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Abstract

In this paper, adaptive neural control is proposed for a class of uncertain multi-input multi-output (MIMO) nonlinear state time-varying delay
systems in a triangular control structure with unknown nonlinear dead-zones and gain signs. The design is based on the principle of sliding
mode control and the use of Nussbaum-type functions in solving the problem of the completely unknown control directions. The unknown time-
varying delays are compensated for using appropriate Lyapunov–Krasovskii functionals in the design. The approach removes the assumption
of linear functions outside the deadband as an added contribution. By utilizing the integral Lyapunov function and introducing an adaptive
compensation term for the upper bound of the residual and optimal approximation error as well as the dead-zone disturbance, the closed-loop
control system is proved to be semi-globally uniformly ultimately bounded. Simulation results demonstrate the effectiveness of the approach.
� 2007 Published by Elsevier Ltd.
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1. Introduction

In the past decade, adaptive control system design of non-
linear systems using universal function approximators has re-
ceived a great deal of attention (Ge, Hang, Lee, & Zhang,
2001; Lee & Tomizuka, 2000; Sanner & Slotine, 1992; Su &
Stepanenko, 1994; Yesildirek & Lewis, 1995). Typically, these
methods use either neural networks (NNs) or fuzzy logic sys-
tems to parametrize the unknown nonlinearities (Sanner & Slo-
tine, 1992; Su & Stepanenko, 1994; Yesildirek & Lewis, 1995).
Direct adaptive tracking control was proposed for a class of
continuous-time nonlinear systems using radial basis function
NNs (Sanner & Slotine, 1992). Using a families of novel in-
tegral Lyapunov functions for avoiding the possible controller
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singularity problem without using projection, adaptive neural
controls have been investigated for a class of nonlinear systems
in nonlinear parametrization (Ge, Hang, & Zhang, 1999b) and
in a Brunovsky form (Zhang, Ge, & Hang, 2000), and for a
class of MIMO nonlinear systems with a triangular structure in
the control inputs (Ge, Zhang, & Hang, 2000). Decentralized
indirect adaptive fuzzy control was proposed for a class of
nonlinear systems with unknown constant control gains and
unknown function control gains (Zhang, 2001).

When there is no a priori knowledge about the signs of con-
trol gains, adaptive control of such systems becomes much
more difficult. The first solution was given for a class of first-
order linear systems (Nussbaum, 1983), where the Nussbaum-
type gain was originally proposed. When the high-frequency
control gains and their signs are unknown, gains of Nussbaum-
type (Nussbaum, 1983) have been effectively used in control
design in solving the difficulty of unknown control directions
for higher order systems (Ye & Jiang, 1998), and nonlinear
systems with unknown time-delays (Ge, Hong, & Lee, 2004),
among others.

Dead-zone is one of the most important non-smooth nonlin-
earities in many industrial processes, which can severely limit
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system performance, and its study has been drawing much in-
terest in the control community for a long time (Cho & Bai,
1998; Selmic & Lewis, 2000; Tao & Kokotovic, 1994, 1995;
Taware & Tao, 2003; Wang, Hong, & Su, 2003, 2004). To han-
dle systems with unknown dead-zones, adaptive dead-zone in-
verses were proposed (Cho & Bai, 1998; Tao & Kokotovic,
1994, 1995). Continuous and discrete adaptive dead-zone in-
verses were built for linear systems with unmeasurable dead-
zone outputs (Tao & Kokotovic, 1994, 1995). Asymptotical
adaptive cancelation of unknown dead-zone is achieved analyt-
ically (Cho & Bai, 1998) under the condition that the output of
the dead-zone is measurable. A compensation scheme was pre-
sented for general nonlinear actuator dead-zones of unknown
width (Selmic & Lewis, 2000). Given a matching condition to
the reference model, adaptive control with adaptive dead-zone
inverse has been investigated (Wang et al., 2003). For a dead-
zone with equal slopes, robust adaptive control was developed
for a class of nonlinear systems (Wang et al., 2004) without
constructing the inverse of the dead-zone. In the work (Shyu,
Liu, & Hsu, 2005), decentralized variable structure control was
proposed for a class of uncertain large-scale systems with state
time-delay and dead-zone input. However, the parameters ui−,
ui+ of the dead-zones (Shyu et al., 2005) and gain signs need
to be known, and the disturbances satisfy the matching condi-
tion. Adaptive output feedback control using backstepping and
smooth inverse function of the dead-zone was proposed for
a class of SISO nonlinear systems with unknown dead-zone
(Zhou, Wen, & Zhang, 2006). However, the problem of over-
parametrization still exists.

Time-delay is often encountered in various systems, for ex-
ample, in the turbojet engines, aircraft systems, microwave os-
cillators, nuclear reactors, rolling mills, chemical processes, and
hydraulic systems, etc. (Liu & Su, 1998). The existence of time-
delays in a system frequently becomes a source of instability,
and may degrade the control performance. Therefore, a number
of different approaches have been proposed in order to stabi-
lize such systems with time-delays (Nguang, 2000; Niculescu,
2001; Richard, 2003). Using appropriate Lyapunov–Krasovskii
functionals to compensate for the uncertainties from unknown
time-delays (Hale, 1977), thorough adaptive neural controls
were presented for classes of nonlinear systems with unknown
time delays and virtual control coefficients as either unknown
constants or unknown functions with known or unknown sign
(Ge, Hong, & Lee, 2003, 2005; Ge et al., 2004).

In this paper, we consider a class of uncertain MIMO nonlin-
ear state time-varying delay systems with both unknown non-
linear dead-zones and unknown gain signs. To the best of our
knowledge, there are few works dealing with such kinds of sys-
tems in the literature at present stage. The main contributions
of the paper include:

(i) the novel description of a general nonlinear dead-zone
model which makes the control system design possible
without necessarily constructing a dead-zone inverse using
the mean value theorem;

(ii) the removal of the need for known parameter bounds of
dead-zones and the linear functions outside the deadband;

(iii) the use of integral Lyapunov function in avoiding the con-
troller singularity problem which may be caused by time-
varying gain functions;

(iv) the use of the Nussbaum-type functions and multilayer
NNs in solving the problem of both unknown control di-
rections and unknown control gain functions; and

(v) the combination of Lyapunov–Krasovskii functional and
Young’s inequality in eliminating the unknown time-
varying delay �i (t) in the upper bounding function of
the Lyapunov functional derivative, which makes NN
parametrization with known inputs possible.

This paper is organized as follows. The problem formulation
and preliminaries are given in Section 2. In Section 3, adaptive
NN control is firstly developed for SISO time-varying delay
systems with nonlinear dead-zones by using integral Lyapunov
functions, then, it is extended to MIMO systems. Simulation
results are performed to demonstrate the effectiveness of the
approach in Section 4, followed by conclusion in Section 5.

2. Problem formulation and preliminaries

2.1. Problem formulation

Consider a class of uncertain MIMO nonlinear time-varying
delay systems with dead-zones in the following form

Plant:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1j = x1,j+1, j = 1, . . . , n1 − 1,

ẋ1n1 = f1(x) + f1,�(x1(t − �1(t)), . . . ,

xm(t − �m(t))) + b1(x1)u1,

ẋij = xi,j+1, j = 1, . . . , ni − 1,

ẋini
= fi(x, u1, . . . , ui−1) + fi,�(x1(t − �1(t)), . . . ,

xm(t − �m(t))) + bi(x1, . . . , xi)ui,

i = 2, . . . , m,

xi(t) = �i (t), t ∈ [−�max, 0], i = 1, . . . , m,

y1 = x11, . . . , ym = xm1.

(1)

Dead-zone:

ui = Di(vi) =
⎧⎨
⎩

gir (vi) if vi �bir ,

0 if bil < vi < bir ,

gil(vi) if vi �bil .

(2)

where x = [xT
1 , xT

2 , . . . , xT
m]T ∈ Rn is the state vec-

tor, xi = [xi1, . . . , xini
]T, i = 1, . . . , m, n = ∑m

i=1ni ;
functions gir (vi), gil(vi) are unknown smooth nonlin-
ear functions; yi ∈ R denotes the ith subsystem out-
put; f1(x), f2(x, u1), . . . , fm(x, u1, . . . , um−1), fi,�(x1(t−�1
(t)), . . . , xm(t − �m(t))) are the unknown continuous func-
tions; b1(x1), b2(x̄2), . . ., bm(x̄m) are the unknown differen-
tiable control gains, x̄i = [xT

1 , xT
2 , . . . , xT

i ]T; �1(t), . . . , �m(t)

are unknown time-varying delays, �1(t), . . . , �m(t) are known
continuous initial state vector functions, �max as will be de-
fined later is a known positive constant; ui ∈ R is the output of
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Fig. 1. Nonsymmetric nonlinear dead-zone model.

the ith dead-zone (and the input to the ith subsystem), vi(t) ∈ R

is the input to the ith dead-zone, bil and bir are the unknown
parameters of the ith dead-zone; and the nonsymmetric nonlin-
ear dead-zone with the input vi is shown in Fig. 1.

Assumption 1. The dead-zone outputs u1, . . . , um are not
available.

Assumption 2. The dead-zone parameters bir and bil are un-
known constants, but their signs are known, i.e., bir > 0 and
bil < 0, i = 1, . . . , m.

Assumption 3. The growth of the ith dead-zone’s left and right
functions, gil(vi) and gir (vi), are smooth, and there exist un-
known positive constants kil0, kil1, kir0, and kir1 such that

0 < kil0 �g′
il(vi)�kil1, ∀vi ∈ (−∞, bil], (3)

0 < kir0 �g′
ir (vi)�kir1, ∀vi ∈ [bir , +∞), (4)

where g′
il(vi) = dgil(z)/dz|z=vi

and g′
ir (vi) = dgir (z)/dz|z=vi

.

For convenience, gil(vi) and gir (vi) in (3), (4) are assumed
to be true for vi ∈ (−∞, bir ], and for vi ∈ [bil, +∞), respec-
tively.

According to the differential mean value theorem, we know
that there exist �il(vi) ∈ (−∞, bir ) and �ir (vi) ∈ (bil, +∞)

such that

gil(vi) = gil(vi) − gil(bil) = g′
il(�il(vi))(vi − bil),

for �il(vi) ∈ (vi, bil) or (bil, vi), (5)

gir (vi) = gir (vi) − gir (bir ) = g′
ir (�ir (vi))(vi − bir ),

for �ir (vi) ∈ (vi, bir ) or (bir , vi). (6)

Define vectors �i (t) and Ki(t) as follows:

�i (t) = [�ir (t), �il(t)]T,

Ki(t) = [g′
ir (�ir (vi(t))), g

′
il(�il(vi(t)))]T

with

�ir (t) =
{

1 if vi(t) > bil,

0 if vi(t)�bil

(7)

�il(t) =
{

1 if vi(t) < bir ,

0 if vi(t)�bir .
(8)

Based on Assumption 3, the dead-zone (2) can be rewritten as
follows:

ui = Di(vi) = KT
i (t)�i (t)vi + di(vi), (9)

where

di(vi) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−g′
ir (�ir (vi))bir if vi �bir ,

−[g′
il(�il(vi))

+g′
ir (�ir (vi))]vi if bil < vi < bir ,

−g′
il(�il(vi))bil if vi �bil

(10)

and |di(vi)|�p∗
i , p∗

i is an unknown positive constant with p∗
i =

(kir1 + kkl1) max{bir , −bil}.
The control objective is to design adaptive control vi(t) for

system (1) such that the output yi follows the specified desired
trajectory yid , i = 1, . . . , m.

Define xid and ei as

xid = [yid , ẏid , . . . , y
(ni−1)
id ]T,

ei = xi − xid = [ei1, ei2, . . . , eini
]T

and the filtered tracking error si as

si =
(

d

dt
+ �i

)ni−1

ei1 =
ni−1∑
j=1

�ij eij + eini
, (11)

where �ij =C
j−1
ni−1�

ni−j
i , j =1, . . . , ni −1, �i > 0, i =1, . . . , m

are positive constants, specified by the designer.

Assumption 4. Smooth functions bi(x̄i) and their signs are
unknown, and there exist constants bi0 and bi1 such that
0 < bi0 � |bi(x̄i)|�bi1, ∀x̄i ∈ Rn̄j with n̄j = ∑i

j=1nj , i =
1, . . . , m.

Assumption 5. The desired trajectory vectors are continuous
and available, and x̄id = [xT

id , y
(ni )
id ]T ∈ �id ⊂ Rni+1 with

known compact set �id , i = 1, . . . , m.

Assumption 6. The unknown continuous functions fi,�(x1(t −
�1(t)), . . . , xm(t − �m(t))) satisfy the inequality |fi,�(x1(t −
�1(t)), . . . , xm(t − �m(t)))|�∑m

k=1	ik(xk(t − �k(t))) with
	ik(xk(t)) being known positive continuous functions,
i = 1, . . . , m.

Assumption 7. The unknown state time-varying delays �i (t)

satisfy:

0��i (t)��max, �̇i (t)� �̄max < 1, i = 1, . . . , m (12)

with the known constants �max and �̄max.
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2.2. Nussbaum function properties

In order to deal with the unknown control gain sign, the
Nussbaum gain technique is employed in this paper. A function
N(
) is called a Nussbaum-type function if it has the following
properties:

(i) lim
s→+∞ sup

1

s

∫ s

0
N(
) d
 = +∞, (13)

(ii) lim
s→+∞ inf

1

s

∫ s

0
N(
) d
 = −∞. (14)

Commonly used Nussbaum functions include: 
2 cos(
),

2 sin(
), and exp(
2) cos((�/2)
) (Ge et al., 2004; Nussbaum,
1983; Ryan, 1991). For clarity, the even Nussbaum function,

N(
) = e
2
cos((�/2)
) is used throughout this paper.

Lemma 1 (Ge et al., 2004). Let V (·), 
(·) be smooth functions
defined on [0, tf ) with V (t)�0, ∀t ∈ [0, tf ), and N(·) be an
even smooth Nussbaum-type function. If the following inequal-
ity holds:

V (t)�c0 + e−c1t

∫ t

0
g(x(�))N(
)
̇ec1� d�

+ e−c1t

∫ t

0

̇ec1� d�, ∀t ∈ [0, tf ), (15)

where c0 represents some suitable constant, c1 is a positive
constant, and g(x(�)) is a time-varying parameter which takes
values in the unknown closed intervals I =[l−, l+], with 0 /∈ I ,
then V (t), 
(t),

∫ t

0 g(x(�))N(
)
̇ d� must be bounded on [0, tf ).

According to Proposition 2 (Ryan, 1991), if the solution of
the resulting closed-loop system is bounded, then tf = ∞.

2.3. Multilayer neural networks (MNNs)

NNs have been widely used in modeling and control of non-
linear systems because of their good capabilities of nonlinear
function approximation, learning, and fault tolerance. In this
paper, three-layer NNs will be used to approximate a continu-
ous function h(z) : Rp → R as described by (Ge et al., 2001;
Lewis, Yesildirek, & Liu, 1996)

hnn(z, W, V ) = WTS(V Tz̄), (16)

where z = [z1, . . . , zp]T, z̄ = [zT, 1]T; V = [v1, . . . , vl] ∈
R(p+1)×l , W =[w1, . . . , wl]T ∈ Rl are the first-to-second layer
and the second-to-third layer weights, respectively; S(V Tz̄) =
[s(vT

1 z̄), . . . , s(vT
l−1z̄), 1]T with s(z�)=1/(1+ e−z�) and con-

stant  > 0; and the NN node number l > 1.
In this paper, ‖ · ‖ denotes the 2-norm, ‖ · ‖F denotes the

Frobenius norm, ‖A‖1 =∑l
k=1|ak| with A=[a1, . . . , al] ∈ Rl ,

�min(B) and �max(B) denote the smallest and largest eigenval-
ues of a square matrix B, respectively.

Let

h(z) = hnn(z, W
∗, V ∗) + ε(z), ∀z ∈ �z ⊂ Rp, (17)

where W ∗, V ∗ are ideal NN weights, �z ⊂ Rp is a compact
set, and ε(z) is the NN approximation error.

The ideal weights W ∗ and V ∗ are “artificial” required for
analytical purposes. According to the discussion (Ge et al.,
2001; Polycarpou & Mears, 1998), W ∗ and V ∗ are defined as
follows:

(W ∗, V ∗) = arg min
(W,V )

[
sup
z∈�z

|hnn(z, W, V ) − h(z)|
]

, (18)

which are unknown and need to be estimated in control design.
Let Ŵ and V̂ be the estimates of W ∗ and V ∗, respectively, and
˜(·) = ˆ(·) − (·).

Lemma 2 (Ge et al., 2001). For NN (16), the NN estimation
error can be expressed as

ŴTS(V̂ Tz̄) − W ∗T
S(V ∗T

z̄)

= W̃T(Ŝ − Ŝ′V̂ Tz̄) + ŴTŜ′Ṽ Tz̄ + du, (19)

where Ŝ = S(V̂ Tz̄), Ŝ′ = diag{ŝ′
1, . . . , ŝ

′
l−1, 0} with s′(v̂T

k z̄) =
d[s(z�)]/dz�|z�=v̂T

k z̄, k = 1, . . . , l − 1, and the residual term du

is bounded by

|du|�‖V ∗‖F‖z̄ŴTŜ′‖F + ‖W ∗‖‖Ŝ′V̂ Tz̄‖ + ‖W ∗‖1. (20)

From Eqs. (17) and (19), we obtain

h(z)=ŴTS(V̂ Tz̄)−W̃T(Ŝ−Ŝ′V̂ Tz̄)−ŴTŜ′Ṽ Tz̄−du+ε(z).

(21)

The following even function q(x|c) is introduced for the pur-
pose of the control design in Section 3.1:

q(x|c) =
{

1 for |x|�c,

0 for|x| < c,
∀x ∈ R (22)

with any given positive constant c > 0.

3. Control system design and stability analysis

3.1. Adaptive NN control for SISO system (m = 1)

To illustrate the design methodology clearly, we first consider
the SISO system (m = 1).

From Eqs. (1), (9) and (10), we obtain

ṡ1 = f1(x1) + 1 + b1(x1)K
T
1 (t)�1(t)v1(t)

+ f1,�(x1(t − �1(t))) + b1(x1)d1(v1(t)), (23)

where 1 =∑n1−1
j=1 �1j e1,j+1 − y

(n1)
1d .

For (23), motivated by the definition of integral Lyapunov
functions (Ge et al., 1999b, 2001), define a smooth scalar func-
tion as follows:

Vs1 =
∫ s1

0

�

|b1(x̄
+
1 , � + �1)|

d�, (24)

where �1 = y
(n1−1)
1d −∑n1−1

j=1 �1j e1j , x̄
+
1 = [x11, . . . , x1,n1−1]T.
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By Second Mean Value Theorem for Integrals, Vs1 can be
rewritten as Vs1 = s2

1/2|b1(x̄
+
1 , �s1s1 + �1)| with �s1 ∈ (0, 1).

Because 0 < b10 � |b1(x1)|, it is shown that Vs1 is positive
definitive with respect to s1.

Differentiating Vs1 with respect to time t, we obtain

V̇s1 = s1

|b1(x1)| ṡ1 +
∫ s1

0
�

[
n1−1∑
k=1

�|b−1
1 (x̄+

1 , � + �1)|
�x1k

x1,k+1

+�|b−1
1 (x̄+

1 , � + �1)|
��1

�̇1

]
d�. (25)

Because �̇1 =−1 and �|b−1
1 (x̄+

1 , �+�1)|/��=�|b−1
1 (x̄+

1 , �+
�1)|/��1, it is shown that

∫ s1

0
�

�|b−1
1 (x̄+

1 , � + �1)|
��1

�̇1 d�

= − 1s1

|b1(x1)| +
∫ s1

0

1

|b1(x̄
+
1 , � + �1)|

d�. (26)

Substituting (23), and (26) into (25), and applying Eq. (9), we
obtain

V̇s1 �s1g1(t)v1 + s1Q1(z1) + s2
1

2b2
1(x1)

+ 1

2
	2

11(x1(t − �1(t))) + |s1|p∗
1 , (27)

where

g1(t) = b1(x1)

|b1(x1)|K
T
1 (t)�1(t), (28)

Q1(z1) = f1(x1)

|b1(x1)| + s1

∫ 1

0

[
�

n1−1∑
k=1

�|b−1
1 (x̄+

1 , �s1 + �1)|
�x1k

×x1,k+1 + 1

|b1(x̄
+
1 , �s1 + �1)|

]
d� (29)

with z1 = [xT
1 , s1, 1, �1]T ∈ Rp1 , p1 = n1 + 3.

To overcome the design difficulties from the unknown time-
delay �(t), the following Lyapunov–Krasovskii functional can
be considered

VU1(t) = 1

2(1 − �̄max)

∫ t

t−�1(t)

U1(x1(�)) d� (30)

with U1(x1(t)) = 	2
11(x1(t)).

The time derivative of VU1(t) is

V̇U1(t) = 1

2(1 − �̄max)
[	2

11(x1(t))

− 	2
11(x1(t − �1(t)))(1 − �̇1(t))], (31)

which can be used to cancel the time-delay term on the right-
hand side of (27), and thus eliminate the design difficulty from
the unknown time-varying delay �1(t) without introducing any
uncertainties to the system. For notation conciseness, the time
variables t and t − �1(t) will be omitted, after the time-varying
delay term are eliminated, from here onward. Accordingly, we
obtain

V̇s1 + V̇U1 �s1g1(t)v1 + s1h1(z1) + |s1|p∗
1 , (32)

where

h1(z1) = Q1(z1) + 0.5s1

b2
1(x1)

+ 0.5

(1 − �̄max)s1
	2

11(x1). (33)

Define a compact set

�z1 = {[xT
1 , s1, 1, �1]T|x1 ∈ �1, x̄1d ∈ �1d}, (34)

where �1 ⊂ Rn1 is a sufficiently large compact set satisfying
�1 ⊃ �10 as defined later in Theorem 1.

Note that if h1(z1) is utilized to construct the control law,
controller singularity may occur since (1/2(1 − �̄max)s1) ×
	2

11(x1) is not well-defined at s1 = 0. Therefore, care must be
taken to guarantee the boundedness of the control as discussed
(Ge et al., 2004).

For similarily, let us define sets �cs1
⊂ �z1 and �0

z1
as

follows:

�cs1
= {z1||s1| < cs1 , x1d ∈ �1d}, (35)

�0
z1

= �z1 − �cs1
, (36)

where cs1 is a positive design constant that can be chosen arbi-
trarily small and “−” in (36) is used to denote the complement
of set �cs1

in set �z1 . In addition, it has been shown that �0
z1

is a compact set in Ge et al. (2004).
Let ŴT

1 S(V̂ T
1 z̄1) be the approximation of the three-layer

NNs, which are discussed in Section 2.3, on the compact �0
z1

to h1(z1), then we have

h1(z1) = ŴT
1 S(V̂ T

1 z̄1) − W̃T
1 (Ŝ1 − Ŝ′

1V̂
T
1 z̄1)

− ŴT
1 Ŝ′

1Ṽ
T
1 z̄1 − du1 + ε1(z1), (37)

where z1=[z11, . . . , z1p1 ]T, z̄1=[zT
1 , 1]T;V̂1=[v̂11, . . . , v̂1l1 ] ∈

R(p1+1)×l1 and Ŵ1 = [ŵ11, . . . , ŵ1l1 ]T ∈ Rl1 denote the esti-
mates of ideal constant weights W ∗

1 and V ∗
1 , respectively, Ŝ1 =

S1(V̂
T
1 z̄1)=[s(v̂T

11z̄1), . . . , s(v
T
1,l1−1z̄1), 1]T with s(z�)=1/(1+

e−10z�),and constant 10 > 0, Ŝ′
1 = diag{ŝ′

11, . . . , ŝ
′
1,l1−1, 0}

with ŝ′
1k = s′(v̂T

1kz̄1) = d[s(z�)]/dz�|z�=v̂T
1k z̄1

, k = 1, . . . , l1 − 1;
and the NN node number l1 > 1; and the residual term du1 is
bounded by

|du1|�‖V ∗
1 ‖F‖z̄1Ŵ

T
1 Ŝ′

1‖F + ‖W ∗
1 ‖‖Ŝ′

1V̂
T
1 z̄1‖ + ‖W ∗

1 ‖1, (38)

the approximation error ε1(z1) satisfies |ε1(z1)|�ε∗
1, ∀z1 ∈

�0
z1

with constant ε∗
1 > 0.
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Consider the following control law:

v1(t) = q(s1|cs1)N(
1)[k10(t)s1 + ŴT
1 S1(V̂

T
1 z̄1)

+ �̂1�1(z1) tanh(s1�1(z1)/�1))], (39)


̇1 = q(s1|cs1)[k10(t)s
2
1 + ŴT

1 S1(V̂
T
1 z̄1)s1

+ �̂1�1(z1)s1 tanh(s1�1(z1)/�1)], (40)

where q(·|·) is defined by Eq. (22), N(
1) = e
2
1 cos((�/2)
1),

�1 is a positive constant, �̂1 is the estimate of �1 with �1 =
max{‖V ∗

1 ‖F, ‖W ∗
1 ‖, ‖W ∗

1 ‖1 + ε∗
1 + p∗

1} at time t ,

�1(z1) = ‖z̄1Ŵ
T
1 Ŝ′

1‖F + ‖Ŝ′
1V̂

T
1 z̄1‖ + 1, (41)

k10(t) = k11 + k12(t) with k11 being any positive constant and
k12(t) chosen as

k12(t) = k13q(s1|cs1)

2(1 − �̄max)s
2
1

∫ t

t−�max

	2
11(x1(�)) d� (42)

with k13 a positive constant specified by the designer.
The adaptive tuning laws are defined as

˙̂
W 1 = q(s1|cs1)�w1[(Ŝ1 − Ŝ′

1V̂
T
1 z̄1)s1 − �w1Ŵ1], (43)

˙̂
V 1 = q(s1|cs1)�v1[z̄1Ŵ

T
1 Ŝ′

1s1 − �v1V̂1], (44)

˙̂�1 = q(s1|cs1)�1

[
s1�1(z1) tanh

(
s1�1(z1)

�1

)
− �1�̂1

]
, (45)

where �w1 > 0, �v1 > 0, �w1, �v1, �1, �1 and �1 are strictly
positive constants.

Theorem 1. Consider the closed-loop system consisting of the
plant (1), the adaptive control given by (39), (40), (43)–(45).
Under Assumptions 1–7, for bounded initial conditions, the
overall closed-loop neural control system is semi-globally sta-
ble in the sense that all of the signals in the closed-loop system
are bounded, the parameter estimates

(Ŵ1, V̂1, �̂1) ∈ �w1 =
{

(Ŵ1, V̂1, �̂1)|‖W̃1‖2 � 2�1

�min(�
−1
w1)

,

‖Ṽ1‖2
F � 2�1

�min(�
−1
v1 )

, |�̃1|2 �2�1�1

}
,

(46)

and ∀x1(0) ∈ �10 (as will be defined later in the proof), the
state vector

x1 ∈ �1c =
{
x1|‖x1 − x1d‖�c10(1 + ‖�1‖)‖�1(0)‖

+
[

1 + (1 + ‖�1‖)c10

�1

]
max{√2b11�1, cs1},

x̄1d ∈ �1d

}
⊂ �1, (47)

whose size can be adjusted by appropriately choosing the de-
sign parameters.

Proof. The proof includes two steps as discussed in (Ge, Hang,
& Zhang, 1999a). We shall first assume that x1 ∈ �1, ∀t �0,
on which NN approximation (37) is valid, and construct stable
adaptive NN control over �1. Then, we shall show that there
exists nonempty initial set �10 such that the state x1 indeed
remains in the compact set �1 for all t �0, if initial state x1(0)

initiates from �10.
The proof is indeed a bit more complex than the model based

adaptive control design where the model is valid over the entire
space. Through the process of the proof, it is clear that there is a
nonempty initial compact set, as long as initial state x1(0) starts
from �10, the state x1 will never escape out of the conservative
compact set, �1c, belonging to the chosen compact set �1,
as will be shown later in the proof and in Fig. 2. Because
NN approximation is only valid on a compact set, we have to
present the idea in the above manner, and at the same time avoid
the so-called circular argument as commonly understood in the
classical model based control as detailed in Ge et al. (1999a).

Step 1: Suppose that x1 ∈ �1, ∀t �0, then NN approximation
(37) is valid. Consider the Lyapunov function candidate

V1(t) = Vs1(t) + VU1(t) + 1

2
W̃T

1 �−1
w1W̃1

+ 1

2
tr{Ṽ T

1 �−1
v1 Ṽ1} + 1

2�1
�̃

2
1. (48)

Differentiating V1(t) with respect to time t leads to

V̇1(t) = V̇s1(t) + V̇U1(t) + W̃T
1 �−1

w1
˙̂
W 1

+ tr{Ṽ T
1 �−1

v1
˙̂
V 1} + 1

�1
�̃1

˙̂�1. (49)

Case i: If |s1|�cs1 , then q1(s1|cs1) = 1. In this case, substi-
tuting Eq. (27) into Eq. (49), and noting Eqs. (37) and (38),
and using control law (39) and (40), it follows that

V̇1(t)�s1g1(t)v1 + s1h1(z1) + |s1|p∗
1 + W̃T

1 �−1
w1

˙̂
W 1

+ tr{Ṽ T
1 �−1

v1
˙̂
V 1} + 1

�1
�̃1

˙̂�1

= g1(t)N(
1)
̇1 + 
̇1 − k10(t)s
2
1 − ŴT

1 S1(V̂
T
1 z̄1)s1

− �̂1�1(z1)s1 tanh(s1�1(z1)/�1) + [ŴT
1 S1(V̂

T
1 z̄1)

− W̃T
1 (Ŝ1 − Ŝ′

1V̂1z̄1) − ŴT
1 Ŝ′

1Ṽ
T
1 z̄1

− du1 + ε1(z1)]s1 + |s1|p∗
1

+ W̃T
1 �−1

w1
˙̂
W 1 + tr{Ṽ T

1 �−1
v1

˙̂
V 1} + 1

�1
�̃1

˙̂�1. (50)

Using adaptive tuning laws (43)–(45), and the inequality:
0� |x| − x tanh(x/ε)�0.2785ε, for ε > 0, x ∈ R, and the fact
that ŴT

1 Ŝ′
1Ṽ

T
1 z̄1 = tr{Ṽ T

1 z̄1Ŵ
T
1 Ŝ′

1}, we obtain

V̇1(t)�g1(t)N(
1)
̇1 + 
̇1 − k11s
2
1 − k13

2(1 − �̄max)

×
∫ t

t−�max

U1(x1(�)) d� + 0.2785�1�1

− �w1W̃
T
1 Ŵ1 − �v1tr{Ṽ T

1 V̂1} − �1�̃1�̂1. (51)
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Ω1c

Ω1

Ω10

Fig. 2. Compact sets in Theorem 1.

By completion of squares, the following inequalities hold:

− �w1W̃
T
1 Ŵ1 � − �w1‖W̃1‖2

2
+ �w1‖W ∗

1 ‖2

2
, (52)

− �v1tr{Ṽ T
1 V̂1}� − �v1‖Ṽ1‖2

F

2
+ �v1‖V ∗

1 ‖2
F

2
, (53)

− �1�̃1�̂1 � − �1�̃
2
1

2
+ �1�

2
1

2
. (54)

Therefore, we obtain

V̇1(t)� − k11s
2
1 − k13

2(1 − �̄max)

∫ t

t−�max

U1(x1(�)) d�

+ g1(t)N(
1)
̇1 + 
̇1 − �w1‖W̃1‖2

2

− �v1‖Ṽ1‖2
F

2
− �1�̃

2
1

2
+ 0.2785�1�1

+ �w1‖W ∗
1 ‖2

2
+ �v1‖V ∗

1 ‖2
F

2
+ �1�

2
1

2
. (55)

Define the following constants:

�10 = min{2k11b10, k13, �w1/�max(�
−1
w1),

�v1/�max(�
−1
v1 ), �1�1}, (56)

�10 = 0.2785�1�1 + �w1‖W ∗
1 ‖2

2
+ �v1‖V ∗

1 ‖2
F

2
+ �1�

2
1

2
.

(57)

Thus, we have

V̇1(t)� − �10V1(t) + �10 + (g1(t)N(
1) + 1)
̇1. (58)

Multiplying Eq. (58) by e�10t yields

d

dt
(V1(t)e

�10t )�e�10t [�10 + (g1(t)N(
1)
̇1 + 
̇1)]. (59)

Integrating Eq. (59) over [0, t], we have

V1(t)�C10 + e−�10t

∫ t

0
(g1(�)N(
1) + 1)
̇1e�10� d� (60)

with C10 = �10/�10 + V1(0).

From Eqs. (7), (8), (28), and Assumption 3, we know that
g1(t) ∈ [min{k1l , k1r}, 2 max{k1l , k1r}] ⊂ (0, +∞), ∀t �0 or
g1(t) ∈ [−2 max{k1l , k1r}, − min{k1l , k1r}] ⊂ (−∞, 0), ∀t �0.
According to Lemma 1, we know that V1(t), 
1(t),

∫ t

0 g1(�)

N(
1)
̇1 d� are bounded on [0, tf ). Therefore, �̃1, ‖W̃1‖, ‖Ṽ1‖F
and |si | are bounded on [0, tf ) for all tf > 0, i.e., all signals in
the closed-loop system are bounded on [0, tf ) for all tf > 0.
According to the discussion (Ryan, 1991), we know that the
above conclusion is true for tf = +∞. Let C
1 be the upper
bound of e−�10t

∫ t

0 (g1(�)N(
1)+ 1)
̇1e�10� d� on [0, ∞),

�1 = �10

�10
+ V1(0) + C
1, (61)

then s2
1 �2b11V1(t)�2b11�1. Similarly, ‖W̃1‖2 �2�1/

�min(�
−1
w1), ‖Ṽ1‖2

F �2�1/�min(�
−1
v1 ), and |�̃1|2 �2�1�1.

Case ii: If |s1| < cs1 , then q1(s1|cs1) = 0. In this case, the

control signal v1 = 0, 
̇1 = 0,
˙̂
W 1 = 0,

˙̂
V 1 = 0 and ˙̂�1 = 0, i.e.,


1, Ŵ1, V̂1 and �̂1 are kept unchanged in bounded values.
Define �1 = [e11, . . . , e1,n1−1]T ∈ Rn1−1. From Eq.

(11), we know that (i) there is a state space representation
for mapping s1 = [�T1]e1, i.e., �̇1 = As1�1 + bs1s1 with
�1 = [�11, . . . , �1,n1−1]T, bs1 = [0, . . . , 0, 1]T, As1 being a
stable matrix; (ii) there is a positive constant c10 such that
‖eAs1 t‖�c10e−�1t , and (iii) the solution for �1 is

�1(t) = eAs1 t�1(0) +
∫ t

0
eAs1 (t−�)bs1s1(�) d�.

Accordingly, it follows that

‖�1(t)‖�c10‖�1(0)‖e−�1t + c10

∫ t

0
e−�1(t−�)|s1(�)| d�.

Let �̄1 = max{√2b11�1, cs1}. Therefore, we have

‖�1(t)‖�c10‖�1(0)‖ + c10�̄1

�1
. (62)

Noting s1 = �T
1 � + e1n1 and e1 = [�T

1 , e1n1 ]T, we obtain

‖e1‖�‖�1‖ + |e1n1 |�(1 + ‖�1‖)‖�1‖ + |s1|.

Substituting Eq. (62) into the above inequality leads to

‖e1‖�c10(1 + ‖�1‖)‖�1(0)‖ +
[

1 + (1 + ‖�1‖)c10

�1

]
�̄1.

(63)

Since c10, ‖�1‖ and �1 are positive constants, and �1(0) and
s1(0) depend on x1(0)−x1d(0), we conclude that there exists a
positive constant R1(c1, x1(0), W̃1(0), Ṽ1(0), �̃1(0)) depending
on c1, x1(0), W̃1(0), Ṽ1(0) and �̃1(0) such that

‖e1‖�R1(c1, x1(0), W̃1(0), Ṽ1(0), �̃1(0)), ∀t �0 (64)

with c1 = �10/�10.
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Noting x1 = e1 + x1d and Assumption 5, we obtain

‖x1‖�‖e1‖ + ‖x1d‖�c10(1 + ‖�1‖)‖�1(0)‖
+
[

1 + (1 + ‖�1‖)c10

�1

]
�̄1 + ‖x1d‖ ∈ L∞. (65)

Therefore, we can conclude from Cases i and ii that all
the closed-loop signals are semi-globally uniformly ultimately
bounded for bounded initial conditions.

Step 2: In the following, we shall find the conditions such
that x1 ∈ �1, ∀t �0. Firstly, define a set

�10 = {x1(0)|{x1|‖x1 − x1d‖ < R1(0, x1(0), 0, 0, 0)}
⊂ �1, x̄1d ∈ �1d}, (66)

which is not empty. It is easy to see that for all x1(0) ∈ �10 and
x̄1d ∈ �1d , we have x1 ∈ �1, ∀t �0. Then, for the system with
x1(0) ∈ �10, bounded Ŵ1(0), V̂1(0), �̂1(0) and x̄1d ∈ �1d , the
following constant c∗

1 can be determined by

c∗
1 = sup

c1∈R+
{c1|{x1|‖x1 − x1d‖ < R1(c1, x1(0), W̃1(0),

Ṽ1(0), �̃1(0))} ⊂ �1, x̄1d ∈ �1d}. (67)

From Eqs. (56) and (57), we know that if the adaptive con-
trol parameters �w1, �v1, �1, and �1 are chosen to be suffi-
ciently small, and k11, k13, �1, �min(�w1) and �min(�v1) are
taken to be sufficiently large, then the constant c1 = �10/�10
can be made arbitrary small. Therefore, for the initial condition
x1(0) ∈ �10, bounded Ŵ1(0), V̂1(0), �̂1(0) and x̄1d ∈ �1d , if
the adaptive control parameters are appropriately chosen such
that �10/�10 �c∗

1, then system state x1 indeed stays in �1 for
all time. This completes the proof. �

3.2. Adaptive NN control for MIMO system (m�2)

In this section, the design in Section 3.1 is extended to MIMO
system (1), which contains m interconnected subsystems. For
the ith subsystem:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋij = xi,j+1, j = 1, . . . , ni − 1,

ẋini
= fi(x, u1, . . . , ui−1)

+fi,�(x1(t − �1(t)), . . . , xm(t − �m(t)))

+bi(x1, . . . , xi)ui, i = 1, . . . , m,

yi = xi1.

(68)

The filtering tracking error si is given by Eq. (11). From
Eqs. (9), (10) and (68), we obtain

ṡi = fi(x, u1, . . . , ui−1) + i + bi(x̄i)K
T
i (t)�i (t)vi(t)

+ fi,�(x1(t − �1(t)), . . . , xm(t − �m(t)))

+ bi(x̄i)di(vi(t)), (69)

where i =∑ni−1
j=1 �ij ei,j+1 − y

(ni)
id .

Define a smooth scalar function as follows:

Vsi =
∫ si

0

�

|bi(x̄
+
i , � + �i )|

d�, (70)

where �i = y
(ni−1)
id − ∑ni−1

j=1 �ij eij , x̄
+
i = [xT

1 , . . . , xT
i−1,

xi1, . . . , xi,ni−1]T.
By Second Mean Value Theorem for Integrals, Vsi can be

rewritten as Vsi = s2
i /2|bi(x̄

+
i , �sisi + �i )| with �si ∈ (0, 1).

Because 0 < bi0 � |bi(x̄i)|, it is shown that Vsi is positive defini-
tive with respect to si .

Differentiating Vsi with respect to time t, applying Eqs. (10)
and (69), we obtain

V̇si = si

|bi(x̄i)| ṡi +
i−1∑
j=1

fj,�(x1(t − �1(t)), . . . ,

xm(t − �m(t)))

∫ si

0
�

�|b−1
i (x̄+

i , � + �i )|
�xjnj

d�

+
∫ si

0
�

⎧⎨
⎩

i∑
j=1

nj −1∑
k=1

�|b−1
i (x̄+

i � + �i )|
�xjk

xj,k+1

+
i−1∑
j=1

�|b−1
i (x̄+

i , � + �i )|
�xjnj

[fj (x, u1, . . . , uj−1)

+bj (x̄j )Dj (vj )]
⎫⎬
⎭ d�

− i si

|bi(x̄i)| + i

∫ si

0
|b−1

i (x̄+
i , � + �i )| d�

�sigi(t)vi + siQi(zi)

+ sifi,�(x1(t − �1(t)), . . . , xm(t − �m(t)))

|bi(x̄i)| + |si |p∗
i

+
i−1∑
j=1

fj,�(x1(t − �1(t)), . . . ,

xm(t − �m(t)))

∫ si

0
�

�|b−1
i (x̄+

i , � + �i )|
�xjnj

d�, (71)

where

gi(t) = bi(x̄i)

|bi(x̄i)|K
T
i (t)�i (t), (72)

Qi(zi) = fi(x, u1, . . . , ui−1)

|bi(x̄i)|

+
∫ 1

0

⎧⎨
⎩�

⎡
⎣ i∑

j=1

nj −1∑
k=1

�|b−1
i (x̄+

i , �si + �i )|
�xjk

xj,k+1

+
i−1∑
j=1

�|b−1
i (x̄+

i , �si + �i )|
�xjnj

(fj (x, u1, . . . , uj−1)

+bj (x̄j )Dj (vj ))

⎤
⎦+ i |b−1

i (x̄+
i , �si + �i )|

⎫⎬
⎭ d�,

(73)

zi = [xT, si , i , �i , v1, . . . , vi−1]T

= [zi1, zi2, . . . , zipi
]T, pi = n + i + 2. (74)
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By utilizing Young’s inequality and Assumption 6, we obtain

i−1∑
j=1

fj,�(x1(t − �1(t)), . . . , xm(t − �m(t)))

×
∫ si

0
�

�|b−1
i (x̄+

i , � + �i )|
�xjnj

d�

� m

2

i−1∑
j=1

m∑
k=1

	2
jk(xk(t − �k(t)))

+ s4
i

2

i−1∑
j=1

(∫ 1

0
�
�|b−1

i (x̄+
i , �si + �i )|
�xjnj

d�

)2

(75)

and

sifi,�(x1(t − �1(t)), . . . , xm(t − �m(t)))

|bi(x̄i)|

�
s2
i

2b2
i (x̄i )

+ m

2

m∑
k=1

	2
ik(xk(t − �k(t))). (76)

Substituting Eqs. (75) and (76) into Eq. (71), we have

V̇si �sigi(t)vi + siQi(zi) + s2
i

2b2
i (x̄i )

+ m

2

i∑
j=1

m∑
k=1

	2
jk(xk(t − �k(t))) + |si |p∗

i

+ s4
i

2

i−1∑
j=1

(∫ 1

0
�
�|b−1

i (x̄+
i , �si + �i )|
�xjnj

d�

)2

. (77)

To overcome the design difficulties from the unknown time-
varying delays, �1(t), . . . , �m(t), the following Lyapunov–
Krasovskii functional can be considered

VUi
(t) = m

2(1 − �̄max)

i∑
j=1

m∑
k=1

∫ t

t−�k(t)

	2
jk(xk(�)) d�. (78)

The time derivative of VUi
(t) is

V̇Ui
(t) = m

2(1 − �̄max)

⎡
⎣ i∑

j=1

m∑
k=1

	2
jk(xk(t))

−
i∑

j=1

m∑
k=1

	2
jk(xk(t − �k(t)))(1 − �̇k(t))

⎤
⎦ , (79)

which can be used to cancel the time-varying delay terms on
the right-hand side of (71) and thus eliminate the design diffi-
culty from the unknown time-delays, �1(t), . . . , �m(t), without
introducing any uncertainties to the system. For notation con-
ciseness, the time variables t, t − �1(t), . . . , t − �m(t) will be

omitted after time-delay terms have been eliminated. Accord-
ingly, we obtain

V̇si + V̇Ui
�sigi(t)vi + sihi(z1) + |si |p∗

i , (80)

where

hi(zi) = Qi(zi) + si

2b2
i (x̄i )

+ m

2(1 − �̄max)si

×
i∑

j=1

m∑
k=1

	2
jk(xk)

+ s3
i

2

i−1∑
j=1

(∫ 1

0
�
�|b−1

i (x̄+
i , �si + �i )|
�xjnj

d�

)2

. (81)

Define the compact sets �z1 and �zi
as follows:

�z1 = {[xT, s1, 1, �1]T|xj ∈ �j , j = 1, . . . , m,

x̄1d ∈ �1d}, (82)

�zi
= {[xT, si , i , �i , v1, . . . , vi−1]T|xj ∈ �j , j = 1, . . . , m,

x̄kd ∈ �kd , k = 1, . . . , i, (Ŵj , V̂j , �̂j ) ∈ �wj ,

j = 1, . . . , i − 1}, (83)

where �j ⊂ Rnj is a sufficiently large compact set satisfying
�j ⊃ �j0 which is similar to the definition of �10 in Theorem
1, j = 1, . . . , m; �wj will be defined later in Theorem 2, j =
1, . . . , i − 1, i = 2, . . . , m.

For ease of discussion, let us define sets �csi
⊂ �zi

and �0
zi

as follows:

�csi
= {zi ||si | < csi , x̄id ∈ �id}, (84)

�0
zi

= �zi
− �csi

, (85)

where csi is a positive design constant that can be chosen arbi-
trarily small. As shown in Ge et al. (2004), we know that �0

zi

is a compact set.
Let ŴT

i S(V̂ T
i z̄i ) be the approximation of the three-layer NNs,

which are discussed in Section 2.3, on the compact �0
zi

to
hi(zi), we have

hi(zi) = ŴT
i Si(V̂

T
i z̄i ) − W̃T

i (Ŝi − Ŝ′
i V̂

T
i z̄i )

− ŴT
i Ŝ′

i Ṽ
T
i z̄i − dui + εi(zi), (86)

where zi =[zi1, . . . , zipi
]T, z̄i =[zT

i , 1]T; V̂i =[v̂i1, . . . , v̂ili ] ∈
R(pi+1)×li and Ŵi=[ŵi1, . . . , ŵili ]T ∈ Rli denote the estimates
of W ∗

i and V ∗
i , respectively, W ∗

i and V ∗
i are ideal constant

weights; Ŝi = Si(V̂
T
i z̄i ) = [s(v̂T

i1z̄i ), . . . , s(v
T
i,li−1z̄i ), 1]Twith

s(z�)=1/(1+e−i0z�), and constant i0 > 0, Ŝ′
i =diag{ŝ′

i1, . . . ,

ŝ′
i,li−1, 0} with ŝ′

ik = s′(v̂T
ik z̄i ) = d[s(z�)]/dz�|z�=v̂T

ik z̄i
, k =

1, . . . , li − 1; and the NN node number li > 1; and the residual
term dui is bounded by

|dui |�‖V ∗
i ‖F‖z̄iŴ

T
i Ŝ′

i‖F + ‖W ∗
i ‖‖Ŝ′

i V̂
T
i z̄i‖ + ‖W ∗

i ‖1, (87)

the approximation error εi(zi) satisfies |εi(zi)|�ε∗
i , ∀zi ∈ �0

zi

with constant ε∗
i > 0.
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Consider the following control law:

vi(t) = q(si |csi )N(
i )[ki0(t)si + ŴT
i Si(V̂

T
i z̄i )

+ �̂i�i (zi) tanh(si�i (zi)/�i ))], (88)


̇i = q(si |csi )[ki0(t)s
2
i + ŴT

i Si(V̂
T
i z̄i )si

+ �̂i�i (zi)si tanh(si�i (zi)/�i )], (89)

where q(·|·) is defined by Eq. (22), N(
i ) = e
2
i cos((�/2)
i ),

�i is a positive constant, �̂i is the estimate of �i with �i =
max{‖V ∗

i ‖F, ‖W ∗
i ‖, ‖W ∗

i ‖1 + ε∗
i + p∗

i } at time t ,

�i (zi) = ‖z̄iŴ
T
i Ŝ′

i‖F + ‖Ŝ′
i V̂

T
i z̄i‖ + 1, (90)

ki0(t)=ki1 +ki2(t) with ki1 being any positive constant, ki2(t)

chosen as

ki2(t) = mki3q(si |csi )

2(1 − �̄max)s
2
i

i∑
j=1

m∑
k=1

∫ t

t−�max

	2
jk(xk(�)) d� (91)

with ki3 being a positive constant, specified by the designer.
The following adaptive tuning laws are shown as

˙̂
Wi = q(si |csi )�wi[(Ŝi − Ŝ′

i V̂
T
i z̄i )si − �wiŴi], (92)

˙̂
V i = q(si |csi )�vi[z̄iŴ

T
i Ŝ′

i si − �vi V̂i], (93)

˙̂�i = q(si |csi )�i[si�i (zi) tanh(si�i (zi)/�i ) − �i �̂i], (94)

where �wi > 0, �vi > 0, �wi, �vi , �i , �i and �i are strictly pos-
itive constants.

Theorem 2. Consider the closed-loop system consisting of the
plant (1), the control law (88), and adaptation laws (92)–(94).
If Assumptions 1–7 hold, then for bounded initial conditions,
the overall closed-loop neural control system is semi-globally
stable in the sense that all signals in the closed-loop system
are bounded, the parameter estimates

(Ŵi, V̂i , �̂i )∈�wi=
{
(Ŵi, V̂i , �̂i )|‖W̃i‖2 � 2�i

�min(�
−1
wi )

,

‖Ṽi‖2
F � 2�i

�min(�
−1
vi )

, |�̃i |2 �2�i�i

}
, (95)

and ∀xi(0) ∈ �i0, the state vector

xi ∈ �ic =
{
xi |‖xi − xid‖�ci0(1 + ‖�i‖)‖�i (0)‖

+
[

1 + (1 + ‖�i‖)ci0

�i

]
max{√2bi1�i , csi },

x̄id ∈ �id

}
⊂ �i , (96)

whose size can be adjusted by appropriately choosing the de-
sign parameters; �i=[ei1, . . . , ei,ni−1]T ∈ Rni−1, �̇i=Asi �i+
bsi si is one state space representation for mapping si =[�T

i 1]ei

with �i =[�i1, . . . , �i,ni−1]T, bsi =[0, . . . , 0, 1]T ∈ Rni−1, Asi

being a stable matrix, and ci0 being a positive constant satis-
fying ‖eAsi

t‖�ci0e−�i t , i = 1, . . . , m.

Proof. The proof includes two steps as in Ge et al. (1999a).
We first suppose that xi ∈ �i holds for all time, and find
the upper bounds of system states. Later, for the appropriate
initial condition xi(0) and the adaptive controller parameters,
we prove that the state xi indeed remains in the compact set �i

for all t �0.
Suppose that xi ∈ �i , ∀t �0, then NN approximation (86) is

valid. Consider the Lyapunov function candidate

Vi(t) = Vsi(t) + VUi
(t) + 1

2
W̃T

i �−1
wi W̃i

+ 1

2
tr{Ṽ T

i �−1
vi Ṽi} + 1

2�i

�̃
2
i . (97)

Differentiating Vi(t) with respect to time t leads to

V̇i(t) = V̇si(t) + V̇Ui
(t) + W̃T

i �−1
wi

˙̂
Wi

+ tr{Ṽ T
i �−1

vi
˙̂
V i} + 1

�i

�̃i
˙̂�i . (98)

Case i: If |si |�csi , then qi(si |csi ) = 1. In this case, substi-
tuting Eq. (80) into Eq. (98), and using control law (88), (89),
and (86) and (87), it follows that

V̇i(t)�gi(t)N(
i )
̇i + 
̇i − ki0(t)s
2
i − ŴT

i Si(V̂
T
i z̄i )si

− �̂i�i (zi)si tanh(si�i (zi)/�i )

+ [ŴT
i Si(V̂

T
i z̄i ) − W̃T

i (Ŝi − Ŝ′
i V̂i z̄i )

− ŴT
i Ŝ′

i Ṽ
T
i z̄i − dui + εi(zi)]si + |si |p∗

i

+ W̃T
i �−1

wi
˙̂
Wi + tr{Ṽ T

i �−1
vi

˙̂
V i} + 1

�i

�̃i
˙̂�i . (99)

Using adaptive tuning laws (92)–(94), and the inequality:
0� |x| − x tanh(x/ε)�0.2785ε, for ε > 0, x ∈ R, and the fact
that ŴT

i Ŝ′
i Ṽ

T
i z̄i = tr{Ṽ T

i z̄iŴ
T
i Ŝ′

i}, we obtain

V̇i(t)�gi(t)N(
i )
̇i + 
̇i − ki1s
2
i − mk13

2(1 − �̄max)

×
i∑

j=1

m∑
k=1

∫ t

t−�max

	2
jk(xk(�)) d� + 0.2785�i�i

− �wiW̃
T
i Ŵi − �vi tr{Ṽ T

i V̂i} − �i �̃i �̂i . (100)

By completion of squares, the following inequalities hold:

− �wiW̃
T
i Ŵi � − �wi‖W̃i‖2

2
+ �wi‖W ∗

i ‖2

2
, (101)

− �vi tr{Ṽ T
i V̂i}� − �vi‖Ṽi‖2

F

2
+ �vi‖V ∗

i ‖2
F

2
, (102)

− �i �̃i �̂i � − �i �̃
2
i

2
+ �i�

2
i

2
. (103)
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Substituting Eqs. (101)–(103) into Eq. (100), we obtain

V̇i(t)� − ki1s
2
i − ki3VUi

(t) + gi(t)N(
i )
̇i

+ 
̇i + 0.2785�i�i − �wi‖W̃i‖2

2
− �vi‖Ṽi‖2

F

2

− �i �̃
2
i

2
+ �wi‖W ∗

i ‖2

2
+ �vi‖V ∗

i ‖2
F

2
+ �i�

2
i

2
. (104)

Define the following constants:

�i0 = min{2ki1bi0, ki3, �wi/�max(�
−1
wi ),

�vi/�max(�
−1
vi ), �i�i}, (105)

�i0 = 0.2785�i�i + �wi‖W ∗
i ‖2

2
+ �vi‖V ∗

i ‖2
F

2
+ �i�

2
i

2
. (106)

Thus, we have

V̇i(t)� − �i0Vi(t) + �i0 + gi(t)N(
i )
̇i + 
̇i . (107)

Multiplying Eq. (107) by e�i0t yields

d

dt
(Vi(t)e

�i0t )�e�i0t [�i0 + gi(t)N(
i )
̇i + 
̇i]. (108)

Integrating Eq. (108) over [0, t], we have

Vi(t)�Ci0 + e−�i0t

∫ t

0
(gi(�)N(
i ) + 1)
̇ie

�i0� d� (109)

with Ci0 = �i0/�i0 + Vi(0).
From Eqs. (7), (8), (72), and Assumption 3, we know that

gi(t) ∈ [min{kil, kir}, 2 max{kil, kir}] ⊂ (0, +∞), ∀t �0 or
gi(t) ∈ [−2 max{kil, kir}, − min{kil , kir}] ⊂ (−∞, 0), ∀t �0.
According to Lemma 1, we have Vi(t), 
i (t),

∫ t

0 gi(�)N(
i )
̇i d�

are bounded on [0, tf ). Therefore, �̃i , ‖W̃i‖, ‖Ṽi‖F and |si | are
bounded on [0, tf ) for all tf > 0, i.e., all signals in the closed-
loop system are bounded on [0, tf ) for all tf > 0. According to
the discussion in Ryan (1991), we see that the above conclusion
is true for tf =+∞. Therefore, �̃i , ‖W̃i‖ and ‖Ṽi‖F ∈ L∞. Let
C
i be the upper bound of e−�i0t

∫ t

0 (gi(�)N(
i ) +1)
̇ie
�i0�d� on

[0, ∞), �i =�i0/�i0+Vi(0)+C
i , then s2
i �2bi1Vi(t)�2bi1�i .

Similarly, ‖W̃i‖2 �2�i/�min(�
−1
wi ), ‖Ṽi‖2

F �2�i/�min(�
−1
vi ),

and |�̃i |2 �2�i�i .
Case ii: If |si | < csi , then qi(si |csi ) = 0. In this case, the

control signal vi = 0, 
̇i = 0,
˙̂
Wi = 0,

˙̂
V i = 0 and ˙̂�i = 0, i.e.,


i , Ŵi , V̂i and �̂i are kept unchanged in bounded values.
Therefore, similar to the discussion in Theorem 1, we can

conclude from Cases i and ii that all the closed-loop signals
are semi-globally uniformly ultimately bounded and Eq. (96)
holds. �

4. Simulation results

To demonstrate the effectiveness of the proposed approach,
we consider the following nonlinear system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ11(t) = x12(t),

ẋ12(t)=x21(t)−0.3 sin(x21(t))

+0.1x2
11(t−�1(t))+(2−sin2(x11(t)))u1(t),

ẋ21(t)=x22(t),

ẋ22(t)=x2
11(t)u1(t)+(x2

22(t)+x11(t)

+0.5 cos(x21(t)))u
2
1(t)+0.2x22(t−�2(t))

× sin(x21(t−�2(t)))+(3+ sin(x22(t)))u2(t),

y1(t)=x11(t), y2(t) = x22(t),

(110)

where ui (i = 1, 2) are outputs of dead-zones.
Both NNs ŴT

i Si(V̂
T
i z̄i ), i = 1, 2 contain 10 hidden nodes

(i.e., l1 = l2 = 10) and the coefficients in activation function
s(·) are taken as 10 = 20 = 3.5. The desired tracking trajec-
tories y1d(t) = 0.5[sin(t) + sin(0.5t)] and y2d = sin(0.5t) +
0.5 sin(1.5t). The design parameters of the above controller
are cs1 = cs2 = 1.0 × 10−5, �11 = 1.5, �21 = 2, k11 = k21 =
2, k13 = k23 = 0.001, �1 = �2 = 0.1, �1 = �2 = 0.2, �1 = �2 =
�w1 = �w2 = �v1 = �v2 = 0.01, �w1 = �w2 = diag{2.5}, �v1 =
�v2 = diag{10}. The dead-zones are assumed to have linear
functions outside the deadband. We select gir (vi) = kir (vi −
bir ) and gil(vi) = kil(vi − bil) with the parameters of the
dead-zones k1l = 0.5, k1r = 1.5, k2l = 1.5, k2r = 2.5, b1l =
−0.5, b1r = 0.5, b2l = −2.5, b2r = 2. The initial conditions:
x11(0)=0, x12(0)=0, x21(0)=0, x22(0)=0, time-varying delays
�1(t)=0.2(1+sin(t)), �2(t)=1−0.5 cos(t), �max=2, �̄max=0.6,

1(0) = 
2(0) = 0, Ŵ1(0) = Ŵ2(0) = 0, V̂1(0) and V̂2(0) are
randomly taken in the intervals [−1, 1] and [−0.5, 0.5], respec-
tively, �̂1(0) = �̂2(0) = 0, the simulation results are shown in
Figs. 3–5. From Fig. 3, it can be seen that fairly good tracking
performance is obtained.
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Fig. 3. Tracking errors e11 (solid line) and e21 (dashed line) with time-varying
delays.
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Fig. 4. Control signal v1 with time-varying delays.
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Fig. 5. Control signal v2 with time-varying delays.

5. Conclusions

A novel adaptive neural control scheme has been presented
for a class of uncertain MIMO nonlinear state time-varying
delay systems with unknown nonlinear dead-zones and gain
signs. The uncertainties from unknown time-varying delays
have been compensated for through the use of appropriate
Lyapunov–Krasovskii functionals. The controller has been
made to be free from singularity problem by utilizing integral
Lyapunov function. Based on the intuitive concept and piece-
wise description of dead-zone and the principle of sliding mode
control, the developed controller can guarantee that all signals
involved are semi-globally uniformly ultimately bounded.
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