtÞ ¼ � 1

2AðtÞmxðtÞReðZ expð�iwÞÞ ð19Þ
where Z � Z(Aexp(iw), �Aixexp(iw),cc). Solving Eqs. (18) and (19) for the initial conditions (8)
i.e., (12) we obtain the amplitude-time A(t) and phase-time h(t) functions. Using the obtained
functions A(t) and h(t) the solution (15) of (6) is determined. For the case when Z is a linear
complex function the closed form analytic solution exists.

If the complex function on the right-hand side of Eq. (6) eZ is small and non-linear for e� 1
the approximate analytic solution for (6) is obtained. Due to the fact that the angle variation is
periodical with period 2p the averaging procedure is introduced. The averaged differential equa-
tions are
2 _AðtÞxðtÞ þ AðtÞ _xðtÞ ¼ e
2pm

Z 2p

0

ImðZ expð�iwÞÞdw ð20Þ

_hðtÞ ¼ � e
2AðtÞmxðtÞð2pÞ

Z 2p

0

ReðZ expð�iwÞÞdw ð21Þ
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The solution of Eqs. (20) and (21) are the approximate time functions which after substituting into
relation (15) give the approximate solution of Eq. (6).

The vibration of the rotor with time variable parameters is mathematically described with Eq.
(7) i.e., with a system of two first-order differential Eqs. (18) and (19) or averaged differential
equations (20) and (21) where m � m(s) and xðtÞ � AðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b3ðsÞ=mðsÞ

p
.

4.2. Solution for initial conditions z(0) = z0 and _zð0Þ ¼ 0

For the initial conditions (9) the solution of (6) is assumed as the perturbed version of solution
(14) and it is
z ¼ AðtÞ expðihðtÞÞcnðwðtÞ; 1=2Þ ð22Þ

where A(t) and h(t) are the unknown time dependent functions and wðtÞ ¼

R t
0
xðsÞds. Assuming

the first time derivative of the function (22) is of the same form as for the solution (14)
_z ¼ �AðtÞxðtÞ expðihðtÞÞsnðwðtÞ; 1=2ÞdnðwðtÞ; 1=2Þ ð23Þ

the following relation is obtained
_AðtÞ þ iAðtÞ _hðtÞ ¼ 0 ð24Þ

Substituting the assumed solution (22) and the time derivative of (23) into Eq. (6), using the rela-
tion (24) and separating the real and the imaginary terms a system of two first-order differential
equations is obtained
mð2 _AðtÞxðtÞ þ AðtÞ _xðtÞÞsnðwðtÞ; 1=2ÞdnðwðtÞ; 1=2Þ ¼ �ReðZ expð�ihðtÞÞÞ ð25Þ

AðtÞmxðtÞ _hðtÞ ¼ �ImðZ expð�ihðtÞÞÞ ð26Þ

The system of two coupled first-order differential equations (25) and (26) represent Eq. (6) with
initial conditions (9) transformed into new variables A(t) and h(t). If Z is a linear function the ana-
lytic closed form solution of the Eqs. (25) and (26) exists. For the case of weak non-linear function
eZ in Eq. (6) (the parameter e is small (e � 1)) the procedure of averaging is introduced. The per-
iod of averaging is for the circular function 2p and for the Jacobi elliptic function 4K where K is
the complete elliptic integral of the first kind [26]. The averaged differential equations of motion
are then
2 _AðtÞxðtÞ þ AðtÞ _xðtÞ ¼ � e
2pmð4Kð1=2ÞÞ

Z 2p

0

Z 4Kð1=2Þ

0

ReðZ expð�ihðtÞÞÞ
snðwðtÞ; 1=2ÞdnðwðtÞ; 1=2Þ dw

� �
dh

ð27Þ

_hðtÞ ¼ � e
2pAðtÞmxðtÞð4Kð1=2ÞÞ

Z 2p

0

Z 4Kð1=2Þ

0

ImðZ expð�ihðtÞÞÞ
snðwðtÞ; 1=2ÞdnðwðtÞ; 1=2Þ dw

� �
dh ð28Þ
For the rotor whose parameters are varying non-periodical in time according to the suggested
procedure, the differential equation of vibration (7) is transformed into a system of two first-order
differential equations which has the form (25) and (26) or (27) and (28) for (12) where m � m(s)
and xðtÞ � AðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b3ðsÞ=mðsÞ

p
.
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5. Rotor with internal damping

As it is shown by Dimentberg [1] and Tondl [3] the linear internal damping force is Ze = � ibz
where b is the coefficient of internal damping. This force causes vibrations described as
m€zþ b3zðz�zÞ ¼ �ibz ð29Þ
For the initial conditions (8) using the previous mentioned procedure the closed form solution of
the differential equations (18) and (19) is
AðtÞ ¼ A 1� bt
3xm

� �
; hðtÞ ¼ h ð30Þ
A, h and x satisfy the relations (12) and (13). Substituting the solution (30) into (15) the suggested
solution is
z ¼ A 1� bt
3xm

� �
exp i hþ xt � bt2

6m

� �� �
ð31Þ
From the relation (31) it can be concluded that the amplitude of vibration is a linear function of
the damping parameter b: (1) for b = 0 the amplitude of vibration is constant, (2) for b > 0 the
amplitude increases and (3) for b < 0 the amplitude decreases in time. The phase angle of vibra-
tion also depends on the coefficient of internal damping. In Fig. 2 the orbital motion of the rotor
center for the initial conditions x0 = 0.6, y0 = 0.8, _x0 ¼ �0:8, _y0 ¼ 0:6 and parameter values m = 1,
b3 = 1 and: (1) b = 0, (2) b = 0.1 and (3) b = �0.1 is plotted. For b = 0 the orbit is a circle, and for
b = 0.1 it is a spiral which moves from the circle (1) onward and for b = �0.1 the orbit is a spiral
which moves inward the circle.
6. The rotor on which damping and gyroscopic forces act

It is evident that for high speed rotors, the gyroscopic force, which is the result of coupling be-
tween the rotation of the rotor and vibration of the rotor center, cannot be neglected. This force
depends on the angular velocity X of the rotor and on the linear velocity of rotor center _z and
according to [3] it is
Zg ¼ igX_z
The mathematical model of vibrations of the rotor with external damping forces is
m€zþ b3zðz�zÞ ¼ �j_zþ igX_z ð32Þ

where j is the coefficient of external damping and g is the coefficient of the gyroscopic term. Using
the analytic solving procedure developed in this paper the second-order differential equation with
complex function (32) is reduced to a system of two first-order uncoupled differential equations
(25) and (26)
_AðtÞ ¼ � jAðtÞ
2m

; _hðtÞ ¼ gX
m

ð33Þ
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Fig. 2. The orbital motion of the rotor with internal damping for initial conditions x0 = 0.6, _x ¼ �0:8, y0 = 0.8, _y0 ¼ 0:6
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Solving Eqs. (33) and using the initial values A and h defined with (12), the time variable ampli-
tude and phase are obtained
AðtÞ ¼ A exp � j
2m

t
� �

; hðtÞ ¼ hþ gX
m

t ð34Þ
The frequency of vibration is
xðtÞ ¼ A

ffiffiffiffiffi
b3
m

r
exp � j

2m
t

� �
ð35Þ
Substituting the solutions (34) and (35) into (22) the complex deflection function is obtained
z ¼ A exp � j
2m

t
� �

exp i hþ gX
m

t
� �� �

cn
2mx
j

1� exp � j
2m

t
� �� �

; 1=2

� �
ð36Þ
Analyzing the relations (34)–(36) it can be concluded that the amplitude of vibration of the rotor
center depends on the damping characteristics of the system and does not depend on the gyro-
scopic term. The amplitude of vibration decreases in time. The angle position of the rotor depends
on the gyroscopic term and does not depend on the damping properties of the system. The angle
of rotor center linearly depends on time. The vibration is along a line whose position is varying.
The orbital motion of the rotor center for parameter values j = 0.01, gX = 0.01, m = 1, b3 = 1 and
initial conditions x0 = 0.8, y0 = 0.1, _x0 ¼ _y0 ¼ 0 is plotted in Fig. 3.

Separating the real and the imaginary part of the solution (36) the deflection of the rotor center
in the x and y directions is obtained
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x ¼ A exp � ej
2m

t
� �

cos hþ egX
m

t
� �

cn
2mx
ej

1� exp � ej
2m

t
� �� �

; 1=2

� �
ð37Þ

y ¼ A exp � ej
2m

t
� �

sin hþ egX
m

t
� �

cn
2mx
ej

1� exp � ej
2m

t
� �� �

; 1=2

� �
ð38Þ
Analyzing the relations (37) and (38) it is obvious that in x and y direction the phenomena of
flattering appears. Two different frequencies are evident: the frequency of vibration
x1 	 x ¼ A

ffiffiffiffiffiffiffiffiffiffiffi
b3=m

p
and of amplitude variation x2 = egX/m. For the case when these two frequen-

cies are equal the phenomena of resonance appears. Finally, it can be concluded that the gyro-
scopic force has become important when x1 	 x2, i.e., egX 	 A

ffiffiffiffiffiffiffiffi
b3m

p
.

7. Rotor with hydrodynamic force

The hydrodynamic force in the bearings mounted on the shaft of the rotor is, according to [3],
given by
Zh ¼ �eðz�zÞ_z ð39Þ

where e is a coefficient which depends on the parameters of bearings and viscosity of lubricant.
Substituting the function (39) into Eq. (6) the mathematical model of rotor vibration is
m€zþ b3zðz�zÞ ¼ �eðz�zÞ_z ð40Þ
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For the initial condition (9) the differential equation (40) is transformed into two first-order
differential equation of motion which are according to (18) and (19)
3m _AðtÞxðtÞ ¼ eA3cn2ðwðtÞ; 1=2Þ ð41Þ

_hðtÞ ¼ 0 ð42Þ
It is impossible to obtain the solution of the differential equation (41) in the closed form. The
approximate solution is determined by applying the averaging procedure and it is
z ¼ A
3

ffiffiffiffiffiffiffiffi
b3m

p

3
ffiffiffiffiffiffiffiffi
b3m

p
� eApt

expðihÞcn x
3

ffiffiffiffiffiffiffiffi
mb3

p

eAp
ln

3
ffiffiffiffiffiffiffiffi
mb3

p

3
ffiffiffiffiffiffiffiffi
mb3

p
� eApt

����
����; 1=2

� �
ð43Þ
i.e.,
xA ¼ A
3

ffiffiffiffiffiffiffiffi
b3m

p

3
ffiffiffiffiffiffiffiffi
b3m

p
� eApt

cos hcn x
3

ffiffiffiffiffiffiffiffi
mb3

p

eAp
ln

3
ffiffiffiffiffiffiffiffi
mb3

p

3
ffiffiffiffiffiffiffiffi
mb3

p
� eApt

����
����; 1=2

� �
ð44Þ

yA ¼ A
3

ffiffiffiffiffiffiffiffi
b3m

p

3
ffiffiffiffiffiffiffiffi
b3m

p
� eApt

sin hcn x
3

ffiffiffiffiffiffiffiffi
mb3

p

eAp
ln

3
ffiffiffiffiffiffiffiffi
mb3

p

3
ffiffiffiffiffiffiffiffi
mb3

p
� eApt

����
����; 1=2

� �
ð45Þ
where
p ¼ 1

4Kð1=2Þ

Z 4Kð1=2Þ

0

cn2wdw ¼ E
K
� 1 ¼ �0:271526772 ð46Þ
Analyzing the solution (43) i.e., (44) and (45) it can be concluded that due to the action of the
hydrodynamic force the amplitude is
AðtÞ ¼ A
3

ffiffiffiffiffiffiffiffi
b3m

p

3
ffiffiffiffiffiffiffiffi
b3m

p
þ 0:27153eAt

ð47Þ
and it decreases in time. The higher the value of the hydrodynamic parameter e the faster the
amplitude decreases. The frequency of vibration increases faster for smaller values of parameter
e and the corresponding period of vibration decreases.

To adjust the accuracy of the approximate solution the analytic solution (43) is compared with
numerical one. Namely, for m = 1, b3 = 1, e = 0.01, j = 1, gX = 1, and initial conditions x0 = 0.8,
y0 = 0.6, _x0 ¼ _y0 ¼ 0 the system of differential equations
m€xþ b3xðx2 þ y2Þ ¼ �e _xðx2 þ y2Þ
m€y þ b3yðx2 þ y2Þ ¼ �e _yðx2 þ y2Þ

ð48Þ
is solved numerically applying the Runge–Kutta procedure. In Fig. 4, the analytical solution xA
(44) and yA (45) and the numerical solution xN and yN of (48) is plotted. From time history dia-
grams x � t and y � t of the rotor center it can be concluded that the difference between the
approximate analytic solution and numeric solution is negligible for small time intervals and small
values of parameter e.
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8. Rotor with variable mass

A special group of rotors with variable parameters is the rotor with variable mass. This rotor is
the fundamental working element of many machines in paper, cable, carpet, textile industry etc.
During rotation of the rotor the band is winding up or down and it causes a small but continual
mass variation in time. The dynamic model of the rotor is
mðsÞ€zþ b3zðz�zÞ ¼ e/ ð49Þ
where / is the reactive force which acts due to mass variation in time (see [27])
/ ¼ dmðsÞ
ds

ðv� _zÞ ð50Þ
v is the absolute velocity of the mass which is separated or added to the rotor, and v� _z is the
relative velocity of the variable mass.

For the case when the relative velocity of mass separation or adding is zero ðv� _z ¼ 0Þ, the
reactive force (50) is also zero. The first-order differential equations for the both previously
mentioned initial conditions are the same. The solution for A(t) and h(t) is
AðtÞ ¼ A

ffiffiffiffiffiffiffiffiffiffi
mðsÞ
m

6

r
; hðtÞ ¼ h ð51Þ
where A and h are the initial amplitude and phase (12) and m is the initial mass.
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For the initial condition (8) the complex deflection of the rotor center is
z ¼ A

ffiffiffiffiffiffiffiffiffiffi
mðsÞ
m

6

r
exp i A

ffiffiffiffiffi
b3

p
ffiffiffiffi
m6

p
Z t

0

m�1
6dt þ h

� �� �
ð52Þ
For this case the amplitude of vibration increases by increasing of the mass. Increasing the mass of
the rotor the frequency of vibration decreases and the period of vibration increases.

For the initial conditions (9) the vibration of the rotor center is
z ¼ A

ffiffiffiffiffiffiffiffiffiffi
mðsÞ
m

6

r
expðihÞcn A

ffiffiffiffiffi
b3

p
ffiffiffiffi
m6

p
Z t

0

m�1
6dt; 1=2

� �
ð53Þ
The angle position of the rotor center is independent on the mass variation, i.e., the vibration of
the rotor is along a line with a constant angle h. The amplitude of vibration varies in time and it
depends on the mass variation. Whenever the mass increases, the amplitude of vibration increases,
as well.

For the case when the absolute velocity of mass variation is zero (v = 0) the functions A(t) and
h(t), independently on the type of initial conditions, are
AðtÞ ¼ A
ffiffiffiffiffiffiffiffiffiffi
m

mðsÞ
6

r
; hðtÞ ¼ h ð54Þ
For the initial condition (8) the analytical solution is
z ¼ A
ffiffiffiffiffiffiffiffiffiffi
m

mðsÞ
6

r
exp i A

ffiffiffiffiffi
b3

p ffiffiffiffi
m6

p Z t

0

mðsÞ�
5
6dt þ h

� �� �
ð55Þ
For this case the amplitude of vibration decreases by increasing of mass.
For the initial conditions (9) using the obtained values (54) it is
z ¼ A
ffiffiffiffiffiffiffiffiffiffi
m

mðsÞ
6

r
expðihÞcn A

ffiffiffiffiffi
b3

p ffiffiffiffi
m4

p Z t

0

mðsÞ�
5
6ds; 1=2

� �
ð56Þ
According to the solution (56) it can be concluded that the angular position of the rotor center is
constant. While increasing mass, the vibration amplitude is decreasing.
9. Conclusion

Considering the previous results the following can be concluded:

1. The motion of the rotor with strong pure cubic non-linearity deeply depends on the initial
conditions: (1) for the initial circular velocity the rotor center moves along a circle with con-
stant angular velocity and (2) for the initial bending of the shaft the rotor center moves peri-
odically along a line.
Considering the rotor with a non-linear elastic shaft, vibration frequency directly depends on
the initial conditions. This depending on the initial conditions is not the case for the shaft
with linear elastic force.
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2. The trajectories of the rotor center are perturbed if internal or external damping forces act.
Depending on the sign of the coefficient of the internal damping force the amplitude of vibra-
tion either increases or decrease, i.e., the motion is unstable or stable. The external damping
force causes the amplitude of vibration to decrease. For higher values of coefficient of inter-
nal damping the frequency of vibration increases and the period of vibration decreases. In
high speed rotors the gyroscopic force, which is the result of interaction between the rotation
of the rotor and vibration of rotor center, is evident. The gyroscopic force causes the vari-
ation of the angular position of the line along which the rotor center vibrates. If the external
damping and the gyroscopic force act the effect of fluttering is evident in x and y direction. It
is important to be aware of this fact for vibration diagnostics. Namely, if the measured val-
ues give the orbital motion such as in Fig. 3, and the fluttering in x and y direction appears, it
can be concluded that the vibration is caused by both external damping and the gyroscopic
force, as well.

3. For the rotor with strong pure cubic non-linearity the motion is described with the closed
form analytic solution for the both types of initial conditions mentioned.

4. Considering the rotor with variable mass, the amplitude of vibration increases with increas-
ing of the mass for the case when the reactive force is zero, i.e., when the relative velocity of
adding mass is zero. If the absolute velocity of the separating mass is the same as the mass of
the rotor, the decreasing of mass causes increasing of the vibration. In the case of vibrations
along a line, the angular position does not change despite mass variation. The frequency of
vibration and the period of vibration depend on mass variation.

5. The approximate analytic solution obtained using the averaging procedure suggested in this
paper is in good agreement with numerical solution for small non-linear forces and short
time interval.
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