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Abstract

It is well-known that the stochastic gradient (SG) identification algorithm has poor convergence rate. In order to improve the convergence
rate, we extend the SG algorithm from the viewpoint of innovation modification and present multi-innovation gradient type identification
algorithms, including a multi-innovation stochastic gradient (MISG) algorithm and a multi-innovation forgetting gradient (MIFG) algorithm.
Because the multi-innovation gradient type algorithms use not only the current data but also the past data at each iteration, parameter estimation
accuracy can be improved. Finally, the performance analysis and simulation results show that the proposed MISG and MIFG algorithms have
faster convergence rates and better tracking performance than their corresponding SG algorithms.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Let us begin with considering a time-invariant stochastic sys-
tem described by a linear regression model:

y(t) = �T(t)� + v(t), (1)

where y(t) ∈ R1 is the system output, and �(t) ∈ Rn is
the information vector consisting of the system observation
(input–output) data, v(t) ∈ R1 is a stochastic noise with zero
mean and � ∈ Rn (�(t) ∈ Rn) is the (time-varying) parame-
ter vector to be identified, the superscript T denotes the matrix
transpose.

Assume that y(t) = 0, �(t) = 0 and v(t) = 0 for t �0.
{y(t), �(t)} is the available measurement data. For conve-
nience, we suppose that t is the current time, then y(t) and
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�(t) are called the current data, and {y(t − i), �(t − i) : i =
1, 2, . . . , p − 1} called the past data.

For the time-invariant system in (1), defining and minimizing
the cost function (Ljung, 1999),

J (�) := E[‖y(t) − �T(t)�‖2],
and using the stochastic gradient (SG) search principle, we may
obtain a recursive SG identification algorithm (Goodwin & Sin,
1984; Ljung, 1999),

�̂(t) = �̂(t − 1) + �(t)

r(t)
[y(t) − �T(t)�̂(t − 1)], (2)

r(t) = r(t − 1) + ‖�(t)‖2, r(0) = 1. (3)

Here, E denotes the expectation operator, the norm of the matrix
X is defined by ‖X‖2 = tr[XXT], �̂(t) represents the estimate
of � at time t and 1/r(t) is called the convergence factor or
step-size.

Comparing with the recursive least-squares algorithm, the
SG algorithm has very slow convergence rate; we think that the
main reasons lie in the following:

• The error system corresponding to the parameter estima-
tion error equation has n − 1 eigenvalues on the unit circle,
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only one eigenvalue inside the unit circle. In fact, defining
the parameter estimation error vector,

�̃(t) := �̂(t) − �

and using (2) and (3), it follows that

�̃(t) =
[

I − �(t)�T(t)

r(t)

]
�̃(t − 1) + �(t)

r(t)
v(t)

=: H(t)�̃(t−1)+�(t)

r(t)
v(t), H(t):=I−�(t)�T(t)

r(t)
,

where I stands for an identity matrix of appropriate sizes.
Since HT(t)H(t) has n−1 eigenvalues on the unit circle, the
SG algorithm thus has a poor convergence rate based on the
fact: for time-varying systems of the form, x(t)=H(t)x(t−1),
x(t) ∈ Rn, H(t) ∈ Rn×n, if all eigenvalues of HT(t)H(t)

are close to zero or with magnitude smaller than 1, then x(t)

can (fast) converge to zero, otherwise, if some eigenvalues
of HT(t)H(t) are on the unit circle , then x(t) has a slow
convergence rate.

• The SG algorithm does not make sufficient use of the avail-
able information (data) of systems because the algorithm uses
only the current data {y(t), �(t)} at each recursive/iterative
computation, and does not use the past data {y(t−i), �(t−i):
i = 1, 2, . . .}.

Therefore, a natural question is how to extend the SG algorithm
to achieve a fast convergence rate; this is the focus of this
work.

Since the quantity e(t) := y(t) − �T(t)�̂(t − 1) ∈ R1

in Eq. (2) is called the innovation (Ljung, 1999) and scalar-
valued, we give the SG algorithm a new name—the single in-
novation (modification) SG identification algorithm. From the
viewpoint of innovation modification, this paper extends the
single innovation identification algorithm and presents multi-
innovation identification methods. The proposed approaches
use not only the current data {y(t), �(t)} but also the past data
{y(t − i), �(t − i) : i = 1, 2, . . . , p − 1}, and the H-matrix of
the resulting estimation error equations has all eigenvalues in-
side the unit disc, and thus achieving fast convergence rates and
improving the parameter estimation accuracy. Finally, we claim
that the multi-innovation identification methods are different
from the identification methods of multi-variable systems—see
the discussion in Section 5.

It is well-known that the recursive least-squares (RLS)
algorithm is based on all previous data, thus has faster con-
vergence rate than the SG algorithm, but the SG algorithm
requires less computational effort than the RLS algorithm. In
order to enhance the convergence rate of the SG algorithm,
we present multi-innovation stochastic gradient (MISG) algo-
rithms based on finite previous data, i.e., the MISG approaches
use not only the current data but also the past data at each
iteration, thus parameter estimation accuracy can be improved.
The MISG algorithms have advantages of the SG and RLS
algorithms. This is a tradeoff between the two algorithms,

i.e., the MISG algorithms have faster convergence rate than the
SG algorithms and less computational burden than the RLS
algorithms.

In the area of time-invariant system identification, earlier
work on convergence exists: Ljung (1976) analyzed consis-
tency of the RLS algorithm based on the assumptions that the
noise is an independent and identically distributed (iid) random
sequence with finite fourth-order moments and the input and
output signals have finite non-zero power. Also, Lai and Wei
(1982) obtained the convergence rate of the RLS parameter
estimation by assuming that higher-order moments of the noises
exist. Since then, most results of RLS or SG (based adaptive
control) algorithms have made such assumptions, e.g., Lai and
Wei (1986), Wei (1987), Ren and Kumar (1994), Guo (1995),
and Kumar (2000). Recently, Ding and Chen (2005a) and Ding,
Shi, and Chen (2006) studied in details the convergence prop-
erties of the RLS algorithms for time-invariant systems and for
non-stationary ARMA processes but do not assume that the
process noise is an iid sequence or higher-order moments exist.
This paper explores the convergence properties of the MISG
algorithms only assuming that the noise is a second-moment
process with zero mean.

In the literature of time-varying systems, Guo and Ljung
(1995a) discussed the exponential stability of the averaged
(deterministic) equations corresponding to the homogeneous
equations of the parameter estimation error systems of the
RLS algorithms with a forgetting factor (RFFLS algorithms for
short), and further Guo and Ljung (1995b) used the stochastic
martingale theory to study the properties of the parameter es-
timation error covariance matrix of the RFFLS algorithms by
assuming that the measured error v(t) and the parameter drift
w(t) are of white noise character. Recently, Ding and Chen
(2005a) derived in details the upper and lower bounds of the
parameter estimation of the RFFLS algorithms and showed
that only for deterministic systems, the RFFLS algorithms are
exponentially convergent. In this paper, we present a SG algo-
rithm and MISG algorithm with a forgetting factor, capable of
tracking time-varying parameters, and analyze their parameter
estimation error bounds.

The rest of the paper is organized as follows. Section 2
derives a MISG identification algorithm by extending the in-
novation modification technique. Sections 3 analyzes the con-
vergence properties of the SG and MISG algorithms to show
the advantages of the proposed MISG algorithm. Section 4
presents the MISG algorithm with a forgetting factor in order
to track the time-varying parameters. Section 5 simply dis-
cusses the multi-variable version of the multi-innovation algo-
rithms. Section 6 presents several illustrative examples for the
results in this paper. Finally, concluding remarks are given in
Section 7.

2. The MISG algorithm

In this section, we derive a MISG identification algorithm.
The basic idea is to expand the scalar innovation e(t) to
an innovation vector (called also multi-innovation) (Ding &
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Chen, 2006). Let

E(p, t) =

⎡
⎢⎢⎣

e(t)

e(t − 1)
...

e(t − p + 1)

⎤
⎥⎥⎦ ∈ Rp,

where the positive integer p denotes the innovation length, and

e(t − i) = y(t − i) − �T(t − i)�̂(t − i − 1) ∈ R1.

In general, one thinks that the estimate �̂(t − 1) at time t − 1 is
closer to � than �̂(t − i) at time t − i (i = 2, 3, 4, . . . , p − 1).
Thus, the innovation vector is taken more reasonably to be

E(p, t) =

⎡
⎢⎢⎣

y(t) − �T(t)�̂(t − 1)

y(t − 1) − �T(t − 1)�̂(t − 1)
...

y(t − p + 1) − �T(t − p + 1)�̂(t − 1)

⎤
⎥⎥⎦ ∈ Rp.

By defining the information matrix �(p, t) and stacked output
vector Y(p, t) as

�(p, t) = [�(t), �(t − 1), . . . ,�(t − p + 1)] ∈ Rn×p,

Y(p, t) = [y(t), y(t − 1), . . . , y(t − p + 1)]T ∈ Rp,

the innovation vector E(p, t) may be expressed as

E(p, t) = Y(p, t) − �T(p, t)�̂(t − 1).

Since E(1, t) = e(t), �(1, t) = �(t) and Y(1, t) = y(t), the SG
algorithm in (2) may be equivalently expressed as

�̂(t) = �̂(t − 1) + �(1, t)

r(t)
[Y(1, t) − �T(1, t)�̂(t − 1)].

Here, the multi-innovation length p is equal to 1. From here,
we can derive the MISG algorithm with the innovation length
p as follows:

�̂(t) = �̂(t − 1) + �(p, t)

r(t)
E(p, t), (4)

E(p, t) = Y(p, t) − �T(p, t)�̂(t − 1), (5)

r(t) = r(t − 1) + ‖�(t)‖2, r(0) = 1, (6)

�(p, t) = [�(t), �(t − 1), . . . ,�(t − p + 1)] ∈ Rn×p, (7)

Y(p, t) = [y(t), y(t − 1), . . . , y(t − p + 1)]T ∈ Rp. (8)

Because E(p, t) ∈ Rp in this algorithm is an innovation vector,
namely, multi-innovation, we refer to the algorithm in (4)–(8)
as the MISG algorithm. As p =1, the MISG algorithm reduces
to the standard SG algorithm.

This MISG algorithm may also be approximately obtained
by minimizing the cost function,

J (�) := E[‖Y(p, t) − �T(p, t)�‖2]
and using the SG search principle. Ding, Xie, and Fang (1996)
and Ding, Xiao, and Ding (2003) gave some special multi-
innovation identification algorithms, e.g., the varying iterative
interval MISG algorithm (V-MISG algorithm) and the V-MISG
algorithm with a forgetting factor.

The MISG algorithm has the following properties:

• Comparing with the SG algorithm in (2)–(3) using only the
current data {y(t), �(t)}, the MISG algorithm in (4)–(8) uses
not only the current data {y(t), �(t)} but also the past data
{y(t − i), �(t − i) : i = 1, 2, . . . , p − 1}, and thus has
potential for better convergence properties for the parameter
estimation.

• The MISG algorithm repeatedly utilizes the available data.
In fact, at time t, the data that the MISG algorithm uses are
{y(t − i), �(t − i) : i = 0, 1, . . . , p − 1}; at time t + 1, the
data the MISG algorithm use are {y(t +1− i), �(t +1− i) :
i = 0, 1, . . . , p − 1}; thus in the neighboring two iterations,
the data of the repeated utilization are {y(t − i), �(t − i) :
i=0, 1, . . . , p−2}. This is the key for the enhanced accuracy
of the MISG algorithm.

• Increasing the innovation length p leads to smaller parame-
ter estimation errors for the same length measurement data.
In other words, a larger p results in a better model accu-
racy but the price we paid is a large computational effort.
However, this increased computation is still tolerable and
affordable.

These conclusions are confirmed from the theoretical analysis
in the next section and examples later.

To initialize the MISG algorithm, the initial value �̂(0) is
generally taken to be a zero vector or a small real vector, e.g.,
�̂(0) = 10−61n with 1n being an n-dimensional column vector
whose elements are 1.

To summarize, we list the steps involved in the MISG algo-
rithm to recursively compute the parameter estimation vector
�̂(t) as t increases:

1. Collect the measurement data, form the information vector
�(t) and determine a data length Le.

2. Let t = 1: �̂(0) = 10−61n and r(0) = 1.
3. Form �(p, t) by (7) and Y(p, t) by (8).
4. Compute r(t) by (6), E(p, t) by (5), and �̂(t) by (4).
5. If t = Le, then terminate the procedure and obtain the esti-

mate �̂(Le) of the parameter vector �; otherwise, increment
t by 1 and go to step 3.

3. Convergence of the SG and MISG algorithms

Let us introduce some notation first. �max[X] and �min[X] rep-
resent the maximum and minimum eigenvalues of the symmet-
ric matrix X, respectively; for g(t)�0, we write f (t)=O(g(t))

or f (t) ∼ g(t) to express limt→∞f (t)/g(t) = 1.
In order to derive the convergence properties of the SG and

MISG algorithms, the following lemmas are required.

Lemma 1. Let {x(t)}, {at } and {bt } be non-negative real
sequences satisfying

x(t + 1)�(1 − at )x(t) + bt , t �0,
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with at ∈ [0, 1) and x(0) < ∞. Then

lim
t→∞ x(t)� lim

t→∞
bt

at

provided that the related limits exist.

The proof is easy and omitted here.

Lemma 2. For the system in (1) and the algorithm in (2)–(3),
if the information vector �(t) is persistently exciting, that is,
there exist constants 0 < ��� < ∞ and an integer N �n such
that the following persistent excitation condition holds (Ljung,
1999):

(A1) �I� 1

N

N−1∑
i=0

�(t + i)�T(t + i)��I a.s., t > 0,

then r(t) in (3) or (6) satisfies the inequality

n�(t − N + 1) + 1�r(t)�n�(t + N − 1) + 1 a.s.

(The proofs of Lemmas 2 to 4 and Theorems 1–3 in the
sequel are given in the Appendix.)

3.1. The convergence of the SG algorithm

This subsection establishes the convergence of the SG algo-
rithm.

Lemma 3. For the system in (1) and the algorithm in (2)–(3),
define the transition matrix

L(t + 1, i) =
[

I − �(t)�T(t)

r(t)

]
L(t, i), L(i, i) = I.

If Condition (A1) holds, then

�t := �max[LT(t + N, t)L(t + N, t)]
�1− N�2

(N+1)2�1[n�(t+2N−2)+1] a.s., �1 := nN�.

Theorem 1. For the system in (1) and the algorithm in (2)–(3),
assume that Condition (A1) holds, {v(t)} is a random noise
sequence satisfying

(A2) E[v(t)] = 0; E[v(t)v(i)] = 0,

t �= i; E[v2(t)]��2
v < ∞;

and �̃(0) is uncorrelated with {v(t)} and E[‖�̃(0)‖2] < ∞.
Then the parameter estimation error �̂(t) − � satisfies

lim
t→∞ E[‖�̃(t)‖2]

� lim
t→∞

n2N3(N + 1)2�2�2
v[n�(t + N − 1) + 1]

�2[n�(t − 2N + 2) + 1]2 = 0.

3.2. The convergence of the MISG algorithm

Here we establish the convergence of the MISG algorithm.

Theorem 2. For the system in (1) and the algorithm in (4)–(8),
suppose that the conditions of Theorem 1 hold and take the
innovation length p=N for simplifying the proof. Then the pa-
rameter estimation error given by the MISG algorithm satisfies

lim
t→∞ E[‖�̃(t)‖2]� lim

t→∞
N��2

v[n�(t − N + 1) + 1]
�[n�(t − N + 1) + 1]2 = 0.

From Theorems 1 and 2, we can draw the following conclu-
sions:

• For time-invariant stochastic systems, the parameter estima-
tion errors ‖�̃(t)‖2 by the SG and MISG algorithms converge
to zero at the rates of C1/t and C2/t (C1 and C2 can be
found in the proofs of Theorems 1 and 2), respectively, but
the MISG algorithm has higher parameter estimation accu-
racy than the SG algorithm because the scale factor C2>C1,
see Example 1.

• With the help of the parameter estimation error upper bounds
in (A.6) and (A.8), we can find answers to the following
important question in system identification:

◦ Given a small and positive ε and using the SG and
MISG identification algorithms, how large a data set
one needs to use to guarantee that the parameter esti-
mation errors are less than ε, i.e., E[‖�̂(t)− �‖2]�ε?

Let Le denote the data length. According to (A.6) and (A.8),
the data length must satisfy

Le � C1

ε
= nN3(N + 1)2�3�2

v

�4ε

for the SG algorithm and

Le � C2

ε
= N�2�2

v

n�3ε

for the MISG algorithm. Here, according to Condition (A1),
we can compute the quantities � and � and find N. Notice that
n is the number of the system parameters in � and known, the
noise variance �2

v is replaced by its estimate �̂2
v , see (17).

4. The MISG algorithm with a forgetting factor

Note that the SG and MISG algorithms have no ability to
track time-varying parameters because the algorithm gains,
�(p, t)/r(t) and �(t)/r(t), approach zero as t increases. In
order to improve the tracking performance of the SG and
MISG algorithms, we introduce a forgetting factor in the SG
and MISG algorithms to get the SG algorithm with a forget-
ting factor [forgetting gradient (FG) algorithm for short] and
the MISG algorithm with a forgetting factor [multi-innovation
forgetting gradient (MIFG) algorithm for short]. The following
is to discuss these two algorithms.
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Consider the time-varying systems described by a linear
regression model

y(t) = �T(t)�(t) + v(t), (9)

where the definitions of variables y(t) ∈ R1, �(t) ∈ Rn and
v(t) ∈ R1 are the same as before, �(t) ∈ Rn is the time-varying
parameter vector to be identified.

The FG algorithm of identifying the time-varying parameter
vector �(t) may be expressed as

�̂(t) = �̂(t − 1) + �(t)

r(t)
[y(t) − �T(t)�(t − 1)], (10)

r(t) = �r(t − 1) + ‖�(t)‖2, 0 < � < 1, r(0) > 0. (11)

The MIFG algorithm of estimating �(t) may be expressed as

�̂(t) = �̂(t − 1) + �(p, t)

r(t)
[Y(p, t) − �T(p, t)�̂(t − 1)], (12)

r(t) = �r(t − 1) + ‖�(t)‖2, 0 < � < 1, r(0) > 0, (13)

�(p, t) = [�(t), �(t − 1), . . . ,�(t − p + 1)] ∈ Rn×p, (14)

Y(p, t) = [y(t), y(t − 1), . . . , y(t − p + 1)]T ∈ Rp. (15)

Obviously, when p = 1, we have MIFG = FG.
In engineering, the parameter estimation accuracy, e.g., mea-

sured by �a := ‖�̂(t)−�(t)‖2, is important. However, since the
true parameter vector �(t) is unknown and is to be identified,
the parameter estimation error �a is impossible to compute
even if we obtain the estimation �̂(t) by some identification
algorithm. Therefore, we present the parameter estimation
error upper bound to evaluate the parameter estimation accu-
racy indirectly (Ding & Chen, 2005a). The following lemma
and theorem establish the parameter estimation error upper
bound of the MIFG algorithm. The parameter estimation error
upper bound of the FG algorithm can be done in a similar way
as in Lemma 3 and Theorem 1, and hence is omitted here.

Lemma 4. For the system in (9) and the MIFG algorithm in
(12)–(15), assume that Condition (A1) holds, the information
vector �(t) has a lower bound like ‖�(t)‖2 �� > 0, and r(0)

is chosen to satisfy

�

1 − �
�r(0)� nN�

1 − �
. (16)

Then, for all t > 0, r(t) in (13) satisfies

�

1 − �
�r(t)� nN�

1 − �
a.s., 0 < � < 1.

Theorem 3. For the system in (9) and the MIFG algorithm
in (12)–(15), assume that (A1) holds, r(0) is chosen by (16),
the observation noise {v(t)} and the parameter changing rate
{w(t) := �(t) − �(t − 1)} are stochastic sequences with zero
mean, and the sequences {v(t)} and {w(t)} satisfy

(A3) E[v(t)] = 0, E[w(t)] = 0,

(A4) E[v2(t)]��2
v < ∞, E[‖w(t)‖2]��2

w < ∞.

Let the innovation length p = N and E[‖�̂(0) − �(0)‖2] =
�0 < ∞. Then the parameter estimation error by the MIFG
algorithm is mean square bounded:

E[‖�̂(t) − �(t)‖2]�[√1 − �]t�0 + 3

(1 − √
1 − �)2

×
[
N4�2(1−�)2�2

w

2�2 +N2�(1−�)2�2
v

�2 +�2
w

]

=: fu(�, t),

where

0 < � := �(1 − �)

n�
< 1.

For large t, 0 < � < 1, 0 < � < 1 and finite �0, since
[√1 − �]t�0 is very small and approaches zero as t goes to
infinity, it can be neglected. Thus, we have an approximate
upper bound:

fu(�, t) ≈ 3

(1 − √
1 − �)2

×
[

N4�2(1 − �)2�2
w

2�2 + N2�(1 − �)2�2
v

�2 + �2
w

]

= f (a0, �) =: f (�).

By experiments, we collect the measurement input–output data
with data length t =Le?n to form the information vector �(t).
According to Condition (A1), we can compute the quantities �
and � and find N. Notice that n is the number of the system
parameters in �(t) and known, but the noise variances �2

v and
�2

w are unknown. In order to obtain the estimation error upper
bound f (�), we can compute the estimates �̂2

v and �̂2
w of �2

v

and �2
w by

�̂2
v = 1

Le

Le∑
t=1

[y(t) − �T(t)�̂(Le)]2,

�̂2
w = 1

Le

Le∑
t=1

‖�̂(t) − �̂(t − 1)‖2. (17)

In practice, the true variances of noises are unavailable, so a
way is to simply substitute the variances with their estimates
to compute the error upper bound fu(�, t).

From the above and Theorem 3, we can reach the following
conclusions and corollaries:

• There exists a best forgetting factor � such that the error upper
bound f (�) is minimum. In other words, we may obtain the
minimum estimation error upper bound f (�) by choosing an
appropriate forgetting factor. In fact, letting

df (�)

d�
= 0
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leads to the equation:

�2(1 − �)2

(n�)2 − 2�(1 − �)

n�

+ 2

√
1 − �(1 − �)

n�

�(1 − �)

n�
− k2

k1
= 0, (18)

where

k1 := N4�4n2�2
w

2�4 + N2�3n2�2
v

�4 , k2 := �2
w.

The equation in (18) has four solutions, and the solution �=�0
which makes f (�) = min is the best forgetting factor, and
the corresponding minimum estimation error upper bound is
f (�0). This provides the theoretical guide of choosing the
forgetting factor.

• A small noise variances �2
v and/or small parameter changing

rate �2
w result in small estimation error upper bound.

• Large � and small � will generate a small estimation error
upper bound. In other words, if � and � are closer, then
the �(t) are more stationary, and thus the stationarity of
the input–output data can improve the parameter estimation
accuracy.

• A small N that makes (A.1) hold can reduce the estimation
error upper bound. That is, the sufficient richness of data can
give good parameter estimation.

Corollary 1. For a time-invariant deterministic system

y(t) = �T(t)�

the estimation error converges to zero at exponentially fast rate,
i.e.,

E[‖�̂(t) − �‖2]�
[

1 − �(1 − �)

n�

]2t

�0 → 0, t �N .

Corollary 2. For a time-invariant stochastic system

y(t) = �T(t)� + v(t),

we have

lim
t→∞ E[‖�̃(t)‖2]� lim

t→∞[√1 − � ]t�0

+ 1

(1 − √
1 − � )2

N2�(1 − �)2�2
v

�2

=
[

1 −
√

1 − �(1 − �)

n�

]−2
N2�(1 − �)2�2

v

�2

=: f1(�).

Thus, for time-invariant stochastic systems, the MIFG algo-
rithm (0 < � < 1) gives only a finite parameter estimation error
upper bound f1(�), but the MISG algorithm (take � = 1 in the
MIFG algorithm) can give a consistent parameter estimation
(�̂(t) → �). (See the preceding section.)

Corollary 3. For a time-varying deterministic system

y(t) = �T(t)�(t),

we have

lim
t→∞ E[‖�̃(t)‖2]�[√1 − � ]t�0

+ 2

(1−√
1 − � )2

[
N4�2(1−�)2�2

w

2�2 +�2
w

]

�2

[
1 −

√
1 − �(1 − �)

n�

]−2
(N4 + 1)�2�2

w

2�2

=: f2(�).

As t → ∞, the estimation error upper bound also approaches
a constant f2(�).

Corollary 4. For the time-varying system in (9) and the MIFG
algorithm in (12)–(15), we take a variable forgetting factor �(t)

instead of the constant � in (13), and assume that the conditions
of Theorem 3 hold. Then for 0 < �m ��(t)��M < 1, we have

E[‖�̃(t)‖2]�
[√

1 − �(1 − �M)

n�

]t

�0

+ 3

[
1 −

√
1 − �(1 − �M)

n�

]−2

×
[

N4�2(1−�m)2�2
w

2�2 +N2�(1−�m)2�2
v

�2 +�2
w

]
.

Under the specific cases, the theorem and corollaries may be
used to estimate estimation error upper bounds of the MIFG
algorithm.

These results assume that the noises {v(t)} and {w(t)} have
constant variances �2

v and �2
w. From the proofs, if {v(t)} and

{w(t)} are non-stationary and have time-varying variances �2
v(t)

and �2
w(t) with upper bounds

(A4′) E[v2(t)] = �2
v(t)��2

v < ∞,

E[‖w(t)‖2] = �2
w(t)��2

w < ∞.

the results of the above theorems and corollaries still hold.

5. The multi-variable version of the multi-innovation
algorithm

Consider a multi-input and multi-output (MIMO) system

A(z)y(t) = B(z)u(t) + v(t), (19)

where u(t) ∈ Rr is the system input vector, y(t) ∈ Rm the
system output vector, v(t) ∈ Rm a stochastic noise vector, A(z)

and B(z) are polynomial matrices in the unit backward shift
operator z−1 [z−1y(t) = y(t − 1)], and

A(z) = I + A1z
−1 + A2z

−2 + · · · + Ana z
−na ,

B(z) = B1z
−1 + B2z

−2 + · · · + Bnb
z−nb .
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Table 1
Comparisons of the SG and MISG algorithms for SISO and MIMO systems

Systems SISO system (1) MIMO system (20)
y(t) = �T(t)� + v(t) y(t) = �T�(t) + v(t)
y(t) ∈ R1, � ∈ Rn y(t) ∈ Rm, � ∈ Rn×m

�(t) ∈ Rn, v(t) ∈ R1 �(t) ∈ Rn, v(t) ∈ Rm

SG Algorithm (2)–(3) Algorithm (21)–(24)
Gain vector: L(t) = �(t)

r(t)
∈ Rn Gain vector: L(t) = �(t)

r(t)
∈ Rn

Single innovation: Single innovation row vector:

e(t) = y(t) − �T(t)�̂(t) ∈ R1 E(t) = yT(t) − �T(t)�̂(t − 1) ∈ R1×m

MISG Algorithm (4)–(8) Algorithm (25)–(30)
Gain matrix: L(p, t) = �(p,t)

r(t)
∈ Rn×p Gain matrix: L(p, t) = �(p,t)

r(t)
∈ Rn×p

Multi-innovation vector: E(p, t) ∈ Rp×1 Multi-innovation matrix: E(p, t) ∈ Rp×m

Define the parameter matrix � and information vector �(t) as

�T := [A1,A2, . . . ,Ana , B1, B2, . . . , Bnb
] ∈ Rm×n,

�(t) := [−yT(t − 1), −yT(t − 2), . . . ,−yT(t − na),

uT(t − 1), uT(t − 2), . . . , uT(t − nb)]T ∈ Rn,

n := mna + rnb.

Then (19) can be rewritten as

y(t) = �T�(t) + v(t),

or

yT(t) = �T(t)� + vT(t). (20)

The SG algorithm of estimating the parameter matrix � in (20)
is expressed as

�̂(t) = �̂(t − 1) + L(t)E(t), (21)

L(t) = �(t)

r(t)
∈ Rn (gain vector), (22)

E(t) = yT(t) − �T(t)�̂(t − 1) ∈ R1×m, (23)

r(t) = r(t − 1) + ‖�(t)‖2, r(0) = 1. (24)

Here, E(t) ∈ R1×m represents a single innovation row vector
and each element of E(t) is a scalar innovation corresponding
to each output, and thus E(t) is a single innovation vector. We
extend this single innovation vector E(t) ∈ Rm to a multi-
innovation matrix E(p, t) ∈ Rp×m to get the MISG algorithm
of estimating the parameter matrix � as follows:

�̂(t) = �̂(t − 1) + L(p, t)E(p, t), (25)

L(p, t) = �(p, t)

r(t)
∈ Rn×p (gain matrix), (26)

E(p, t) = Y(p, t) − �T(p, t)�̂(t − 1) ∈ Rp×m, (27)

r(t) = r(t − 1) + ‖�(t)‖2, r(0) = 1, (28)

�(p, t) = [�(t), �(t − 1), . . . ,�(t − p + 1)] ∈ Rn×p, (29)

Y(p, t) = [y(t), y(t − 1), . . . , y(t − p + 1)]T ∈ Rp×m. (30)

Here, E(p, t) ∈ Rp×m denotes a multi-innovation matrix.
From here, we can see that the multi-innovation identifica-

tion algorithms do not imply the identification algorithms of

multi-variable systems. For convenience, Table 1 states the dif-
ferences of the variables of the single innovation SG and MISG
algorithms for single-input, single-output (SISO) and MIMO
systems.

6. Examples

Several illustrative examples are given in this section. The
first is a time-invariant system; the second and third are time-
varying systems.

Example 1. Consider a time-invariant system:

A(z)y(t) = B(z)u(t) + v(t),

A(z) = 1 + a1z
−1 + a2z

−2 = 1 − 1.60z−1 + 0.80z−2,

B(z) = b1z
−1 + b2z

−2 = 0.309z−1 + 0.529z−2,

where u(t) and y(t) are the system input and output, respec-
tively. Define

� := [a1, a2, b1, b2]T = [−1.60, 0.80, 0.309, 0.529]T,

�(t) := [−y(t − 1), −y(t − 2), u(t − 1), u(t − 2)]T,

then this example system can be written as the form of (1). In
simulation, the inputs {u(t)} is taken as an uncorrelated persis-
tent excitation signal sequence with zero mean and unit vari-
ance �2

u=1.002, and {v(t)} as a white noise sequence with zero
mean and variance �2

v = 0.502. Applying the SG algorithm and
MISG algorithm to estimate the parameters of this system, the
parameter estimates and their errors with different innovation
length are shown in Tables 2 and 3, and the parameter estima-
tion errors � = ‖�̂(t) − �‖/‖�‖ vs. t are shown in Fig. 1 with
p=1, 2, 3, 5, 8, where the noise-to-signal ratio of the system is
�ns = 61.27%. For comparison, Fig. 1 also plots the estimation
error curve of the RLS algorithm.

From Tables 2 and 3 and Fig. 1, we can see that the MISG
estimates with p�2 have higher accuracy than the standard
SG estimates, the parameter estimation errors by the MISG
algorithm become smaller and smaller as the innovation length
p increases and go to zero with t increasing. This confirms
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Table 2
The SG estimates and errors (�2

v = 0.502)

t a1 a2 b1 b2 � (%)

100 −0.74698 −0.05187 0.04739 0.03718 70.23421
200 −0.77582 −0.01730 0.05240 0.05986 67.58660
300 −0.77784 0.00672 0.05255 0.06973 66.51767
500 −0.81194 0.02151 0.05996 0.08823 64.41216
1000 −0.84693 0.05143 0.06761 0.10922 61.71967
1500 −0.87014 0.07191 0.07450 0.12398 59.87700
2000 −0.88303 0.08312 0.07773 0.13183 58.87245
2500 −0.89483 0.09440 0.08043 0.13829 57.93481
3000 −0.90194 0.10179 0.08218 0.14245 57.34344
True values −1.60000 0.80000 0.30900 0.52900

Table 3
The MISG estimates and errors (�2

v = 0.502)

p t a1 a2 b1 b2 � (%)

2 100 −1.05483 0.24582 −0.03541 0.30286 46.53018
200 −1.08585 0.28946 −0.01710 0.32624 43.36857
300 −1.08736 0.31692 −0.01046 0.33310 42.19645
500 −1.12761 0.33375 0.00666 0.35226 39.68895

1000 −1.16595 0.36993 0.02515 0.37094 36.59920
1500 −1.19071 0.39327 0.03806 0.38482 34.56431
2000 −1.20448 0.40542 0.04512 0.39192 33.47091
2500 −1.21715 0.41815 0.05024 0.39790 32.45212
3000 −1.22436 0.42662 0.05376 0.40157 31.81539

5 100 −1.38165 0.57678 0.16809 0.49441 18.20973
200 −1.40091 0.61985 0.19247 0.50508 15.53127
300 −1.40872 0.63526 0.19661 0.50252 14.68105
500 −1.43787 0.64842 0.21220 0.51504 12.82711

1000 −1.46838 0.67465 0.22574 0.52138 10.58043
1500 −1.48441 0.68834 0.23358 0.52745 9.38914
2000 −1.49450 0.69487 0.23990 0.53031 8.68319
2500 −1.50289 0.70441 0.24262 0.53326 8.01916
3000 −1.50614 0.71168 0.24476 0.53508 7.62238

8 100 −1.56479 0.75915 0.20129 0.43085 8.21780
200 −1.55085 0.78023 0.24047 0.44926 6.22680
300 −1.55066 0.77909 0.24568 0.45013 6.05334
500 −1.56505 0.77185 0.26131 0.47217 4.58559

1000 −1.57593 0.78208 0.27077 0.48353 3.51971
1500 −1.58003 0.78314 0.27492 0.49139 3.01923
2000 −1.58537 0.78291 0.28158 0.49594 2.56415
2500 −1.58857 0.78864 0.28268 0.50027 2.22991
3000 −1.58802 0.79372 0.28397 0.50339 2.02449

True values −1.60000 0.80000 0.30900 0.52900

Theorems 1 and 2. Also, as the innovation length p increases,
the MISG estimates are approaching the RLS estimates.

Example 2. Consider a time-varying system with jump chang-
ing parameters:

y(t) + a(t)y(t − 1) = b(t)u(t − 1) + v(t),

where a(t) = 0.80 and

b(t) =
{

1.2, 0� t �700, 1401� t < 2100, . . . ,

1.6, 701� t �1400, 2101� t < 2800, . . . .
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Fig. 1. The parameter estimation errors � vs. t (�2 = 0.502).
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Fig. 2. The parameter estimates vs. t (p = 2).
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Fig. 3. The parameter estimation errors � vs. t (p = 2).

The simulation conditions are as before, the noise variance
here is �2

v = 0.102. Applying the FG algorithm (take p = 1 in
the MIFG algorithm) and MIFG algorithm with � = 0.95 to
estimate the parameters of this system, the parameter estimates
and estimation error curves vs. t are shown in Figs. 2–5 for
different innovation length p = 2 and p = 3.

From Figs. 2–5, it is clear that the MIFG algorithm with
p�2 has a faster convergence rate than the FG algorithm or
the MIFG algorithm with p = 1 but has large estimation error
variance. Therefore, a compromise/tradeoff is to change p into
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Fig. 4. The parameter estimates vs. t (p = 3).
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Fig. 5. The parameter estimation errors � vs. t (p = 3).

a smaller value when the parameter estimation changing rate is
small.

Example 3. Consider a time-varying parameter system:

y(t) + a(t)y(t − 1) = b(t)u(t − 1) + v(t),

where

a(t) = 0.55 + 0.00025t + 0.1 sin(0.00225	t),

b(t) = 1.25 + 0.1
5
√

(t + 100)2.

The simulation conditions are as before, the noise variance here
is �2

v =0.502. Applying the FG algorithm and MIFG algorithm
with � = 0.95 to estimate the parameters of this system, the
parameter estimates and estimation error curves vs. t are shown
in Figs. 6 and 7 for different innovation length p = 3.

The simulation results in Figs. 6 and 7 all show the advan-
tages of the proposed MIFG algorithm.

7. Conclusions

Extending the concept of the innovation modification, we
presented several new algorithms, including the MISG algo-
rithm, the MIFG algorithm. The algorithms developed have
faster convergence rates and can improve the parameter esti-
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Fig. 6. The parameter estimates vs. t (p = 3).
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Fig. 7. The parameter estimation errors � vs. t (p = 3).

mation accuracy. The simulation results confirm the theoretical
findings.

Acknowledgments

This work was supported by the Natural Sciences and Engi-
neering Research Council of Canada and the National Natural
Science Foundation of China (Nos. 60574051, 60528007).

Appendix A. Proofs

In this appendix we shall prove the main results of this
paper by formulating a martingale process and using stochastic
process theory and the martingale convergence theorem (Ding
& Chen, 2004, 2005b–e).

Proof of Lemma 2. Taking the trace of Condition (A1), it is
easy to get

nN��
N−1∑
i=0

‖�(t + i)‖2 �nN� =: �1 a.s., (A.1)
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and ‖�(t)‖2 ��1, a.s. Let x� denote the greatest integer not
greater than x. From (3), successive substitution gives

r(t) = r(t − 1) + ‖�(t)‖2 =
t∑

j=1

‖�(j)‖2 + r(0)

�
(t−1)/N�∑

j=0

N∑
i=1

‖�(jN + i)‖2 + r(0)

�
(t−1)/N�∑

j=0

�1 + r(0)�
(⌊

t − 1

N

⌋
+ 1

)
�1 + 1

�n�(t + N − 1) + 1 a.s.,

r(t)�
t/N�−1∑

j=0

N∑
i=1

‖�(jN + i)‖2 + r(0)

�
t/N�−1∑

j=0

nN� + r(0)�
⌊

t

N

⌋
nN� + 1

�n�(t − N + 1) + 1 a.s.

This proves Lemma 2. �

Proof of Lemma 3. Let v0 be the unit eigenvector, of the
matrix LT(t + N, t)L(t + N, t), corresponding to the greatest
eigenvalue �t , and form the difference equation (Chen & Guo,
1987),

xi+1 =
[

I − �(i)�T(i)

r(i)

]
xi = L(i + 1, i)xi , xt = v0. (A.2)

Using the properties of the transition matrix, L(t, i)L(i, s) =
L(t, s), it follows that

xt+N = L(t + N, t)xt = L(t + N, t)v0,

‖xt+N‖2 = vT
0 LT(t + N, t)L(t + N, t)v0 = vT

0 �tv0 = �t .

Taking the norm of both sides of (A.2) gives

xT
i+1xi+1 = xT

i

[
I − �(i)�T(i)

r(i)

]2

xi

�xT
i

[
I − �(i)�T(i)

r(i)

]
xi = xT

i xi − ‖�T(i)xi‖2

r(i)
.

Thus

‖�T(i)xi‖2

r(i)
�‖xi‖2 − ‖xi+1‖2.

Replacing i by t + i and summing for i from i = 0 to i =N − 1
yield

N−1∑
i=0

‖�T(t + i)xt+i‖2

r(t + i)
�‖xt‖2 − ‖xt+N‖2 = 1 − �t . (A.3)

For any i ∈ [0, N − 1], using the formula (
∑

aibi)
2 �(

∑
a2
i )

(
∑

b2
i ), from (A.2) and (A.3), we have

‖xt+i − v0‖ =
∥∥∥∥∥∥

i−1∑
j=0

�(t + j)�T(t + j)

r(t + j)
xt+j

∥∥∥∥∥∥

�

⎡
⎣i−1∑

j=0

‖�(t+j)‖2

r(t+j)

⎤
⎦

1/2⎡
⎣i−1∑

j=0

‖�T(t+j)xt+j‖2

r(t+j)

⎤
⎦

1/2

�
√

i(1 − �t )�
√

N(1 − �t ). (A.4)

Here, we have used ‖�(t)‖2/r(t) < 1. Pre-multiplying (A.1)
by vT

0 and post-multiplying (A.1) by v0, and using Lemma 2,
(A.3) and (A.4) and ‖�(t)‖2 ��1, a.s., noting that r(t) is non-
decreasing, we have

�N �vT
0

N−1∑
i=0

�(t + i)�T(t + i)v0

�
√

r(t + N − 1) vT
0

N−1∑
i=0

�(t + i)�T(t + i)√
r(t + i)

v0

�
√

r(t+N−1)

∥∥∥∥∥
N−1∑
i=0

�(t+i)�T(t+i)√
r(t+i)

(v0−xt+i + xt+i )

∥∥∥∥∥

�
√

r(t+N − 1)

[∥∥∥∥∥
N−1∑
i=0

�(t+i)�T(t+i)√
r(t+i)

(v0−xt+i )

∥∥∥∥∥

+
∥∥∥∥∥

N−1∑
i=0

�(t + i)�T(t + i)xt+i√
r(t + i)

∥∥∥∥∥
]

�
√

r(t + N − 1)

⎧⎨
⎩

N−1∑
i=0

√
�1 ‖xt+i − v0‖

+
[

N−1∑
i=0

‖�(t + i)‖2

]1/2[N−1∑
i=0

‖�T(t + i)xt+i‖2

r(t + i)

]1/2
⎫⎬
⎭

�
√

n�(t+2N−2)+1
[
N
√

�1
√

N(1−�t )+
√

N�1
√

1−�t

]

=√
n�(t + 2N − 2) + 1 (N + 1)

√
N�1(1 − �t ) a.s.

Solving �t leads to the conclusion of Lemma 3. �

Proof of Theorem 1. Define the parameter estimation error
vector

�̃(t) := �̂(t) − �.
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Using (2) and (1), we have

�̃(t) = �̃(t − 1) + �(t)

r(t)
[−�T(t)�̃(t − 1) + v(t)]

=
[

I − �(t)�T(t)

r(t)

]
�̃(t − 1) + �(t)

r(t)
v(t)

= L(t + 1, t)�̃(t − 1) + �(t)

r(t)
v(t)

= L(t + 1, t − N + 1)�̃(t − N)

+
N−1∑
i=0

L(t + 1, t − i + 1)
�(t − i)

r(t − i)
v(t − i).

Taking the norm gives

‖�̃(t)‖2 = �̃
T
(t − N)LT(t + 1, t − N + 1)

× L(t + 1, t − N + 1)�̃(t − N)

+ 2�̃
T
(t − N)LT(t + 1, t − N + 1)

×
N−1∑
i=0

L(t + 1, t − i + 1)
�(t − i)

r(t − i)
v(t − i)

+
∥∥∥∥∥

N−1∑
i=0

L(t + 1, t − i + 1)
�(t − i)

r(t − i)
v(t − i)

∥∥∥∥∥
2

� �̃
T
(t − N)LT(t + 1, t − N + 1)

× L(t + 1, t − N + 1)�̃(t − N)

+ 2�̃
T
(t − N)LT(t + 1, t − N + 1)

×
N−1∑
i=0

L(t + 1, t − i + 1)
�(t − i)

r(t − i)
v(t − i)

+ N

N−1∑
i=0

∥∥∥∥L(t + 1, t − i + 1)
�(t − i)

r(t − i)
v(t − i)

∥∥∥∥
2

.

(A.5)

For any i�1, the greatest eigenvalue of LT(t+1, t−i+1)L(t+
1, t − i+1) is smaller than or equal to 1. Let T (t)=E[‖�̃(t)‖2].
Taking the expectation of both sides of (A.5) and using (A.2)
and Lemmas 2 and 3 lead to

T (t)��t−N+1T (t − N)

+ N

N−1∑
i=0

E

[∥∥∥∥L(t + 1, t − i + 1)
�(t − i)

r(t − i)
v(t − i)

∥∥∥∥
2
]

��t−N+1T (t − N) + N

N−1∑
i=0

E

[∥∥∥∥�(t − i)

r(t − i)
v(t − i)

∥∥∥∥
2
]

��t−N+1T (t − N) + N

N−1∑
i=0

E

[‖�(t − i)‖2

r2(t − i)
v2(t − i)

]

��t−N+1T (t − N) + N

N−1∑
i=0

�1�2
v

[n�(t − N + 1 − i) + 1]2

�
(

1 − N�2

(N + 1)2�1[n�(t + N − 1) + 1]
)

T (t − N)

+ N2�1�2
v

[n�(t − 2N + 2) + 1]2 .

Using Lemma 1, it is easy to get

lim
t→∞ E[‖�̃(t)‖2]

� lim
t→∞

N2�1�2
v

[n�(t − 2N + 2) + 1]2

× (N + 1)2�1[n�(t + N − 1) + 1]
N�2

� lim
t→∞

n2N3(N + 1)2�2�2
v[n�(t + N − 1) + 1]

�2[n�(t − 2N + 2) + 1]2

∼nN3(N + 1)2�3�2
v

�4

1

t
=: C1

1

t
, (A.6)

where

C1 := nN3(N + 1)2�3�2
v

�4 .

The proof of Theorem 1 is completed. �

Proof of Theorem 2. Define the noise vector

V(p, t) := [v(t), v(t − 1), . . . , v(t − p + 1)] ∈ Rp.

Subtracting both sides of (4) and using (5), (7), (8) and (1) yield

�̃(t) = �̃(t − 1) + �(p, t)

r(t)
[−�T(p, t)�̃(t − 1) + V(p, t)]

=
[

I − �(p, t)�T(p, t)

r(t)

]
�̃(t − 1) + �(p, t)V(p, t)

r(t)
.

Taking the norm of both sides gives

‖�̃(t)‖2 =
∥∥∥∥∥
[

I − �(p, t)�T(p, t)

r(t)

]
�̃(t − 1)

∥∥∥∥∥
2

+2�̃
T
(t−1)

[
I−�(p, t)�T(p, t)

r(t)

]
�(p, t)V(p, t)

r(t)

+
∥∥∥∥�(p, t)V(p, t)

r(t)

∥∥∥∥
2

��max

[
I − �(p, t)�T(p, t)

r(t)

]
‖�̃(t − 1)‖2

+2�̃
T
(t−1)

[
I−�(p, t)�T(p, t)

r(t)

]
�(p, t)V(p, t)

r(t)

+ ‖�(p, t)V(p, t)‖2

r2(t)
. (A.7)
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Using Lemma 1 and noting p = N , from Condition (A.1), we
have

I − �(p, t)�T(p, t)

r(t)
�
[

1 − N�

n�(t − N + 1) + 1

]
I a.s.,

E[‖�(p, t)V(p, t)‖2]�E{�max[�(p, t)�T(p, t)]‖V(p, t)‖2}
�p�E[‖V(p, t)‖2] = p2��2

v = N2��2
v .

Thus, taking the expectation of both sides of (A.7) and using
(A.2) give

E[‖�̃(t)‖2]
�
[

1 − N�

n�(t − N+) + 1

]
E[‖�̃(t − 1)‖2]

+2E

{
�̃

T
(t−1)

[
I−�(p, t)�T(p, t)

r(t)

]
�(p, t)V(p, t)

r(t)

}

+ E[�(p, t)V(p, t)‖2]
[n�(t − N + 1) + 1]2

�
[

1 − N�

n�(t − N + 1) + 1

]
E[‖�̃(t − 1)‖2]

+ N2��2
v

[n�(t − N + 1) + 1]2 .

Using Lemma 1, we have

lim
t→∞ E[‖�̃(t)‖2]

� lim
t→∞

N2��2
v

[n�(t − N + 1) + 1]2

n�(t − N + 1) + 1

N�

� lim
t→∞

N��2
v[n�(t − N + 1) + 1]

�[n�(t − N + 1) + 1]2

∼ N�2�2
v

n�3

1

t
=: C2

1

t
, (A.8)

where

C2 := N�2�2
v

n�3 .

This proves Theorem 2. �

Proof of Lemma 4. From (13) and using (A.1), we have

r(t) = �r(t − 1) + ‖�(t)‖2 =
t∑

j=1

�t−j‖�(j)‖2 + �t r(0)

�
t∑

j=1

�t−j

[
N−1∑
i=0

‖�(j + i)‖2

]
+ �t r(0)

�
t∑

i=1

�t−i[nN�] + �t r(0)

= nN�

1 − �
+
[
r(0) − nN�

1 − �

]
�t � nN�

1 − �
a.s.,

r(t)�
t∑

j=1

�t−j� + �t r(0) = �(1 − �t )

1 − �
+ �t r(0)

= �

1 − �
+ �t

[
r(0) − �

1 − �

]
� �

1 − �
a.s.

This proves Lemma 4. �

Proof of Theorem 3. Since �(t) = �(t − 1) + w(t), we have

�(t − 1) = �(t) − w(t),

�(t − j) = �(t − 1) −
j−1∑
l=1

w(t − l).

Define the noise vectors,

V(p, t) :=

⎡
⎢⎢⎣

v(t)

v(t − 1)
...

v(t − p + 1)

⎤
⎥⎥⎦ ∈ Rp,

W(p, t) :=

⎡
⎢⎢⎢⎢⎢⎢⎣

0
�T(t − 1)w(t − 1)

�T(t − 2)[w(t − 1) + w(t − 2)]
...

�T(t − p + 1)
p−1∑
j=1

w(t − j)

⎤
⎥⎥⎥⎥⎥⎥⎦

∈ Rp,

and the parameter estimation error vector

�̃(t) := �̂(t) − �(t).

By using (12), it follows that

�̃(t) = �̂(t) − [�(t − 1) + w(t)]
= �̃(t − 1) + �(p, t)

r(t)
[−�T(p, t)�̃(t − 1)

− W(p, t) + V(p, t)] − w(t)

=
[

I − �(p, t)�T(p, t)

r(t)

]
�̃(t − 1)

+ �(p, t)[−W(p, t) + V(p, t)]
r(t)

− w(t). (A.9)

Using (A.1), (A.3) and (A.4), we have

E[‖�(p, t)V(p, t)‖2]�p�E[‖V(p, t)‖2]�p2��2
v = N2��2

v ,

E[‖�(p, t)W(p, t)‖2]
�p�E[‖W(p, t)‖2]
= p�E{‖�T(t − 1)w(t − 1)‖2

+ ‖�T(t − 2)[w(t − 1) + w(t − 2)]‖2

+ · · · + ‖�T(t − p + 1)

× [w(t − 1) + w(t − 2) + · · · + w(t − p + 1)]‖2}
�p2�2E[‖w(t − 1)‖2 + ‖w(t − 1) + w(t − 2)‖2

+ · · · + ‖w(t − 1) + w(t − 2) + · · · + w(t − p + 1)‖2]
� (p − 1)p3�2�2

w

2
� p4�2�2

w

2
= N4�2�2

w

2
.
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Hence, using Lemma 4 yields

E

[‖�(p, t)V(p, t)‖2

r2(t)

]
� N2�(1 − �)2�2

v

�2 ,

E

[‖�(p, t)W(p, t)‖2

r2(t)

]
� N4�2(1 − �)2�2

w

2�2 ,

and

I − �(p, t)�T(p, t)

r(t)
�
[

1 − �(1 − �)

n�

]
I =: (1 − �)I.

Taking the norm of both sides of (A.9) and using the inequality
‖x + y‖2 �(1 + a)‖x‖2 + (1 + a−1)‖y‖2 (a > 0) yield

‖�̃(t)‖2 �(1 + a)

∥∥∥∥∥
[

I − �(p, t)�T(p, t)

r(t)

]
�̃(t − 1)

∥∥∥∥∥
2

+(1+a−1)

∥∥∥∥�(p, t)[−W(p, t)+V(p, t)]
r(t)

−w(t)

∥∥∥∥
2

�(1 + a)(1 − �)‖�̃(t − 1)‖2

+ 3(1 + a−1)

[‖�(p, t)W(p, t)‖2

r2(t)

+ ‖�(p, t)V(p, t)‖2

r2(t)
+ ‖w(t)‖2

]
.

Taking the expectation gives

E[‖�̃(t)‖2]�(1 + a)(1 − �)E[‖�̃(t − 1)‖2]
+ 3(1 + a−1)

[
N4�2(1 − �)2�2

w

2�2

+ N2�(1 − �)2�2
v

�2 + �2
w

]
. (A.10)

We take a to satisfy

0 < a <
�

1 − �
.

That is, 0 < (1+a)(1−�) < 1; successive substitution in (A.10)
gives

E[‖�̃(t)‖2]�[(1 + a)(1 − �)]tE[‖�̃(0)‖2]

+ 3(1 + a−1)

t−1∑
i=0

[(1 + a)(1 − �)]i

×
[

N4�2(1 − �)2�2
w

2�2 + N2�(1 − �)2�2
v

�2 + �2
w

]

�[(1 + a)(1 − �)]t�0

+ 3(1 + a−1)
1 − [(1 + a)(1 − �)]t
1 − (1 + a)(1 − �)

×
[

N4�2(1 − �)2�2
w

2�2 + N2�(1 − �)2�2
v

�2 + �2
w

]

�[(1 + a)(1 − �)]t�0

+ 3(1 + a−1)

1 − (1 + a)(1 − �)

[
N4�2(1 − �)2�2

w

2�2

+ N2�(1 − �)2�2
v

�2 + �2
w

]

=: [(1 + a)(1 − �)]t�0 + f (a, �), (A.11)

where

f (a, �) := g(a)

[
N4�2(1−�)2�2

w

2�2 +N2�(1−�)2�2
v

�2 +�2
w

]
,

g(a) := 3(1+a−1)

1−(1+a)(1−�)
. (A.12)

In the above derivation, we have introduced an intermediate
variable a and function g(a). In order to obtain a minimum
estimation error upper bound, minimizing the expression on the
right-hand side of (A.11) and (A.12), we must determine a best
a such that g(a) is minimum, and thus so is f (a, �) for a. Let
the first-order derivative of g(a) with respect to a be zero, i.e.,

dg(a)

da
= 0

which leads to

(1 − �)a2 + 2(1 − �)a − � = 0,

or

(1 − �)(a + 1)2 = 1.

Its solutions are

a = ± 1√
1 − �

− 1.

Since a is a positive number, the best a value is

a = a0 = 1√
1 − �

− 1,

and the corresponding minimum g(a) is

min g(a) = g(a0) = 3

(1 − √
1 − � )2 .

Thus, we have

f (a0, �) = 3

(1 − √
1 − � )2

[
N4�2(1 − �)2�2

w

2�2

+ N2�(1 − �)2�2
v

�2 + �2
w

]

and

E[‖�̃(t)‖2]�[(1 + a0)(1 − �)]t�0 + f (a0, �)

�[√1 − � ]t�0 + 3

(1 − √
1 − �)2

×
[

N4�2(1 − �)2�2
w

2�2 + N2�(1−�)2�2
v

�2 +�2
w

]
.

This directly gives the conclusion of Theorem 3. �
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