
www.elsevier.com/locate/arcontrol

Annual Reviews in Control 31 (2007) 81–92
Distributed real-time embedded systems: Recent advances, future

trends and their impact on manufacturing plant control

Carlos Eduardo Pereira *, Luigi Carro

Electrical Engineering Department, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil

Received 15 December 2006; accepted 16 February 2007
Abstract
Real-time and embedded systems have historically been small scale. However, advances in microelectronics and software now allow embedded

systems to be composed of a large set of processing elements, and the trend is towards significant enhanced functionality, complexity, and

scalability, since those systems are increasingly being connected by wired and wireless networks to create large-scale distributed real-time

embedded systems (DRES). Such embedded computing and information technologies have become at the same time an enabler for future

manufacturing enterprises as well as a transformer of organizations and markets. This paper discusses opportunities for using recent advances in the

DRES area in the deployment of intelligent, adaptive, and reconfigurable manufacturing plant control architectures.

2007 Elsevier Ltd. All rights reserved.

Keywords: Manufacturing systems; Real-time systems; Embedded systems
1. Introduction

Market demands for innovative, high quality products,

aggressive competition at a global scale, increasing productiv-

ity through highly optimized production processes, and

environmental/societal pressures are some of the challenges

faced by the manufacturing industry today. Rapid changes in

process technology demand production systems that are

themselves easily upgradeable, and into which new technol-

ogies and new functions can be readily integrated (Mehrabi,

Ulsoy, & Koren, 2000). This situation has created the need for

novel manufacturing control systems that are able to manage

production change and disturbances, both effectively and

efficiently (Van Brussel, Wyns, Valckenaers, Bongaerts, &

Peeters, 1998), and has lead to the creation of concepts such as

‘‘flexible manufacturing’’ (Draper, 1984), ‘‘holonic manufac-

turing’’ (Van Brussel, 1994), ‘‘agile manufacturing’’ (Goldman,

Nagel, & Preiss, 1995), and reconfigurable manufacturing’’

(Koren & Ulsoy, 1997; Mehrabi et al., 2000). All these

approaches aim to incorporate increased levels of flexibility,

reconfigurability, and intelligence into manufacturing systems
* Corresponding author.

E-mail addresses: cpereira@ece.ufrgs.br (C.E. Pereira), carro@ece.ufrgs.br

(L. Carro).

1367-5788/$ – see front matter # 2007 Elsevier Ltd. All rights reserved.

doi:10.1016/j.arcontrol.2007.02.005
in order to meet highly dynamically marked demands. Molina

et al. (2005) presents a good overview on the historical

perspective and on key research issues in developing next-

generation manufacturing systems.

At the same time, an explosive growth in computer,

communication, and information technologies has been

experienced and manufacturing plants have also been affected

by this ‘‘pervasive and ubiquitous computing’’ era. The

manufacturing enterprise is intensively deploying a host of

hardware/software automation/information technologies in

order to face the changing societal environment pulled by

the increasing customization of both goods and services as

desired by customers (Morel et al., 2005). As the costs of

embedding computing becomes negligible compared to the

actual cost of goods, there is a trend of incorporating computing

and communication capabilities in consumer products, and also

in manufacturing equipments. The intelligent manufacturing

field has been estimated to be larger than s300 million and

growing rapidly (Filos, 2004).

Such embedded computing and information technologies

have become at the same time an enabler for future

manufacturing enterprises as well as a transformer of organiza-

tions and markets (Balakrishnan, Kumara, & Sundaresan, 1999).

Almost every aspect of traditional manufacturing needs to be re-

examined inview of the newly pervasive computing environment

that has come to dominate the manufacturing floor (Johnson &

mailto:cpereira@ece.ufrgs.br
mailto:carro@ece.ufrgs.br
http://dx.doi.org/10.1016/j.arcontrol.2007.02.005

C.E. Pereira, L. Carro / Annual Reviews in Control 31 (2007) 81–9282
Dausch, 2006). A great variety of the so-called e-Work and e-

Manufacturing activities (Nof, 2004) – such as virtual

manufacturing, augmented reality, intelligent maintenance,

intelligent supply, e-logistics – are now feasible and are being

adopted by several companies.

However, as pointed out in Morel et al. (2005), ‘‘only a form

of technical intelligence that goes beyond simple data through

information to knowledge and is embedded into manufacturing

systems components and within the products themselves will

play a prominent role as the pivotal technology that makes it

possible to meet agility/reconfigurability in manufacturing over

flexibility and reactivity’’.

The INCOM Symposium series is the main technical event

supported by the IFAC Technical Committee 5.1 on Manu-

facturing Plant Control. INCOM aims to discuss the application

of automation, information and communication technologies in

the control of the manufacturing plant and the entire supply

chain within the e-enterprise. While the topics discussed at

INCOM embrace all layers of the automation pyramid, from

low-level (sensors/actuators/industrial controllers), through

manufacturing execution systems to high-level e-enterprise

operations (virtual enterprises, supply chain, etc.), this paper

mainly focuses on the lower levels, the manufacturing plant

control or shop-floor level. At this level, there is a clear trend

towards distributed automation architectures, on which auto-

mation devices with local processing capabilities are inter-

connected through industrial communication protocols

(Mahalik, 2003). This distributed manufacturing automation

architecture heavily relies on an underling architecture

composed by the so-called distributed real-time and embedded

systems (DRES), ‘‘distributed’’ in the sense that devices/

machines are physically dispersed, but usually have to

exchange information in order to synchronize their operations.

The real-time characteristic is due to the fact that the

correctness of the system depends not only on the logical

results, but also on the time at which these results are produced.

While the areas of DRES and ‘‘intelligent, adaptive and

reconfigurable manufacturing’’ have usually been developed

apart, there is an increasing synergy among them, since recent

advances in DRES are enabling technologies for the develop-

ment of future intelligent manufacturing systems.

This paper discusses:
� R
equirements imposed by industrial applications to the

computational entities embedded in sensors, actuators,

controllers, automated guided vehicles, industrial robots, etc.
� R
ecent advances on real-time distributed and embedded

computing elements and how these shall impact the

manufacturing plant control area.
� D
evelopment methodologies which aim to deploy DRES for

industrial applications.

This paper is divided as follows: Section 2 describes some

intelligent manufacturing concepts that are enabled by DRES.

Section 3 lists requirements that are imposed on DRES to allow

their use in industrial applications, while Section 4 gives an

overview on recent advances and trends in DRES. In Section 5
some methodologies to develop DRES for industrial applica-

tions are discussed and also describes the SEEP methodology.

In order to illustrate the benefits that can be achieved by design

space exploration when deploying DRES for industrial

applications, two case studies are presented in Section 6.

Finally, Section 7 presents concluding remarks.

2. Examples of intelligent manufacturing areas enabled

by embedded computing systems

This section gives an overview on examples of intelligent

manufacturing concepts/methodologies which can benefit from

advances in DRES.

2.1. Agent-based manufacturing systems

The main reason for considering the application of multi-

agent systems to industrial applications is that other

technologies have not been able to meet all requirements

demanded by modern industrial automation systems: effective

enterprise integration, handling of cooperative and agile

processes, scalability, distribution, fault tolerance, interoper-

ability, among others. In many industrial scenarios, conven-

tional centralized and hierarchical approaches can be

inadequate – especially under conditions of disruption and

long-term change – to cope with the high degree of complexity

and practical requirements for robustness, generality and

reconfigurability in manufacturing plant control as well as in

production management, planning and scheduling (Mařı́k &

McFarlane, 2005).

These issues have led to the development of a new class of

approaches to manufacturing and supply chain decision

making. These approaches employ multi-agent systems

(MAS), which consist of a set of autonomous, intelligent,

and goal oriented units that efficiently cooperate and coordinate

their decision making to reach a higher-level or global goal. In

MAS groups of agents are organized according to specific,

precisely defined principles of community organization and

operation (such as messages and negotiation protocols), being

supported by an adequate agent platform (Luck, McBurney, &

Preist, 2001; Mařı́k & Lažanský, 2004). Industrial applications

of agent-based technologies can be found mainly at three

different levels (Mařı́k & McFarlane, 2005): (i) real-time

manufacturing control; (ii) production management level

(encompassing problems such as planning, scheduling, orders

preprocessing, etc.); and (iii) virtual enterprises (VE) that will

integrate manufacturing, sales networks, suppliers, distribution

channels.

As long as completely different features and capacities are

required for each level, different agent’s concepts are applied.

For instance, at the real-time manufacturing control, the use of

agents with a simple reactive behaviour rather than deliberative

behaviour based on complex models and strongly proactive

strategies is prevalent. At this level, agents generally have one-

to-one correspondence with individual resources (machines and

other devices) and orders (raw materials, parts, and products). A

more detailed discussion on the timing requirements imposed

C.E. Pereira, L. Carro / Annual Reviews in Control 31 (2007) 81–92 83
on MAS at this level as well as on how existing approaches

handle the almost contradictory goals of being adaptive and

flexible, while also presenting a deterministic temporal

behaviour is presented in (Pereira & Mitidieri, 1999).

As higher the level of the manufacturing automation

pyramid, real-time requirements tend to become softer and

knowledge intensive decision processes are performed by

agents.

Examples of agent-based industrial applications can be found

in Shen and Norrie (1999), Mařı́k and McFarlane (2005),

Bussmann, Jennings, and Wooldridge (2004) or Parunak (1999).

2.2. Holonic Manufacturing Systems (HMS)

As originally introduced by Koestler (1989), the word

‘‘holon’’ aims to describe the hybrid nature of sub-wholes/parts

in real-life systems: holons simultaneously are self-contained

wholes to their subordinated parts and dependent parts when

seen from the inverse direction. From this viewpoint, the whole

factory can be considered as a holon being composed of other

different kinds of holons such as those representing physical

objects like machines, automatic guided vehicles, conveyor

belts, pumps, valves, and even products as well as non-physical

entities like customer orders, production plans and so on.

Holonic Manufacturing Systems (HMS) are manufacturing

systems structured as a set of holons, which are autonomous

and cooperative units (see Deen, 2003; Van Brussel, 1994; Van

Leeuwen & Norrie, 1997). While this definition is somewhat

similar to the one presented in agent-based industrial

applications, according to Mařı́k and Lažanský (2004) holons

can be considered as specific reactive agents which are strongly

connected with the physical level devices, operate in hard real-

time and can be organized into a ‘‘holarchical’’ structures

(hierarchical or heterachical). In Mařı́k and Pechoucek (2001),

mutual impacts of holons and agent concepts are described.

In Van Brussel et al. (1998), a reference architecture for

Holonic Manufacturing Systems named PROSA is presented. It
Fig. 1. Intelligent maintenance
consists of three types of basic holons: resource, product and

order holons. PROSA makes use of object-oriented concepts

such as aggregation and specialization to structure the holons.

Holons, as cooperative units, exchange information about the

manufacturing system. Product holons and resource holons

communicate process knowledge, product holons and order

holons exchange production knowledge, and resource holons

and order holons share process execution knowledge.

The IEC 61499 standard for the application of function

blocks in distributed industrial-process measurement and

control systems has been developed by the Holonic Manu-

facturing Systems (HMS) consortium for the holonic real-time

control (Christensen, 1994). Function blocks are used as a

container of application algorithms and services wrapped with

execution control, promoting reuse of existing algorithms and

modular development of manufacturing systems (Fletcher &

Brennan, 2001). Additionally, IEC 61499 also includes models

for distribution, communication, and services.

As it is discussed later, distributed real-time embedded

architectures provide a very interesting infrastructure to deploy

such Holonic Manufacturing Systems.

2.3. Intelligent maintenance systems

Taking into consideration the fact that machines usually do

not suddenly fail, but rather go through a measurable process of

degradation before they fail, the basic idea of intelligent

maintenance systems or intelligent prognostics systems is to

use information provided by sensors and computerized

components embedded on the equipments, and apply algo-

rithms for health estimation and failure prediction.

The fundamental basis for such intelligent maintenance

systems (see Fig. 1) are the so-called ‘‘infotronic technologies’’

(Lee, Qiu, Ni, & Ad Djurdjanovic, 2004), which ‘‘transform the

paradigm from precision machine to precise information through

the use of intertwined embedded informatics and electronic

intelligence in a networked and tether-free environment and
systems (Lee et al., 2004).

C.E. Pereira, L. Carro / Annual Reviews in Control 31 (2007) 81–9284
enables products and systems to intelligently monitor, predict

and optimize their performance and ultimately to perform self-

maintenance activities autonomously’’.

Embedded computing components such as embedded

sensors, intelligent actuators and processing elements for local

smart decision devices play a fundamental role in the

development of such intelligent maintenance systems. As it

is presented later in the paper, recent advances in areas such

Systems-on-Chip (SoC), reconfigurable hardware, etc., are

enabling technologies for the development of embedded

systems for intelligent prognostics.

2.4. Product lifecycle management using product

embedded information devices

Product lifecycle management (PLM) can be described as a

strategic business approach that applies a consistent set of

business solutions in support of the collaborative creation,

management, dissemination, and use of product definition

information across the extended enterprise from concept to end-

of-life—integrating people, processes, business systems, and

information (Kiritsis, 2004). PLM consolidates diverse busi-

ness activities that create, modify and use data to support all

phases of a product’s lifecycle from ‘‘begin-of-life’’ (design,

production), middle-of-life (use, maintenance), and end-of-life

(recycling, disposal).

A key component in modern PLM systems is the concept of

‘‘smart items’’, physical objects that are equipped with

embedded computing units to enable close computing of the

real world to backend information systems. Such embedded

computing units are the so-called PEIDs (product embedded

information devices), which usually contain RFID tags, sensor

nodes, embedded PCs or similar devices (Anke & Neugebauer,
Fig. 2. PROMISE concept (
2006). This technology will allow producers to dramatically

increase their capability and capacity to offer high-quality after-

sales services while, at the same time, being able to demonstrate

responsibility as producers of environmental friendly and

sustainable products.

PROMISE is an international project on product lifecycle

management and information tracking using smart embedded

systems that is being carried on within the scope of the 6th

Framework Program of the European Union and as an endorsed

IMS project (http://www.promise.no/). PROMISE’s main goal

is to allow information flow management to go beyond the

customer, to close the product lifecycle information loops, and

to enable the seamless e-Transformation of Product Lifecycle

Information to Knowledge (see Fig. 2).

As depicted in Fig. 2, PROMISE concepts rely on a DRES

infrastructure to track objects’ identity, status, and location and

provide other decision-enabling information, such as embedded

predictive e-services.

3. Requirements to embedded computing systems for

manufacturing automation applications

The great majority of embedded systems currently being

developed and deployed are for use in mass markets such as

consumer electronics and their use in industrial applications are

still a small but increasing percentage. Similarly, the rapid

progress in COTS software for mainstream business systems

has not yet become as broadly available for DRES.

However, as presented in the last sections, there are several

opportunities to use embedded computing systems in advanced

industrial applications. However, in order to be applicable

to industrial applications, DRES have to meet following

requirements:
from www.promise.no).

http://www.promise.no/
http://www.promise.no/

C.E. Pereira, L. Carro / Annual Reviews in Control 31 (2007) 81–92 85
� D
ependability: it is usually defined as that property of a

computer system such that reliance can justifiably be placed

on the service it delivers. Both for economical (for instance,

high costs of breakdown time) as well as for safety reasons,

dependability is a key concept that must be supported by

DRES when applied to industrial applications.
� R
eal-time communication: most manufacturing systems are

physically distributed over a plant site, so that that their

embedded system components will also be physically apart.

In order to be able to interact and synchronize while meeting

stringent timing requirements, real-time industrial commu-

nication protocols must be employed (Mahalik, 2003;

Neumann, 2007), so that a timely communication occurs.
� F
lexibility/reconfigurability/agility: future manufacturing

and industrial processes will exhibit much higher degrees

of physical reconfigurability in order to accommodate

frequent changes in product mix and volume, as well as

due to frequent introduction of new product types and

manufacturing technology. In addition, rapid reconfiguration

will be used much more frequently to recover from machine

and process faults with minimal loss of production. In all

these cases, the control system (hardware and software) must

be quickly reconfigured, and for the most part automatically

so, in order not to become a bottleneck to agility.
� M
odularity: in order to support the above-mentioned

requirements of adaptability, DRES must be constructed in

a modular way. Modularity also affects serviceability and

recyclability in terms of disassembly, separation, repair, and

reprocessing (Ishii, 1998).
� O
penness: a system is defined as open when the implementa-

tions of its components conform to an (non-proprietary)

interface specification such that upgrading and customization

of the system as well as integration of new components is

possible (Mehrabi et al., 2000).
� L
ocation transparency: communication among different

nodes should use names that are not dependent on user’s

or resource’s location. This becomes particularly important

when mobile devices/equipment, such as AGVs, are used.
� A
utonomous behaviour: as discussed in Section 2, a key issue

in intelligent manufacturing systems is the capability of

manufacturing devices in autonomously making decisions

and local data process capabilities.
� S
ecurity: embedded computing systems need to access, store,

manipulate, or communicate sensitive information and

frequently need to operate in physically insecure environ-

ments. In industrial applications it is mandatory to have a

process to prevent and detect unauthorised use of services

(Ravi, Raghunathan, Kocher, & Hattangady, 2004) presents a

good overview on design challenges for deploying secure

embedded systems.
4. Distributed real-time and embedded systems (DRES)

4.1. Embedded systems hardware and SOCs

Embedded systems are defined as computational resources

that take part in bigger systems. They may vary from ABS
(antilock braking systems) control in a car to the portable phone

or home set-top box, and nowadays they include almost all

systems that are not desktop computers. Helped by the

technology advances allowed by Moore’s law, that states that

every 18 months the number of transistors on a single die

doubles, embedded systems complexity has increased follow-

ing the same pace. Semiconductor companies are now

fabricating Systems-on-Chip, or SoCs (Bergamaschi et al.,

2001), complex devices that include one or more processors,

plus memories and communication resources in a single die, at

a cost in the range of few dollars. Portable phones are classical

examples of products that benefit from such technology.

This way, the availability of fast operating devices with

embedded memories and other resources can be almost taken

for granted. For example, the same seamless connection that

today benefits persons while using a wireless link inside

buildings or airports can be transported to the manufacturing

scenario. The low cost of RF devices can provide new access

means for plant observation and control, without wiring costs

and accessibility problems.

Another key issue of current embedded devices is their

adaptability. Thanks to the huge processing power available,

and the reduced costs of embedded flash memories, these SOCs

can be programmed using a regular C or C++ compiler, thus

allowing fast adaptability to any task. Moreover, embedded

operating systems are also available for these devices, making

the porting of new applications an easier task, when compared

to the way things should be done in case of dedicated hardware

and software platforms.

The last technological evolution to enter the scenario is the

possibility of hardware reconfiguration itself (Hartenstein,

2001). Reconfigurable hardware allows for another level of

programmability that could boost performance at a fraction of

the energy spent by a microprocessor.

Besides regular programmable devices like FPGAs (e.g.

www.xilinx.com and www.altera.com are good examples), a new

commercial trend is found nowadays, concerning the reconfi-

gurations of processors themselves, either by changing the

instruction set or by adding extra hardware tightly connected to

the instruction set, like in the Coware and Tensilica approaches

(www.coware.com and www.tensilica.com). The advantage of

changing the processor concerns the huge amount of software

reusability allowed, while still providing extra performance

thanks to the dedicated instructions.

This technological scenario shows that embedded systems

can be as complex as required, and thanks to their mass

production, they can be available at a reasonable cost. From the

manufacturing and plant control point of view, these advances

might mean that the number of observation and control points

might increase, without extra wiring required and without huge

investments. Moreover, thanks to their high processing power,

embeddedSOCs allow for softwaremaintenanceat a higher level,

with RTOS support and low software development cost, meaning

that adaptability on the field can be deployed at a faster pace.

Hardware components in a SoC include one or several

processors, even from different types (microcontrollers, DSP,

RISC), memories, dedicated components for accelerating

http://www.xilinx.com/
http://www.altera.com/
http://www.coware.com/
http://www.tensilica.com/

Fig. 3. Typical SoC hardware architecture.

Fig. 4. A generic SoC design methodology.

C.E. Pereira, L. Carro / Annual Reviews in Control 31 (2007) 81–9286
critical tasks, and interfaces to various peripherals. Compo-

nents are connected by arbitrary communication networks,

which may range from a simple bus to hierarchical buses

connected by bridges to a complex network-on-chip (De

Micheli & Benini, 2002), as illustrated in Fig. 3.

The design of embedded systems is becoming largely

software-dominated, and is tightly coupled to a platform

(Densmore, Passerone, & Sangiovanni-Vincentelli, 2006).

Market perspectives indicate that up to 90% of the embedded

system design effort is now on the software part. Software

components in a SoC include several application software tasks

running on the processors, device drivers, and a real-time

operating system (RTOS) (Burns & Wellings, 1997) for each

available processor, to support basic services such as

scheduling and communication. An RTOS, besides usual

functions of an operating system, must also fulfill application

temporal requirements, such as task deadlines and frequency of

activation of periodic tasks. Temporal restrictions have impact

on task scheduling algorithms and on response time of basic OS

services such as interrupts and context switching.

Major guidelines for the SoC design are the clear separation

between computation and communication (Rowson & Sangio-

vanni-Vincentelli, 1997) and between function and architecture

(Keutzer, Malik, Newton, Rabaey, & Sangiovanni-Vincentelli,

2000; Sangiovanni-Vincentelli & Martin, 2001). These

distinctions enforce modular design and promote the indepen-

dent design and evolution of three aspects of system design:

function, architecture, and communication.

As depicted in Fig. 4, the design of an embedded SoC starts

with the definition and validation of a high-level, pure

functional specification, which is not influenced by architec-

tural choices and does not consider how design requirements

(power, performance) may be fulfilled. Following a design

space exploration step, which is nowadays mainly a manual

task, an abstract macro-architecture is defined to implement this

functionality, and a mapping assigns functional blocks to

architectural ones. This mapping implements a hardware–

software partitioning, where some functions are mapped to

software tasks while other ones are mapped to dedicated

hardware blocks. This high-level architectural model abstracts

all low-level implementation details.

A performance evaluation of the system is then performed,

by using estimates of the computation and communication costs

for this macro-architecture. Results of this estimation will be

used to guide the design space exploration, for instance

requiring modifications in the chosen macro-architecture and/

or functional mapping.
Communication refinement is now possible, where high-

level communications are mapped to particular mechanisms,

protocols and channels, thus allowing a more precise

performance evaluation. Depending on the chosen commu-

nication mechanisms, specialized components such as DMA

and interrupt controllers and bus arbiters must be inserted.

Some approaches implement the automatic generation of these

components (Lyonnard, Yoo, Baghdadi, & Jerraya, 2001;

O’Nils & Jantsch, 2001).

Hardware and software synthesis follow, usually resulting in

C/C++ code for the software part and an HDL description of a

cycle-and-pin accurate micro-architecture for the hardware

part. This synthesis is largely automated, and the combined C-

HDL description may be validated by conventional co-

simulation tools, such as CoCentric System Studio (Synopsys,

2003), from Synopsys, and Seamless CVE (Mentor, 2004),

from Mentor. As part of the software synthesis process, an

operating system may be required, to implement for instance

services for communication among tasks and for scheduling

tasks that are mapped to the same processor.

4.2. Middleware and programming languages

Real-time and embedded systems have historically been

relatively small scale. As discussed in the last section, recent

advances in microelectronic and software now allow embedded

systems to be composed of a large set of processing elements,

and the trend is towards significant increased functionality,

complexity, and scalability, since those systems are increas-

ingly being connected by wired and wireless networks to create

large-scale DRES. Additionally, the environment is generally

non-static, and the whole system must be robust enough in

order to operate under highly unpredictable and changeable

conditions. An important and challenging problem for DRE

systems is therefore adaptation of behaviour and reconfigura-

tion of resources to maintain the best possible application

C.E. Pereira, L. Carro / Annual Reviews in Control 31 (2007) 81–92 87
performance in the face of changes in system load and available

resources (Schantz et al., 2006). Therefore, new techniques and

software solutions are required in order to properly handle the

increased system complexity.

Clearly, a changing environment requires extra adaptability

from the software and hardware resources. Not only one must

provide for these adaptations, but also one must take into

account the possibilities of exploiting the architecture of the

system itself. For example, as more intelligent nodes are

available at low cost, distributed processing starts to make a lot

of sense, since the cost of local processing is not only

energetically efficient, but it is important to notice that

bandwidth does not follow the advances of Moore’s law.

The need for autonomous and time critical behaviour in

manufacturing plant control demands a flexible distributed

system substrate that adapt robustly to dynamic changes in

application requirements and market/environment conditions.

This substrate is usually called ‘‘middleware’’ because they sit

‘‘in the middle’’ in a layer above operating systems and

networking SW/HW and below industry specific applications

(Bernstein, 1996). Schantz and Schmidt (2001) define

middleware as reusable systems software that functionally

bridges the gap between: (i) the end-to-end functional

requirements and mission doctrine of applications and (ii)

the lower-level underlying operation system and network stack

protocols. Middleware therefore provides capabilities whose

quality and quality of service (QoS) are critical to DRE

systems.

Similar to network protocols, middleware can also be

decomposed in several layers (Schmidt, 2002): from ‘‘host

infrastructure middleware’’ at lower level to ‘‘domain specific

middleware services’’ at higher level (below the ‘‘application

level’’). Each of these layers focuses on specific aspects, but all

have in common the idea of allowing the implementation of an

‘‘information utility’’, to which components such as manu-

facturing devices can be connected and are able to interact with

each other.

Some of the middleware provided functionalities are: (i) to

encapsulate and enhance native OS communication and

concurrency mechanisms to create portable and reusable

network programming components (connection management,

data transfer, parameter (de)marshalling, etc.), (ii) to minimize

hardware and software infrastructure dependencies, and (iii) to

allow management of processor, memory, and communication

resources.

Domain-specific middleware services are tailored to the

requirements of a particular domain and have the most potential

to increase the quality and decrease the cycle-time and efforts

that integrators require to develop a particular class of DRE

systems (Schmidt, 2002). For instance, for manufacturing plant

control applications, this middleware level could for instance,

support all holon types defined by the PROSA reference

architecture as discussed in Section 2. It is also important to

note that in applications such as manufacturing plant control,

middleware must allow functional and QoS-related properties

to be modified dependably, i.e. without compromising the

fulfillment of stringent timing requirements. That means, a key
aspect is to achieve a good balance for the trade-off

performance versus flexibility.

TAO (Schmidt, Levine, & Mungee, 1998) and QuO (Loyall

et al., 1998) are examples of existing middleware that have been

used for manufacturing plant control applications.

Language support for embedded software development

efforts are currently centred on the C and C++ programming

languages but Java is rapidly gaining momentum in this field.

Devices with embedded Java such as cellular phones, PDAs and

pagers have grown from 176 million in 2001 to nearly 800

million in 2005. It has been predicted that at least 80% of

mobile phones will support Java by this year (Lawton, 2002). A

key concept in Java is that Java byte codes can be run on any

architecture for which a customized Java Virtual Machine

(JVM) is available. The JVM encapsulates all platform-specific

services, such as networking, file system operations, etc. The

idea of using Java for embedded industrial applications is not

new (see for instance (Atherton, 1998)) and with the advent of

the so-called Real-Time Specification for Java (RTSJ)

(Bollella, Gosling, & Benjamin, 2001), a very interesting

alternative to the development of DRES became available.

RTSJ incorporates several useful real-time constructs into Java,

allowing periodic activation of concurrent processes, timed

actions, handlers for asynchronous events, etc. Wehrmeister,

Becker, and Pereira (2004) presents an approach to optimize the

deployment of real-time embedded applications based on

RTSJ.

4.3. Real-time communication protocols

Real-time communication protocols are an important

component in DRES for industrial applications in order to

ensure a safe and timely operation. Fiedlbus protocols such as

Profibus, Foundation Fieldbus, DeviceNet and CAN are

standardized (IEC, 2003), widely adopted and well established

at field/shop floor level (see for instance Mahalik, 2003).

Ongoing efforts in extensions to these industrial communica-

tion protocols have shifted from low level aspects (physical and

data link layer standards) to the definition of higher-level

automation objects, such as Profinet mechatronic objects

(Profibus, 2002) or CIP application layer objects (www.od-

va.org).

At the same time, Ethernet has also been considered for use

in real-time applications, either in the industrial domain or in

large embedded systems. Attractive factors include wide

availability, high bandwidth and low cost. The use of

Ethernet-based communication protocols should also enable

an easy integration to realise the access to data in various layers

of an enterprise information system. As already mentioned,

these different levels impose different requirements dictated by

the nature and type of information being exchanged. Due to fact

that Ethernet was not originally developed to meet real-time

requirements and the medium access control protocol used –

CSMA/CD – may cause unbounded network access delays,

several proposals have been presented to adapt this protocol in

order to achieve real-time behaviour (Neumann, 2007;

Pedreiras & Almeida, 2005).

http://www.odva.org/
http://www.odva.org/

C.E. Pereira, L. Carro / Annual Reviews in Control 31 (2007) 81–9288
4.4. Future trends in DRES

The continuous trend towards smaller, more intelligent, and

more numerous devices is continuous and very soon also

embedded computing systems will be approaching limits of

human capability to develop, operate and maintain these

systems. It can be observed that objects are becoming

intelligent ‘‘things that think’’ (Gershenfeld, 1999) and while

this scenario will enable the realization of several high value e-

manufacturing and e-services, completely new design and

operation paradigms have to be developed. This has been the

motivation to the creation of areas such as autonomic

computing (Kephart & Chess, 2003) and organic computing

(DFG, 2004; Schmek, 2005). The idea is to develop

(embedded) computing systems that manage themselves given

high-level objectives and are able to perform self-configuration,

self-optimization, self-healing and self-protection (the so-

called ‘‘self-x’’ properties). Those systems should have

sufficient degrees of freedom to allow a self-organized

behaviour which will adapt to dynamically changing require-

ments. The ability to deal with widely varying time and

resources demands while still delivering dependable and

adaptable services with guaranteed temporal qualities is a

key aspect for future DRES (Stankovic, 1996). Some examples

of autonomic and reconfigurable embedded real-time systems

can be found in Brinkschulte et al. (2004), Rammig et al. (2006)

and Götz, Rettberg, and Pereira (2005).

5. Methodologies

Clearly, the possibility of using low cost devices that can be

configured, either in software or in hardware to adapt its

characteristics to those better matching the underlying

environment is beneficial to the whole design process. The

major challenge, however, is how to provide engineers with

effective and productive tools to allow them to make these

complex systems in a timely manner. To develop the next

generation of open, modular, reconfigurable, maintainable, and

dependable manufacturing systems adequate methodologies

must be available. When dealing with complex industrial

automation applications, the definition of a good architecture is

of utmost importance. Aspects such as modularity, cohesion,

and coupling, which historically were relegated to a secondary

plan due to an overemphasis on systems performance, have a

major impact in installation, operation, maintenance, and

engineering costs. Object-oriented systems have important and

desirable architectural properties. They are composed of a

number of communicating and well-defined objects. Objects

with common characteristics and behaviours are organized into

classes. Class hierarchies can be built using inheritance

concepts. Objects also fit nicely with concurrence, since their

logical autonomy makes them a natural unity for concurrent

execution. That implies in a fruitful way of thinking, enabling

concurrent processes present in the real world to be expressed

in a natural and easily understandable way. Some examples of

object-oriented technologies for industrial applications are

described in the sequence.
SIMOO-RT (Becker & Pereira, 2002) is an object-oriented

framework to the development of real-time computer-based

systems (i.e. hardware and software) that are embedded in

devices used in flexible and adaptive industrial automation

systems. The approach is based on the concept of active objects,

which are autonomous and concurrent processing units, having

their own thread of control. Active objects are used to map the

structure and the desired behaviour of technical plant compo-

nents. The approach leads to a generic specification, which

preserves the semantics of the physical plant under automation.

The approach covers the whole lifecycle of industrial automation

systems: from requirements engineering, through hardware and

software design, and to implementation and validation.

DOME (Distributed Object Model Environment) is an event

driven, object-oriented distributed architecture on which

industrial are defined as a network of Automation Objects,

which can be assigned to different contexts on several

heterogenous nodes. The access to the process interface is

also encapsulated inside DOME objects, which can be treated

as a kind of service interface function block (SIFB) according

to IEC 61499 or as a Proxy-object. A DOME case study is

presented in Riedl, Diedrich, and Nauman (2006).

OONEIDA (Vyatkin, Christensen, & Lastra, 2005) is a

research and development initiative in the domain of

decentralized, agile industrial control and automation for both

discrete manufacturing and continuous process systems.

OONEIDA should enable all players in the automation value

creation chain to encapsulate their intellectual property into the

software components and to deploy these components into

intelligent devices, machines, systems, and automated fac-

tories, respectively. This will enable time- and cost-effective

specification, design, validation, realization, and deployment of

intelligent mechatronic components in distributed industrial

automation and control systems.

Ptolemy (http://ptolemy.eecs.berkeley.edu) is a design

methodology based on the description of complex behaviour

with the use of OO languages. The main goal of Ptolemy is to

raise the abstraction level on the design process of systems

composed of hardware and software components. The project

goal is to cover the modelling, simulation and design of

concurrent components. Several models of computation are

supported, and basically the task of the designer is to use a

heterogeneous mixture of several models to describe and

simulate a complex system.

SEEP is a design and verification methodology that allows

the development of DRES from high-level RT-UML models.

The SEEP project (SEEP, 2006) concerns the development of

embedded systems based on platforms. A platform is defined as

a combination of hardware and software resources, where the

customization of these resources is developed for a target

application.

In the specification phase, the user might use UML

diagrams, and a Simulink frontend is being currently adapted.

From UML one can make the fist design exploration, by using

the developed library plus a tool that evaluates the costs, in

terms of processing speed, memory and power of the available

solutions (Brisolara, Becker, Carro, Wagner, & Pereira).

http://ptolemy.eecs.berkeley.edu/

C.E. Pereira, L. Carro / Annual Reviews in Control 31 (2007) 81–92 89
After this first design exploration step, SEEP supports two

different platforms, the Power-PC and a Java processor in

several organizations (pipeline, VLIW and with a reconfigur-

able array). Each of these processor versions has a different

trade-off regarding area, power dissipation and speed. Also,

each one can be synthesized only with a dedicated instruction

set, strongly tied to the problem it is trying to solve, so that

maximum efficiency can be achieved with software compat-

ibility. Examples of such architectures being deployed can be

found in Krapf and Carro (2003), Beck and Carro (2004, 2005),

and Silva et al. (2006).

6. Case studies

In order to better illustrate possibilities of design space

exploration when synthesizing embedded systems for manu-

facturing automation applications, two case studies are

presented.

6.1. Customizable RT-Java-based SOC for holonic/agent

applications

The first case study deals with the deployment of a SOC for

the holonic manufacturing case study described in McFarlane

(2002), real-time manufacturing control tested which consists

of a flexible production cell containing a robot arm, a screwing

robot, a rotary table, a flipping unit, an item parts input and a

storage unit to store the assembled items. Different product

types are assembled according to product specification.

The proposed case study was implemented using the SEEP

methodology described in previous section. A RT-UML model

encompassing around 30 classes was created (due to

restrictions in paper’s length this diagram is not presented

here) and a SOC containing a customized RT-FemtoJava, an
Table 1

Flexible assembly—HW/SW optimization

Single node Distr

Robo

Original code size

Application 32.730 10.

RTSJ API 28.428 28.

Comm. API 23.

Total 61.158 62.

Total + RTSJ JVMa 192.230 193.

Synthesized code size

Application 4.050 1.

Used API classes 3.116 3.

3.

Total 7.166 7.

Reduction (bytes)

App. code size 53.992 55.

App. + RTSJ JVM 185.064 186.

Reduction (%)

App. code size 88.28 88.

App. + RTSJ JVM 96.27 96.

a The RTSJ JVM size was based on a commercial embedded JVM.
API based on the Real-Time Specification for Java (RTSJ)

(Wehrmeister et al., 2004), and a real-time communication API

(Silva et al., 2006) was synthesized using the SASHIMI

synthesis tool (Ito, Carro, & Jacobi, 2001). This case study is

partially implemented, however all important functions are

present in the current system version. Table 1 depicts the

achieved optimization. The first column describes the required

footprint for a single node application, i.e. when all system

objects inhabit in one computing device. The optimized system

requires 88.28% less hardware resources when compared with

the same application running on a standard JVM and processor.

Considering that most Java applications need to be executed

using a virtual machine even when running on a single node, the

reduction would be 96.27%, because most of the code included

in the non-optimized application would not be used. In the

distributed version, the application must include the real-time

communication API and the RTSJ-base API in each system

node. Even with this extra code the reduction remains about

88% to application code size and about 96% when compared to

the same application running on a commercial RTSJ-

compatible JVM.

6.2. Embedded prognostics SOC

As a second case study, let us consider the design of an

embedded prognostics SoC to be used in intelligent prognostics

or condition-based monitoring applications. The goal here is to

use intelligent embedded prognostics algorithms in order to

perform a continuous assessment and prediction of a product’s

degradation performance by extracting high-level information

– the so-called features – from sensory signals. As discussed in

Lee et al. (2004), examples of such algorithms include Kalman

filters, time-frequency based, time-series based and wavelet-

based system analysis, Autoregressive Moving-Average
ibuted nodes

t arm Screwing robot Assembly

712 9.023 6.331

428 28.428 28.428

702 23.702 23.702

842 61.153 58.461

914 192.225 189.533

059 815 2.932

116 3.116 3.116

247 3.247 3.247

422 7.178 9.295

420 53.975 49.166

492 185.047 180.238

19 88.26 84.10

17 96.27 95.10

C.E. Pereira, L. Carro / Annual Reviews in Control 31 (2007) 81–9290
(ARMA) analysis, Hidden Markov Models, sensor fusion

techniques, etc. For instance the IMS Center for Intelligent

Maintenance Systems in U.S. (IMS Center, 2006) has

developed a set of around 20 prognostic tools, based on

different algorithms, which are used for feature extraction,

performance assessment, diagnostics and prognostics and have

been successfully applied to different industrial testbeds. More

than one algorithm can be applied in a particular application

and obtained results can be fused using some averaging

technique in order to increase the robustness and quality of

obtained confidence values.

An embedded system to implement such an embedded

prognostic device includes: I/O modules for data acquisition of

digital and analog signals, communication modules, both for

industrial communication protocols as well as for Internet

connectivity (for instance, with an embedded Web server to

allow remote access and configuration), a database, an

embedded processor, an embedded OS, and embedded software

with executable codes for the prognostics algorithms.

Probably the most straightforward implementation of such

embedded prognostic device with current technologies would

be to use some commercial embedded processor, running an

embedded RTOS with prognostic algorithms being implemen-

ted in programming languages like C/C++ and being executed

as concurrent tasks under the RTOS. However, considering that

prognostics algorithms are very distinct with regard to their

processing models, an optimized embedded system synthesis

can be achieved by exploring the design space evaluating

different customizable processor architectures. For instance, as

presented in (Beck & Carro, 2005) different usage of a

customizable DSP-based processor could lead to performance

improvements in the range of a factor of 4, with energy

reduction by a factor of even 10, at the price of extra area. So,

depending of the effective design goals (area, power dissipa-

tion, just performance or a combination of them all), the tuning

of the processor to the specific system it must work in can

provide a good balance within the design space, with a

reasonable goal. Moreover, since all the different micropro-

cessor descriptions are done in VHDL and synthesized of any

FPGA available in the market, dynamically changing them

whenever required by the upgrade of application allows for

easy adaptability without performance loss.

7. Concluding remarks

As discussed in the paper, looking from a top-down

perspective, modern manufacturing systems are challenged to

incorporate increasing capabilities of reconfigurability, self-x

and intelligence in order to be able to succeed in a very

competitive and global market, on which product variety and

complexity increase, product lifecycle shrinks, quality require-

ments increase, and profit margins decrease. Fortunately, when

considering a bottom-up perspective, one can identify that

considerable advances have been made in the last years in

communication, computer and information technologies. These

advances are allowing the deployment of distributed and real-

time embedded computing architectures that can become key
enablers to the development of reconfigurable/intelligent

manufacturing machines.

The paper described recent advances in DRES, and

presented some case studies that take benefit of some of these

new technological conditions. As technology evolves, the

immediate challenge is how to allow designers to deploy this

technology in the field. The test cases showed that not only this

is possible with available tools, but also that the research must

continue to cover new aspects that are being leveraged by

software and hardware technology advances.

Acknowledgements

This work has been partly supported by the Brazilian

research agencies CNPq, Fapergs, and FINEP.

References

Anke, J., & Neugebauer, M. (2006). Early data processing in smart item

environments using mobile services. In Proceedings of the IFAC 12th

INCOM 2006.

Atherton, R. W. (1998). Moving Java to the factory. IEEE Spectrum, 1998, 18–

23.

Balakrishnan, A., Kumara, S., & Sundaresan, S. (Jul 1999). Manufacturing in

the digital age: Exploiting information technologies for product realization.

Information Systems Frontiers, 1(1), 25–50.

Beck, A., & Carro, L. (2005). Dynamic reconfiguration with binary translation:

Breaking the ILP barrier with software compatibility. In Proceedings of the

42nd Design Automation Conference (pp. 732–737).

Beck, A. C., & Carro, L. (2004). A VLIW low power Java processor for

embedded applications. ACM SBCCI 2004 (pp. 157–162)1-58113-947-0.

Becker, L. B., & Pereira, C. E. (2002). SIMOO-RT—an object-oriented frame-

work for the development of realtime industrial automation systems. IEEE

Transactions of Robotics and Automation, 18(4), 421–430.

Bergamaschi, R. A., Bhattacharya, S., Wagner, R., Fellenz, C., Muhlada, M.,

White, F., et al. (2001). Automating the Design of SOCs Using Cores. In

IEEE Design & Test of Computers (p. 32–45).

Bernstein, P. A. (1996). Middleware: A model for distributed systems services.

Communications of the ACM, 39(2), 86–98.

Bollella, G., Gosling, J., & Benjamin, B. (2001). The Real-Time Specification

for Java, http://www.rtj.org/rtsj-V1.0.pdf.

Brinkschulte, U., Ungerer, T., & Becker, J. (2004). CARUSO: An approach

towards low power autonomic SoCs for embedded RT applications.

In Proceedings of the 18th IEEE Parallel and Distributed Processing

Symposium.

Brisolara, L., Becker, L. B., Carro, L., Wagner, F. R., & Pereira, C. E. (2005).

UML for SoC design. In Martin, G., & Muller, W. Eds. A comparison

between UML and function blocks for heterogeneous SoC design and ASIP

generation. Vol. 1 (pp.199–222).Springer. Chapter 9, ISBN 0-387-25744/6.

Burns, A., & Wellings, A. (1997). Real-time systems and programming lan-

guages. Addison-Wesley.

Bussmann, S., Jennings, N. R., & Wooldridge, M. (2004). Multiagent systems

for manufacturing control: A design methodology. Springer-Verlag.

Christensen, J. H. (1994). Holonic manufacturing systems: Initial architecture

and standards directions. In Proceedings of the First European Conference

on Holonic Manufacturing Systems (pp. 1–20).

Deen, S. M. (Ed.). (2003). Agent based manufacturing: Advances in the Holonic

Approach. Heidelberg: Springer Verlag.

De Micheli, G., & Benini, L. (2002). Networks-on-Chip: A new paradigm for

systems-on-chip design. IEEE DATE’02—Design, Automation and Test in

Europe, Paris, 2002.

Densmore, D., Passerone, R., & Sangiovanni-Vincentelli, A. (September–

October, 2006). A platform-based taxonomy for ESL design. IEEE design

and test of computers, p. 359–374.

http://www.rtj.org/rtsj-V1.0.pdf

C.E. Pereira, L. Carro / Annual Reviews in Control 31 (2007) 81–92 91
DFG (2004). DFG SPP 1183. Organic computing. http://www.organic-compu-

ting.de/spp.

Draper, C. (1984). Flexible Manufacturing Systems Handbook, Automation and

Management Systems Division. The Charles Stark Draper Laboratory Inc

Noyes Publications.

Filos, E. (2004). European research and policies for knowledge-driven innova-

tion. The example of industrial informatics. In Proceedings of the second

IEEE international conference on industrial informatics (INDIN’04) (pp.

11–12).

Fletcher, M., & Brennan, R. W. (2001). Designing Holonic manufacturing

systems using the IEC 61499 (function block) architecture. IEICE Transac-

tions (Vol. E84-D, No. 10, p.1398–1401).

Gershenfeld, N. (1999). When things start to think. New York: Owl Books,

Henry Holt.

Goldman, S. L., Nagel, R. N., & Preiss, K. (1995). Agile competitors and virtual

organizations: Strategies for enriching the customer. New York: Van

Nostrand Reinhold.

Götz, M., Rettberg, A., & Pereira, C. E. (2005). Towards run-time partitioning

of a real time operating system for reconfigurable systems on chip. In

Proceedings of IESS.

Hartenstein, R. (2001). A decade of reconfigurable computing: a visionary

retrospective. IEEE DATE (p. 642–649).

IEC. (2003). IEC 61784-1. Digital data communications for measurement and

control. Part 1. Profile sets for continuous and discrete manufacturing

relative to fieldbus use in industrial control systems.

IMS. (2006). NSF I/UCRC Center for Intelligent Maintenance Systems,

www.imscenter.net.

Ishii, K. (1998). Modularity: A key concept in product lifecycle engineering. In

A. Molina & A. Kusiak (Eds.), Handbook of life-cycle enterprise. Kluwer.

Ito, S. A., Carro, L., & Jacobi, R. P. (2001). Making Java work for micro-

controller applications. IEEE Design and Test of Computers, 18(5), 100–

110.

Johnson, T., & Dausch, M. (2006). Sensor informatics for manufacturing. In

Proceedings of the IFAC 12th INCOM 2006.

Kephart, J. O., & Chess, D. M. (2003). The vision of autonomic computing.

Computer, 36(1), 41–50.

Keutzer, K., Malik, S., Newton, A. R., Rabaey, J., & Sangiovanni-Vincentelli,

A. (December 2000). System-level design: orthogonalization of concerns

and platform-based design. IEEE Transactions on Computer-Aided Design

of Integrated Circuits, 19(12), 1523–1543.

Kiritsis, D. (2004). Ubiquitous product lifecycle management using product

embedded information devices. In Proceedings of 2004 intelligent main-

tenance systems (IMS) international conference.

Koestler, A. (1989). The ghost in the machine. London: Arkana Books.

Koren, Y., & Ulsoy, A. G. (1997). Reconfigurable manufacturing systems.

Engineering research center for reconfigurable machining systems. Report

#1. University of Michigan, Ann Harbor.

Krapf, R., & Carro, L. (2003). Efficient Signal Processing in Embedded Java

Systems. ISCAS 2003 (p. IV-61–64). ISBN 0-7803-7762-1.

Lawton, G. (2002). Moving Java into mobile phones. Computer, 35(6),

17–20.

Lee, J., Qiu, H., Ni, J., & Ad Djurdjanovic, D. (2004). Infotronics technologies

and predictive tools for next-generation maintenance systems. In Proceed-

ings of the 11th IFAC INCOM 2004.

Loyall, J. P., Schantz, R. E., Zinky, J. A., & Bakken, D. E. (1998). Specifying

and measuring quality of service in distributed object systems. In Proceed-

ings of IEEE ISORC ’98.

Luck, M., McBurney, P., & Preist, C. (2001). Agent technology: Enabling next

generation computing. A roadmap for agent-based computing, AgentLink.

www.agentlink.org/roadmap.

Lyonnard, D., Yoo, S., Baghdadi, A., & Jerraya, A. (2001). Automatic gen-

eration of application-specific architectures for heterogeneous multi-pro-

cessor system-on-chip. DAC’01—design automation conference.

Mahalik, N. P. (Ed.). (July 2003). Fieldbus technology: industrial network

standards for real-time distributed control. Springer Verlag. ISBN:

3540401830.

Mařı́k, V., & Lažanský, J. (2004). Industrial applications of agent technologies.

In Proceedings of the 11th IFAC INCOM 2004.
Mařı́k, V., & McFarlane, D. (2005). Industrial adoption of agent-based tech-

nologies. In IEEE intelligent systems (Vol. 20, No. 1, p. 27–35). ISSN 1094-

7167.

Mařı́k, V., & Pechoucek, (2001). Holons and agents: Recent development and

mutual impacts. In Proceedings of the 12th International Workshop on

Database and Expert Systems Applications.

McFarlane, D. (2002). Auto-ID based control—An overview. Whitepaper.

http://www.autoidcenter.co.uk/research/CAM-AUTOID-WH-004.pdf.

Mehrabi, M. G., Ulsoy, A. G., & Koren, Y. (2000). Reconfigurable manufactur-

ing systems: Key to future manufacturing. Journal of Intelligent Manu-

facturing, 11(4), 403–419.

Mentor. (2004). Seamless CVE. http://www.mentor.com/seamless.

Molina, A., Rodriguez, C., Ahuett, H., Cortés, J., Ramı́rez, M., Jiménez, G.,

et al. (2005). Next-generation manufacturing systems: Key research issues

in developing and integrating reconfigurable and intelligent machines.

International Journal of Computer Integrated Manufacturing, 18(7),

525–536.

Morel, G., Valckenaers, P., Faure, J. M., Pereira, C., & Diedrich, C. (2005).

Manufacturing plant control: Challenges and open issues. In Proceedings of

the 16th IFAC Triennial World Congress.

Neumann, P. (2007). Industrial communication: What is going on? Control

Engineering Practice (special issue with INCOM 2004 selected papers),

doi:10.1016/j.conengprac.2006.10.004.

Nof, S. (2004) Collaborative e-Work and e-Mfg.: The state of the art and

challenges for production and logistics managers. Keynote paper at 11th

IFAC INCOM 2004. Salvador, Brazil. (In C. Pereira, G. Morel, & P.

Kopacek (Eds.). Information Control Problems in Manufacturing 2004.

Elsevier Science. ISBN-13: 978-0-08-044249-5).

O’Nils, M., & Jantsch, A. (2001). Device driver and DMA controller synthesis

from HW/SW communication protocol specifications. Design automation for

embedded systems (Vol. 6, No. 2), Kluwer Academic Publisher.

Parunak, H. (1999). Industrial and practical applications of DAI. In G. Weiss

(Ed.), Multiagent systems: A modern approach to dist.artificial intelligence

(pp. 377–416). MIT Press.

Pedreiras, P., & Almeida, L. (2005). Approaches to enforce real-time behavior

in Ethernet. In R. Zurawski (Ed.), The industrial communication technology

handbook. Boca Raton, FL: CRC Press.

Pereira, C. E., & Mitidieri, C. (1999). Multi-agent systems from a real-time

perspective. Multi-agent-systems in production. ISBN 0-08-043657-9.

PROFIBUS Guideline. (2002). PROFInet architecture description and speci-

fication, Version 1.9. Karlsruhe: PNO.

Rammig, F., Gotz, M., Heimfarth, T., Janacik, P., & Oberthur, S. (2006). Real-

time operating systems for self-coordinating embedded systems. IEEE

ISORC.

Ravi, S., Raghunathan, A., Kocher, P., & Hattangady, S. (2004). Security in

embedded systems: Design challenges. Transactions on Embedded Com-

puting Systems, 3, 461–491.

Riedl, M., Diedrich, C., & Nauman, F. (2006). Event driven applications for

automation area. In Proceedings of the IFAC 12th INCOM 2006.

Rowson, J., & Sangiovanni-Vincentelli, A. (June 1997). Interface-based design.

In Proceedings of the DAC’97—Design Automation Conference.

Sangiovanni-Vincentelli, A., & Martin, G. (2001). Platform-based design and

software design methodology for embedded systems. IEEE Design & Test of

Computers.

Schantz, R., & Schmidt, D. (2001). Middleware for distributed systems:

Evolving the common structure for network-centric applications. Encyclo-

pedia of software engineering. Wiley&Sons.

Schantz, R., Loyall, J., Rodrigues, C., & Schmidt, D. (2006). Controlling

quality-of-service in distributed real-time and embedded systems via adap-

tive middleware. http://www.cs.wustl.edu/�schmidt/PDF/AM.pdf.

Schmek, H. (2005). Organic computing—A new vision for distributed

embedded systems. IEEE ISORC.

Schmidt, D. (2002). R&D advances in middleware for distributed, real-time,

and embedded systems. Communications of the ACM special issue on

Middleware 45(6).

Schmidt, D., Levine, D., & Mungee, S. (1998). The design and performance of

the TAO real-time object request broker. Computer Communications Spe-

cial Issue on Building Quality of Service into Distributed Systems 21(4).

http://www.organic-computing.de/spp
http://www.organic-computing.de/spp
http://www.imscenter.net/
http://www.agentlink.org/roadmap
http://www.autoidcenter.co.uk/research/CAM-AUTOID-WH-004.pdf
http://www.mentor.com/seamless
http://dx.doi.org/10.1016/j.conengprac.2006.10.004
http://www.cs.wustl.edu/~schmidt/PDF/AM.pdf
http://www.cs.wustl.edu/~schmidt/PDF/AM.pdf

C.E. Pereira, L. Carro / Annual Reviews in Control 31 (2007) 81–9292
SEEP. (2006). Sistemas Eletrônicos Embarcados baseados em Plataformas.

Platform-based Embedded Systems Development. www.inf.ufrgs.br/�lse.

Shen, W., & Norrie, D. H. (1999). Agent-based systems for intelligent man-

ufacturing: A state-of-the-art survey. Knowledge and Information Systems,

1(2), 129–156.

Silva, E., Jr., Freitas, E., Wagner, F., Carvalho, F., & Pereira, C. E. (2006). Java

framework for distributed real-time embedded systems. In Proceedings of

9th IEEE International Symposium on Object and Component-Oriented

Real-Time Distributed Computing (ISORC) (pp. 85–92).

Stankovic, J. (1996). Strategic directions in real-time and embedded systems.

ACM Computing Surveys, 28(4), 751–763.

Synopsys. (2003). CoCentric System Studio. http://www.synopsys.com.

Van Brussel, H. (1994). Holonic manufacturing systems, the vision matching

the problem. In Proceedings of the First Conference on Holonic Manu-

facturing Systems.

Van Brussel, H., Wyns, J., Valckenaers, P., Bongaerts, L., & Peeters, P. (1998).

Reference architecture for holonic manufacturing systems: PROSA. Com-

puters and Industry, 37(3), 255–274.

Van Leeuwen, E. H., & Norrie, D. (1997). Intelligent manufacturing: Holons

and Holarchies. Manufacturing Engineering, 76(2), 86–88.

Vyatkin, V., Christensen, J. H., & Lastra, J. L. M. (2005). OONEIDA: An open,

object-oriented knowledge economy for intelligent industrial automation.

IEEE Transactions on Industrial Informatics, 1(1), 4–17.

Wehrmeister, M. A., Becker, L. B., & Pereira, C. E. (2004). Optimizing real-

time embedded systems development using a RTSJ-based API. Workshop

on Java Technologies for Real-Time and Embedded Systems—JTRES 2004,

Proceedings Springer LNCS (pp. 292–297).

Carlos Eduardo Pereira received the Dr.-Ing. degree in electrical engineering

from the University of Stuttgart, Germany in 1995, the M.Sc. degree in

computer science in 1990 and the B.S. degree in electrical engineering in

1987, both from the Federal University of Rio Grande do Sul (UFRGS) in

Brazil. He is an associate professor of the Electrical Engineering Department at

the Federal University of Rio Grande do Sul in Brazil, where he has served as

Dean of the EE Department from 1996 to 1998 and Coordinator for the

Graduate Research Program from 2002 to 2006. From 2000 to 2001 he was

a visiting researcher at the United Technologies Research Center (UTRC) in

Hartford, CT, USA, where he acted as Group Leader of the Embedded

Information Devices Group and has coordinated a group of 15 research

engineers involved with research projects for United Technologies companies,

such as Carrier, Otis, Pratt and Whitney, Sikorsky and UT Fuel Cells. Since
2005 he is acting as technical director for CETA—an Applied Research Center,

whose goal is to promote collaborative research work between academia and

industry, focusing on the areas of industrial automation, information and

communication technologies, and optimization of production processes. Prof.

Pereira’s research focuses on methodologies and tool support for the develop-

ment of distributed real-time embedded systems, with special emphasis on

industrial automation applications and the use of distributed objects over

industrial communication protocols. He has worked on several research projects

in collaboration with industry, mostly dealing with the development of real-time

computer-based systems. He is Chair of the IFAC Technical Committee on

Manufacturing Plant Control (TC 5.1). He is also an Associate Editor of the

Journals ‘‘Control Engineering Practice’’ – Elsevier and AtP International,

Oldenbourg. He has more than 150 technical publications on conferences and

journals and has acted as member of International Program Committees for

several conferences in the field of industrial automation, manufacturing,

industrial protocols, and real-time distributed object computing. He has been

the general chair of the 21st IFAC Workshop on Real-Time Programming,

WRTP’96, the 5th IFAC Workshop on Intelligent Manufacturing Systems,

IMS’98, the 2nd IFAC Workshop on Intelligent Assembly and Disassembly,

IAD’01 and the 11th IFAC Symposium on Information Control Problems in

Manufacturing, INCOM’04.

Luigi Carro was born in Porto Alegre, Brazil, in 1962. He received the

electrical engineering and the M.Sc. degrees from Universidade Federal do

Rio Grande do Sul (UFRGS), Brazil, in 1985 and 1989, respectively. From 1989

to 1991 he worked at ST-Microelectronics, Agrate, Italy, in the R&D group. In

1996 he received the Ph.D. degree in the area of computer science from

Universidade Federal do Rio Grande do Sul (UFRGS), Brazil. Prof. Carro is

presently at the Applied Informatics Department at the Informatics Institute of

UFRGS, in charge of Computer Architecture and Organization disciplines at the

graduate and undergraduate levels. He is also a member of the Graduation

Program in Computer Science at UFRGS, where he is responsible courses on

embedded systems, digital signal processing, and VLSI design. His primary

research interests include embedded systems design, digital signal processing,

mixed-signal and analog testing, and rapid system prototyping. He has pub-

lished more than 120 technical papers on those topics and is the author of the

books Digital systems Design and Prototyping (in Portuguese) and Fault-

Tolerance Techniques for SRAM-based FPGAs. He has served as Technical

Program Committee member of several conferences, like DATE, VTS, ETS,

IESS + CODES, FPL, SAMOS and RAW.

http://www.inf.ufrgs.br/~lse
http://www.inf.ufrgs.br/~lse
http://www.synopsys.com/

	Distributed real-time embedded systems: Recent advances, future �trends and their impact on manufacturing plant control
	Introduction
	Examples of intelligent manufacturing areas enabled by embedded computing systems
	Agent-based manufacturing systems
	Holonic Manufacturing Systems (HMS)
	Intelligent maintenance systems
	Product lifecycle management using product embedded information devices

	Requirements to embedded computing systems for manufacturing automation applications
	Distributed real-time and embedded systems (DRES)
	Embedded systems hardware and SOCs
	Middleware and programming languages
	Real-time communication protocols
	Future trends in DRES

	Methodologies
	Case studies
	Customizable RT-Java-based SOC for holonic/agent applications
	Embedded prognostics SOC

	Concluding remarks
	Acknowledgements
	References

