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Abstract

Using the newly developed worst-case fault sensitivity measure, the H− index, and the well-known worst-case robustness measure, the
H∞ norm, this paper addresses the problem of H− index fault detection observer design and multiobjective H−/H∞ fault detection
observer design problems. Necessary and sufficient conditions for the existence of such a fault detection observer are given in terms of matrix
inequalities. Both infinite frequency range case [0, ∞) and finite frequency range case [0, �̄) are considered. Iterative linear matrix inequality
(ILMI) algorithms are given to obtain the solutions. The effectiveness of the proposed approaches is shown by numerical examples.
� 2007 Elsevier Ltd. All rights reserved.

Keywords: H− index; Minimum singular value; Minimum sensitivity; Fault detection

1. Introduction

Model-based fault detection and isolation have attracted con-
siderable interest over the decades (Chen & Patton, 1999; Ding,
Guo, & Jeinsch, 1999; Frank, 1990; Gertler, 1988; Isermann,
1984; Willsky, 1976). The basic idea is to construct a resid-
ual signal and compare it with a predefined threshold. If the
residual exceeds the threshold, an alarm is generated. How-
ever, noises and disturbances may result in significant changes
in the residual, leading to false alarms. So fault detection ob-
servers have to be robust, i.e., insensitive or even invariant to
noise and disturbances. A number of approaches using the H∞
norm optimization techniques have been developed for the de-
sign of robust fault detection observers (Ding, Jeinsh, Frank,
& Ding, 2000; Frank & Ding, 1997; Hou & Patton, 1996;
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Nobrega, Abdalla, & Grigoriadis, 2000; Patton & Hou, 1997;
Qiu & Gertler, 1993; Rank & Niemann, 1999). However, the
H∞ norm measures the maximum effect of an input on an
output, contrary to main objective of fault detection.

Recently, the study on minimum singular value has gained
much attention, which aims to maximize the minimum (worst-
case) effect of faults on the residual output of a fault detection
observer. Various H− “norms” have been defined by using
the minimum “nonzero” singular value, taken either at � = 0
(Hou & Patton, 1996), or over nonzero frequency ranges (Rank
& Niemann, 1999; Ding, Jeinsh et al., 2000). The exclusion
of possible zero singular values in the definition prevents it
from being a true worst-case sensitivity measure. In partic-
ular, by adopting this definition over the infinite frequency
range (denoted ‖ · ‖min), Ding, Jeinsh et al. (2000) presents
optimal solutions for mixed ‖ · ‖min/‖ · ‖∞ fault detection
designs, by using the co-inner-outer factorization approach,
providing an optimal solution to an essentially multiobjective
problem. Only one algebraic Riccati equation (ARE) need be
solved. The method is shown to guarantee the best detectabil-
ity of faults under given false alarm rate (Ding, Frank, Ding, &
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Jeinsh, 2000), and to be optimal at each frequency point �
(Ding, Ding, & Jeinsh, 2000).

In Liu, Wang, and Yang (2003b, 2005), the definition of H−
“norm” is extended to what is called the H− index, which is
defined as the minimum singular value of the transfer function
matrix over a given frequency range. The inclusion of possible
zero singular values in the definition renders the H− index a
true worst-case sensitivity measure. For the infinite frequency
range case, a necessary and sufficient condition is given in
terms of LMIs. The case for finite frequency ranges is handled
by frequency weighting.

The linear matrix inequality (LMI) methodology has been
under intensive research in the past couple of decades, and has
been widely used for various kinds of robust control and fil-
tering problems (Boyd, Ghaoui, Feron, & Balakrishnam, 1994;
Liu, Wang, & Yang, 2003a). One advantage of the LMI ap-
proach is the relative ease in incorporating additional design
objectives into the formulation. Hence, LMI formulations for
the H− and mixed H−/H∞ problems are of interest. In
Rambeaux, Hamelin, and Sauter (1999), LMI-based sufficient
conditions are proposed for the H− “norm” over the frequency
range [0, ∞), together with a corresponding mixed H−/H∞
fault detection observer design.

In this paper, we develop a complete LMI formulation for
the problems of H− index and multiobjective H−/H∞ fault
detection observer design, by using the H− index and its LMI-
based characterization in Liu et al. (2005). First, H− index de-
sign problem is solved with stability, together with an iterative
algorithm. Both the infinite frequency range case [0, +∞) and
the finite frequency range case [0, �̄] are considered. Then, a
mixed H−/H∞ problem is studied to illustrate the ability of
the LMI formulation for solving multiobjective design prob-
lems. Both the infinite frequency range case [0, +∞) and the
finite frequency range case [0, �̄] are considered. Iterative lin-
ear matrix inequality (ILMI) algorithms are given to obtain the
solutions. It is shown through an example that, for the infinite
frequency range case, the proposed iterative procedure indeed
converges to the optimal solution of Ding, Jeinsh et al. (2000).

The outline of the paper is as follows. First, problem formu-
lation is given in Section 2. In Section 3, robustness conditions
on fault detection observers are given. Section 4 presents the
H− index fault sensitivity conditions. In Section 5, the prob-
lem of designing H− index fault detection observers over in-
finite frequency range [0, ∞) is addressed, and iterative LMI
algorithms are given to obtain the solutions. Section 6 consid-
ers the finite frequency range case [0, �̄]. The multiobjective
H−/H∞ fault detection observer design is given in Section 7.
Section 8 presents some examples to illustrate the effectiveness
of the proposed methods. At last, some concluding remarks are
given in Section 9.

2. Problem formulation

Consider a linear time invariant system described by

� : ẋ(t) = Ax(t) + Bf f (t) + Bww(t), (1)

y(t) = Cx(t) + Df f (t) + Dww(t), (2)

Fig. 1. Fault detection system.

where x(t) ∈ Rn is the state, y(t) ∈ Rr the measured output,
f (t) ∈ Rl the fault input, and w(t) ∈ Rm the disturbance
input, including modeling errors, exogenous noises, etc. The
fault input f (t) can be system component faults, actuator faults
or sensor faults. Notice that, since no uncertainties in system
matrices are considered explicitly here, the control input is
omitted in the model, without loss of generality. The case of
uncertainties in system matrices is treated in Wang, Wang, and
Lam (2007).

The fault detection observer has the form

F : ˙̂x(t) = Ax̂(t) + L[y(t) − ŷ(t)], (3)

ŷ(t) = Cx̂(t), (4)

r(t) = V [y(t) − ŷ(t)], (5)

where x̂ ∈ Rn is the state estimation, L ∈ Rn×r is the filter co-
efficient matrix to be designed, and V ∈ Rr×r is a nonsingular
weighting matrix.

After connecting the filter F and the system � together, as
shown in Fig. 1, and letting e(t) := x(t) − x̂(t), we can write
the residual error dynamic equations as

R: ė(t) = (A − LC)e(t) + (Bf − LDf )f (t)

+ (Bw − LDw)w(t), (6)

r(t) = V Ce(t) + V Df f (t) + V Dww(t). (7)

Obviously, in order for the fault detection observer F in (3)–(5)
to work, the above residual error dynamics R must be stable
(or in short, F must be stable). Let

Trw(s) := V C(sI − A + LC)−1(Bw − LDw) + V Dw, (8)

Trf (s) := V C(sI − A + LC)−1(Bf − LDf ) + V Df . (9)

The fault detection observer F will be designed to maximize
both the robustness against disturbance input w(t) and the sen-
sitivity to fault input f (t).

Definition 1 (Liu et al., 2003b, 2005). Given the frequency
range of 0����̄, the H− index of a transfer function G(s)

is defined as

‖G(s)‖[0,�̄]
− := inf

�∈[0,�̄] �[G(j�)], (10)

where �̄ is a known frequency bound (which can be finite or
infinite), and � denotes the minimum singular value.

For a given G(s), if ‖G(s)‖− �= 0, then the H− index
‖G(s)‖− coincide with ‖G(s)‖min of Ding, Jeinsh et al. (2000).
As pointed out in Liu et al. (2003b, 2005), the H− index
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(as well as H− “norm” and ‖ · ‖min) is neither a matrix (i.e.,
induced) norm nor a norm. For example, the triangle inequality
fails to hold: ‖G(s) + H(s)‖−�‖G(s)‖− + ‖H(s)‖−, as can
be seen through G(s)=diag[1, 3] and H(s)=diag[3, 1] where
‖G(s)‖− = ‖H(s)‖− = 1, while ‖G(s) + H(s)‖− = 4.

Definition 2. Consider the system � in (1)–(2), two scalars
� > 0 and � > 0, and a frequency range [0, �̄] (where �̄ can be
finite as well as infinite). The observer F in (3)–(5) is called an
H−/H∞ fault detection observer over the frequency spectrum
[0, �̄] if

(1) F (i.e., R) is asymptotically stable;
(2) ‖Trw(s)‖∞ < �;
(3) ‖Trf (s)‖[0,�̄]

− > �.

The objectives considered in this paper are to find an admis-
sible filter F to minimize � and to maximize �.

H− fault detection observer design: Given system � in
(1)–(2), frequency limit �̄ > 0 and performance bound � > 0,
find a stable fault detection observer F in (3)–(5), if exists,
such that ‖Trf (s)‖[0,�̄]

− > � is maximized. Then, F is called an
H− index fault detection observer.

Multiobjective H−/H∞ fault detection observer design:
Given system � in (1)–(2) and frequency limit �̄, find
an H−/H∞ fault detection observer, if exists, such that
‖Trw(s)‖∞ < �, ‖Trf (s)‖[0,�̄]

− > � with �2 − �2 minimized.

Remark 1. Various mixed H−/H∞ performance criteria
(�2 −�2, �/�, etc.) were proposed in Ding, Jeinsh et al. (2000)
using the ‖ · ‖min performance measure. Here in this paper, we
adopt the �2 − �2 criterion, using the H− index of Definition
1, for ease of comparison.

3. Robustness conditions

First, we look at the robustness requirement

‖Trw(s)‖∞ < �. (11)

As in (Zhou, 1998), the requirement (11) can be reformulated
in a matrix inequality form. For simplicity, symmetric matrix
entries below diagonal are denoted as ∗.

Lemma 1. Consider the system � in (1)–(2) and the stable fault
detection observer F in (3)–(5) with the weighting matrix V
given. Let W =V TV . For a given constant � > 0, the following
are equivalent:

(1) ‖Trw(s)‖∞ < �.
(2) (Bounded real lemma) There exist a matrix L and a sym-

metric matrix P > 0 such that

(12)

(3) There exist a matrix F and a symmetric matrix P > 0 such
that

(13)

and the filter gain L is

L = P −1F . (14)

(4) There exist matrices L, L0 and symmetric matrices P > 0
and P0 > 0 such that⎡
⎢⎢⎢⎣

M1
PBw

+CTWDw
P − (LC)T P

∗ M2 0 −DT
wLT

∗ ∗ −I 0
∗ ∗ ∗ −I

⎤
⎥⎥⎥⎦ < 0, (15)

where

M1 = PA + ATP + CTWC

− (L0C)T(LC) − (LC)T(L0C)

+ (L0C)T(L0C) − 2P0P − 2PP 0 + 2P0P0, (16)

M2 = DT
wWDw − �2I − (LDw)T(L0Dw)

− (L0Dw)T(LDw) + (L0Dw)T(L0Dw). (17)

Proof. The proof of the equivalence among items 1–3, as well
as (14), is straightforward from standard results in Zhou (1998),
and the details are omitted. Only the equivalence between items
2 and 4 is shown here. Starting from item 2, inequality (12)
can be rewritten as

(18)

where E := [P, −LDw, 0]T. With Schur complement and
simple algebra, (18) can be rewritten equivalently as

(19)

(⇒) By choosing P0 = P and L0 = L in (15), it is easy to
verify that (19) implies (15).
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(⇐) The inequality (15) can be rewritten as �1 +
diag[a, b, 0, 0, 0] < 0 with

a = 2(P − P0)(P − P0) + (LC − L0C)T(LC − L0C),

b = (LDw − L0Dw)T(LDw − L0Dw).

Then (19) follows, and the proof is complete. �

Remark 2. It should be noticed that the stability of R in (6)–(7)
is implied in (12), (13) and (15). Thus the filter is guaranteed to
be stable if any of these three equivalent constraints is fulfilled.
Furthermore, (13) is an LMI in matrix variable P and F; and
(15) is an LMI in L and P if L0 and P0 are known and fixed
matrices.

4. H− index fault sensitivity conditions

Consider the minimum (i.e., worst-case) fault sensitivity per-
formance

‖Trf (s)‖[0,∞)
− > �. (20)

Using the results in Liu et al. (2003b, 2005), (20) can be refor-
mulated in a matrix inequality form.

Lemma 2. Consider the system � in (1)–(2) and the stable H−
index fault detection observer F in (3)–(5) with the weighting
matrix V given. Let W =V TV . For a given � > 0, the following
conditions are equivalent:

(1) ‖Trf (s)‖[0,∞)
− > �.

(2) There exists a symmetric matrix Pf such that

(21)

(3) There exist a matrix Ff and a symmetric nonsingular ma-
trix Pf such that

(22)

and the filter gain L is

L = P −1
f Ff . (23)

(4) There exist matrices L, L0, and symmetric matrices Pf

and Pf 0 such that

⎡
⎢⎣

Ň11 Pf Bf + CTWDf Pf + CTLT Pf

∗ Ň22 0 DT
f LT

∗ ∗ I 0
∗ ∗ ∗ I

⎤
⎥⎦ > 0,

(24)

where

Ň11 = 2Pf 0Pf + 2Pf Pf 0 − 2Pf 0Pf 0

+ CTLT
0 LC + CTLTL0C − CTLT

0 L0C

+ Pf A + ATPf + CTWC, (25)

Ň22 = DT
f WDf − �2I + DT

f LT
0 LDf

+ DT
f LTL0Df − DT

f LT
0 L0Df . (26)

Proof. The equivalence between items 1 and 2, as well as (23),
are given in Liu et al. (2005). The equivalence between items
2 and 3 is obvious. The equivalence between 2 and 4 is shown
next. By some algebraic manipulations and Schur complement,
(21) can be rewritten as

(27)

For given matrices Pf 0 ∈ Rn×n and L0 ∈ Rn×r , add the matrix
U := −[â, b̂, 0 0 0]�0 to the left-hand side of (27), where

â = 2(Pf − Pf 0)(Pf − Pf 0) + CT(L − L0)
T(L − L0)C,

b̂ = DT
f (L − L0)

T(L − L0)Df .

Then (24) follows. Furthermore, when L0 = L and Pf 0 = Pf ,
(24) is equivalent to (27), which is in turn equivalent to (21).
The proof is complete. �

Remark 3. Unlike the H∞ norm control problem, Pf in (21)
is not required to be sign definite. In fact, by Schur complement,
(21) can be rewritten as

Pf (A − LC) + (A − LC)TPf

+ [CTWDf + Pf (Bf − LDf )]R−1

× [CTWDf + Pf (Bf − LDf )]T + CTWC > 0, (28)

where R = �2I − DT
f WDf < 0, which implies [CTWDf

+Pf (Bf −LDf )]R−1[CTWDf +Pf (Bf −LDf )]�0. How-
ever, since CTWC�0, the sum of these two terms is not sign
definite. Hence, the equivalent conditions (21), (22) and (24)
do not ensure a stable observer. Furthermore, even if A−LC is
stable, (21), i.e., (28), may not have a sign definite solution Pf .

5. H− index synthesis problem: infinite frequency case

First, we look at the H− fault detection observer design
problem. A preliminary version of the results in this section
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can be found in Liu, Wang, and Yang (2002). Note that item
3 of Lemma 2 suggests to solve the LMI (22) and verify the
stability of R in (6)–(7). As the H− index measure requires
no stability, and (22) does not always provide a stable solution.
However, the maximum � from (22) does provide an upper
bound for any stable filters.

Therefore, we should consider the stability of a proposed
fault detection observer in the design process, i.e., the existence
of Ps < 0 such that

(A − LC)TPs + Ps(A − LC) > 0. (29)

Note that (29) and (22) are not jointly convex due to the cou-
pling of L with both Ps and Pf . By introducing an additional
constraint Ps = Pf and define Ff as in (23), inequality (29)
becomes

Pf A + ATPf − Ff C − CTF T
f > 0 (30)

which is an LMI in Ff and Pf . Then, (22) and (30) provide a
sufficient condition for the H− index fault detection observer
design problem (i.e., the so-called common LMI solution re-
sult). However, this solution is unsatisfactory because, accord-
ing to Remark 3, the LMI constraints (30) and (22) may not
have any solution even when stable H− index fault detection
observers do exist.

In the following, we will develop a full solution to the syn-
thesis problem without the constraint Ps = Pf . For given ma-
trices Ps0 ∈ Rn×n and L0 ∈ Rn×r , (29) holds if the following
inequality holds[
M̌11 Ps + CTLT

∗ I

]
> 0, (31)

where

M̌11 = ATPs + PsA + Ps0Ps + PsPs0 − Ps0Ps0

+ CTLT
0 LC + CTLTL0C − CTLT

0 L0C. (32)

Furthermore, (29) and (31) are equivalent when L = L0 and
Ps = Ps0. Thus, Lemma 2 and (31) lead to:

Theorem 3. Consider the system � in (1)–(2), a given scalar
� > 0 and a given nonsingular weighting matrix V, and let
W = V TV . There exists a stable H− index fault detection
observer F in (3)–(5) satisfying ‖Trf (s)‖[0,∞)

− > �, if and only
if there exist matrices L, L0, symmetric matrices Pf , Pf 0 and
Ps < 0, Ps0 < 0 such that (24) and (31) hold.

Note that (24) and (31) are LMIs in matrix variables Ps , L
and Pf , if Ps0 < 0, L0 and Pf 0 are fixed and known. There-
fore, once we have initial values of Ps0 < 0, L0 and Pf 0, we
can find optimal values of Ps < 0, L and Pf by maximizing �
with LMI constraints (24) and (31). This provides us an itera-
tive algorithm for the design of optimal stable H− index fault
detection observer.

We still need a starting point Ps0 < 0, L0 and Pf 0 for the
iteration. Note that, by solving (30) for Pf < 0 and Ff , a sta-
bilizing observer gain L = P −1

f Ff is obtained (i.e., A − LC

stable). Furthermore, with the stabilizing L, (21) and (29) are

LMIs in Ps < 0 and Pf which can be solved for Ps < 0 and
Pf , respectively. These values of L, Ps < 0 and Pf provides a
starting point for the algorithm.

Algorithm 1. Given system � in (1)–(2), the weighting matrix
V with W = V TV , and a small constant � > 0,

Step 1a: If � is stable, let L = 0. Otherwise, solve (30) for
Pf < 0 and Ff , to get L = P −1

f Ff . Let L0 = L.
Step 1b: With L from Step 1a, maximize � subject to (21) to

get the optimal solution Pf opt. Let Pf 0 = Pf opt.
Step 1c: With L from Step 1a, solve (29) for a feasible solu-

tion Psfeas of Ps < 0. Let Ps0 = Psfeas < 0.
Step 2: With these values of L0, Ps0 < 0 and Pf 0, maximize

� subject to Ps < 0, (24) and (31) to get Lopt, Psopt, Pf opt, �opt.
Let L0 = Lopt, Ps0 = Psopt and Pf 0 = Pf opt.

Step 3: Repeat Step 2 till |�j−1
opt − �j

opt| < �, j = 2, 3, . . .

or a certain number of iterations is reached, where �j
opt is the

optimal solution of � in the jth iteration.

Remark 4. Steps 1a–1c provide a starting point (L0, Ps0 and
Pf 0) for the iterative algorithm, which is obviously not unique.
Algorithm 1 guarantees the iteration result always be better than
the starting point, or at least the same. So the sequence �j

opt is

a monotonically increasing. If �j
opt is a bounded sequence, then

�j
opt is guaranteed to converge to a finite value. However, if the

sequence �j
opt becomes unbounded, then Algorithm 1 gives a

fault detection observer that is infinitely sensitive to fault. In this
sense, Algorithm 1 can still be considered convergent to provide
a fault detection observer. Note that for different starting points,
the algorithm may converge to different final solutions, and no
global optimum can be claimed of the obtained solution.

It should be highlighted that, unlike H∞ norm filtering,
the stability constraint (31) needs to be added separately in
the design, which renders much complexity. Furthermore, the
approach in Theorem 3 is iterative, and the LMIs in (24) and
(31) need be solved repeatedly at every iteration. However, for
multiobjective problems, we may not need to add in separately
the stability constraint (29), as is the case for the H−/H∞
fault detection observer design problem studied in Section 7.

Finally, it is also noted that (24) is also linear in W. Hence,
in Algorithm 1, we can treat W as an unknown, and solve (24)
for W in Step 2. In order to avoid the trivial solution of W =∞
and singular solutions for W, additional constraints such as
	I < W < 	̄I with 	̄ > 	 > 0 can be added in. Then the optimal
weighting matrix V can be obtained by Vopt = √

Wopt.

6. H− index synthesis problem: finite frequency case

In this section, the H− index synthesis problem over a finite
frequency spectrum is studied, especially for strictly proper
systems, using the additive frequency weighting method of Liu
et al. (2003b, 2005). Consider the system � in (1)–(2) with D
not of full column rank. Without loss of generality, we assume
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Fig. 2. Additive frequency weighting.

in (2) that

Df =
[
Df 1 Df 2

0 0

]
,

where Df 1 is square nonsingular. For systems with such Df

terms, the H− index over [0, ∞) is always zero, regardless of
the choice of L and V in F of (3)–(5). To avoid this problem,
we first add the following small auxiliary direct channel to the
system, as shown in Fig. 2:

Dm =
[

0 0
0 
I

]
with 
 �= 0 and 
 small. (33)

Then a frequency weighting matrix FW(s) is used to raise up
the high-frequency response beyond �̄, so that minimum sin-
gular value of the whole system occurs near the low-frequency
region [0, �̄] under consideration. Specifically, the filter struc-
ture F in (3)–(5) is amended to the following, as shown in
Figure 2:

F′ : ˙̂x(t) = Ax̂(t) + L[y(t) − ŷ(t)], (34)

ŷ(t) = Cx̂(t), (35)

r ′(t) = [y(t) − ŷ(t)], (36)

Rm : rm(t) = r ′(t) + Dmf (t), (37)

FW : ẋh(t) = Ahxh(t) + Bhrm(t), (38)

r̃(t) = Chxh(t) + Dhrm(t), (39)

V : r(t) = V r̃(t). (40)

Here (Ah, Bh, Ch, Dh) is a realization of FW(s), i.e., FW(s)=
Ch[sI − Ah]−1Bh + Dh, which is normally a high-pass filter.
In particular, we choose

FW(s) = diag{F 1
w(s), F 2

w(s), . . . , F r
w(s)}, (41)

where r is the dimension of output signal y(t) (or r(t), or rm(t)).
For example, F i

w(s) can be taken as

F i
w(s) = ais + �̄

s + �̄
, i = 1, 2, . . . , r , (42)

where constants ai > �̄ and �̄ > 0 define the “stop” band
[0, �̄/ai], the “pass” band [�̄, ∞), and the respective gain of
the frequency weighting. Raising (42) to higher powers can
result in better frequency differentiation.

The augmented residual dynamics R̃ is given by

R̃ :
[

ė(t)

ẋh(t)

]
=

[
A − LC 0

BhC Ah

] [
e(t)

xh(t)

]

+
[

Bf − LDf

Bh(Df + Dm)

]
f (t)

+
[
Bw − LDw

BhDw

]
w(t), (43)

r(t) = V [DhC, Ch]
[

e(t)

xh(t)

]
+ V Dh(Df + Dm)f (t) + V DhDww(t). (44)

Denote

A0 =
[

A 0
BhC Ah

]
,

C0 = [DhC, Ch],
D0 = Dh(Df + Dm),

(45)

B0 =
[

Bf

Bh(Df + Dm)

]
,

E0 = [I 0]T,

Ca = [C 0]. (46)

Then, by applying the method of Section 5 to R̃, the following
counter part of Theorem 3 can be obtained.

Theorem 4. Consider the system � in (1)–(2), a given nonsin-
gular square weighting matrix V, and the augmented residual
error system R̃ in (43)–(44). Let W =V TV . For a given scalar
�a > 0, there exists a stable H− index fault detection observer

satisfying ‖Trf (s)‖[0,∞)
− > �a , if and only if there exist matri-

ces L, L0, symmetric matrices Pf , Pf 0 and negative definite
symmetric matrices Ps < 0 and Ps0 < 0 such that (31) and (47)
hold⎡
⎢⎢⎣

N011 Pf B0 + CT
0 WD0 Pf + CT

a LTET
0 Pf

∗ N022 0 DT
f
LTET

0
∗ ∗ I 0
∗ ∗ ∗ I

⎤
⎥⎥⎦ > 0,

(47)

where

N011 = 2Pf 0Pf + 2Pf Pf 0 − 2Pf 0Pf 0 + CT
a LT

0 ET
0 E0LCa

+ CT
a LTET

0 E0L0Ca − CT
a LT

0 ET
0 E0L0Ca

+ Pf A0 + AT
0 Pf + CT

0 WC0,

N22 = DT
0 WD0 − �2

aI + DT
f LT

0 ET
0 E0LDf

+ DT
f LTET

0 E0L0Df − DT
f LT

0 ET
0 E0L0Df .

In actual implementation, only F′ in (34)–(36) is involved,
while Dm and FW are not. The corresponding bound on
‖Tr ′f (s)‖[0,�̄]

− can be obtained as follows. First, according to
Theorem 4, we have

‖Trf (s)‖[0,∞)
− = ‖V FW(s)[Tr ′f (s) + Dm]‖[0,∞)

− > �a (48)

which implies that, for any 0 < �̄ < ∞,

‖Trf (s)‖[0,�̄]
− = ‖V FW(s)[Tr ′f (s) + Dm]‖[0,�̄]

− > �a . (49)
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Note that, for dimension-compatible G(s) and H(s),

‖G(s)H(s)‖[0,�̄]
− �‖G(s)‖[0,�̄]∞ ‖H(s)‖[0,�̄]

− , (50)

‖G(s) + H(s)‖[0,�̄]
− �‖G(s)‖[0,�̄]

− + ‖H(s)‖[0,�̄]∞ , (51)

where ‖·‖[0,�̄]∞ denotes the H∞ norm taken over the frequency
range [0, �̄]. Then, it follows that

‖V FW(s)[Tr ′f (s) + Dm]‖[0,�̄]
−

�‖V FW(s)Tr ′f (s)‖[0,�̄]
− + ‖V FW(s)Dm‖[0,�̄]∞

�‖V FW(j�)‖[0,�̄]∞ [‖Tr ′f (s)‖[0,�̄]
− + ‖Dm‖]. (52)

From (49) and (52) and noting that ‖Dm‖ = 
, we have

‖Tr ′f (s)‖[0,�̄]
− >

�a

sup�∈[0,�̄]�̄[V FW(j�)] − 
, (53)

where �̄[·] denotes the maximum singular value. Or

‖Tr ′f (s)‖[0,�̄]
− >

�a

�̄[V ]sup�∈[0,�̄]�̄[FW(j�)] − 
. (54)

Thus, by replacing (24) with (47) in Algorithm 1 of Section
5 we can optimize the fault detection observer with respect to
lower bound �a of worst-case fault sensitivity in full frequency
spectrum. The bound � (without Dm, FW(s) and V) over the
finite frequency range [0, �̄] is then given by (53) or (54).

7. H−/H∞ fault detection observer design

In this section, we study the mixed H−/H∞ fault detection
observer design, to demonstrate the use of the LMI formulation
for the H− index problem for multiobjective design problems.
In similar ways, the H− index problem can be combined with
other design objectives, such as H2, pole region assignment
(Chilali, Gahinet, & Apkarian, 1999), etc.

By letting Pf = −P in (13) and (22) (which also results in
Ff = −F ), the common LMI solution result is obtained. Note
that the stability of F is implied by (13).

Remark 5. It should be pointed out that the above com-
mon LMI solution result is equivalent to the result given in
Rambeaux et al. (1999), which is derived based on the H−
“norm” over [0, ∞). However, this result is sufficient only,
and is rather conservative because the additional constraint
Pf = −P . This conservativeness can be reduced in the next
theorem by the iterative LMI techniques (Cao, Sum, & Lam,
1999; Liu et al., 2003a).

Theorem 5. Given scalars � > 0, � > 0 and 	 > 0, consider the
system � in (1)–(2), a stable fault detection observer F of the
form (3)–(5) and the associated residual error dynamics R in
(6)–(7). Then, ‖Trw‖∞ < � and ‖Trf ‖[0,∞)

− > � if and only if
there exist matrices L, L0, symmetric matrices Pf ,Pf 0, P > 0,
P0 > 0 and W > 	I such that inequalities (15) and (24) hold.

Note that the bound W > 	I is added in to avoid the trivial
solution of W = 0 (i.e., V = 0). Note further that (15) and

(24) are LMIs for matrix variables Pf , L, P, W and the scalar
variables �2 and �2, if P0, Pf 0 and L0 are fixed and known.
Thus the following iterative algorithm can be used to reduce
the conservativeness in the common LMI solution result.

Algorithm 2. Given system model � as in (1) and (2), and
small constants � > 0 and 	 > 0,

Step 1a: Maximize � subject to P > 0, W > 	I , (13), (22)
with Ff = −F and Pf = −P . Then calculate the optimal filter
gain matrix Lopt using (23). Let L0 = Lopt.

Step 1b: With L=L0, maximize � subject to W > 	I and (21)
to get Pf opt, and minimize T r(P ) subject to P > 0, W > 	I

and (12) to get Popt > 0. Let P0 = Popt and Pf 0 = Pf opt.
Step 2: With L0, P0 and Pf 0, maximize �2 − �2 subject to

P > 0, W > 	I , (15) and (24) to get Lopt, Popt > 0, Pf opt and
�opt. Let L0 = Lopt, P0 = Popt, Pf 0 = Pf opt.

Step 3: Repeat Step 2 till |[�2 − �2]j−1
opt − [�2 − �2]jopt| < �,

j = 2, 3, . . .; or till a certain number of iterations are reached.
Here [�2 − �2]jopt is the optimal solution of �2 − �2 in the jth
iteration.

Theorem 5 and Algorithm 2 provide a complete solution to
the infinite frequency range H−/H∞ fault detection observer
design problem. Similar to Algorithm 1 for the H− fault de-
tection observer design, Algorithm 2 is convergent only locally
and not globally. The algorithm is also affected by initial values
that start the iterations. The finite frequency range H−/H∞
fault detection observer design problem can also be studied in
a similar way as the finite frequency range H− index prob-
lem in Section 6. The results can also be extended to multiple
sensitivity and robustness requirement over multiple finite fre-
quency ranges. The details are omitted.

With the iterative LMI conditions in (15) and (24), the mixed
H−/H∞ fault detection observer problem can also be formu-
lated as, e.g., minimize ‖Trf (s)‖− subject to ‖Trw(s)‖∞ < �,
for some given � > 0.

8. Example

In this section, three design examples are given to illustrate
the proposed algorithms.

Example 1. The first example shows the solution to the infinite
frequency range H− index synthesis problem. Consider an
SISO band-stop system of the form (1)–(2) with Bw=0, Dw=0,
and

A =
⎡
⎢⎣

−2.1210 −0.5624 −0.2651 −0.2500
4.0000 0 0 0

0 1.0000 0 0
0 0 0.2500 0

⎤
⎥⎦ ,

Bf =
⎡
⎢⎣

1
0
0
0

⎤
⎥⎦ ,

C = [−1.4140 − 0.4374 − 0.1768 0], Df = 1.
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Fig. 3. Convergence curve of � in Algorithm 1.

Fig. 4. Convergence curve of �a for Example 2.

Let V = 1. By solving (22), it is found that the largest value
of � is �̄ = 1, but the corresponding fault detection observer
is unstable. Furthermore, (22) with Pf < 0 (i.e., the method of
Rambeaux et al. (1999) is infeasible, and (22) with the stability
condition (30) is also infeasible.

Next, we use Algorithm 1 (Theorem 3), to find a solution.
Note that �̄=1 from (22) is an upper bound on � for any stable
fault detection observer. Hence, Algorithm 1 is guaranteed to
converge to a value of ��1. Following Algorithm 1 with L0=0,
and after 20 iterations, � converges to 1.000 with a resulting
filter gain L = [0.4134 0.0996 0.0135 − 0.0596]T and

Ps =
⎡
⎢⎣

49.2299 5.1789 5.8686 4.3936
5.1789 3.6432 1.1750 3.0087
5.8686 1.1750 1.6639 1.3747
4.3936 3.0087 1.3747 5.5230

⎤
⎥⎦ ,

Pf =
⎡
⎢⎣

−2.5935 −0.7953 −0.3217 0.0031
−0.7953 −0.2984 −0.1980 −0.1620
−0.3217 −0.1980 −0.1486 −0.1992
0.0031 −0.1620 −0.1992 −0.3221

⎤
⎥⎦ .

It is easy to check that Ps is positive definite but Pf is not.
Therefore, we found a stable optimal fault detection observer
with the same fault sensitivity as �̄=1. The convergence curve
of � is shown in Fig. 3.

Example 2. The second example shows the solution to the
finite frequency range H− index synthesis problem. Consider
the H− index in the frequency range [0, 1] of the following

system with V = 1.

�: ẋ(t) =
[−0.5 0.8 −2

−1.8 −1.1 0.3
1.3 −1.60 −0.8

]
x(t) +

[0.2
0

1.3

]
f (t), (55)

y(t) = [0.3 1.5 1.1]x(t). (56)

Since D = 0 in (56), we know that the system has a zero H−
index. Choose 
=Dm =0.01 in (33) and FW(s)= ((10.258s +
20)/(s + 20))3 in (41)–(42). Then, using Algorithm 1 with
(24) being replaced by (47) and after 600 iterations, the highest
values of � is �a = 3.1654, and the corresponding filter gain
matrix is L=[0.2232 −1.2702 −0.4634]T. The convergence
curve of �a is shown in Fig. 4.

The H− index bound � over [0, 1] can be calculated using
(53), i.e., � = 3.1654

1.414 − 0.01 = 2.2283. It is easy to verify that

the actual value of ‖Trf (s)‖[0,1]
− is 2.2651. The discrepancy

between the designed bound 2.2283 and the actual value 2.2651
is due to three factors. (a) The gap between �a = 3.1654 and
the true value of ‖Trf (s)‖[0,∞)

− = 3.1662, due to the iterative
Algorithm 1. This gap is found to be quite small (0.0008) in this
case. (b) The frequency weighting FW(s) that provides lifting
outside the frequency range [0, 1]. For this particular example,
�a is achieved at �r =1.08 rad/s, while sup�∈[0,�̄]�̄[FW(j�)]=
1.4142 (3 dB) is achieved at �W = �̄ = 1. As �r ≈ �W , the
conservativeness introduced by this second factor is also very
limited. Lastly, since 
 is chosen as 0.01, its effect is also very
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small. Hence, the overall conservativeness of the design is only
‖Trf (s) − �‖[0,1]

− = 0.0368 (1.6%).

Example 3. The third example shows the solution to the infi-
nite frequency range H−/H∞ synthesis problem. Considered
the MIMO system described by (1) and (2) with A as in Exam-
ple 1, and

Bf =
⎡
⎢⎣

1 0
0 1
0 1
0 1

⎤
⎥⎦ , C =

[−1.4140 −0.4374 −0.1768 0
0 0 0 1

]
,

Bw =
⎡
⎢⎣

0.02 −0.02 0
0.02 0.1 0
0.02 −0.02 0
0.02 0.1 0

⎤
⎥⎦ , Df =

[2 0
0 2

]
, Dw =

[
0 0
1 0
0 1

]T

.

Four methods are used to design H−/H∞ filters: (a) the com-
mon LMI solution method of Rambeaux et al. (1999), (b) the
H∞ fault identification observer method of Nobrega et al.
(2000), (c) the inner–outer factorization method of Ding, Jeinsh
et al. (2000), and (d) the iterative LMI method of Theorem 5
(Algorithm 2). Methods (a)–(c) are included for comparison
purpose.

First, the common LMI approach Rambeaux et al. (1999),
yields no solution. The H∞ method of Nobrega et al. (2000)
yields the following observer gain:

LNobrega =
[

0.2665 −0.6415 0.1534 0.2362
−0.0505 −0.1268 0.7282 0.6441

]T

.

By solving the ARE (32) in Ding, Jeinsh et al. (2000), i.e.,

ÃTY + Y Ã − YCTQ−1CY + Bw(I − DT
wQ−1Dw)BT

w = 0,

where Ã=(A−BwDT
wQ−1C)T and Q=DwDT

w, the following
observer gain L and weighting V are obtained

LDing = (BwDT
w + YCT)Q−1

=
[−0.0201 0.0981 −0.0202 0.1016
−0.0001 −0.0034 0.0000 0.0089

]T

,

VDing = Q−1/2 = diag[1, 1].
Finally, for Theo 5 (Alg 2), we choose 	 = 1 so that W > I .
We also choose L0 = 0 as the starting condition for the itera-
tion. After 100 iterations, an H∞/H− observer with W = I

(hence VTheo 5 = VDing = I ) and the following observer gain L
is obtained:

LTheo 5 =
[−0.0209 0.0916 −0.0161 0.1036
−0.0045 0.0227 −0.0406 0.0520

]T

.

Since VTheo 5 = VDing, a meaningful comparison can be made
between the design result of Ding’s and that of Theorem 5.

The performance values for these four approaches are listed
in Table 1. It can be seen that, the result by our approach
actually converges to the optimal values of Ding, Jeinsh et al.
(2000), and both of which give better performance than

Table 1
Performance comparison for MIMO Example 3

Method � � �2 − �2

Nobrega et al. (2000): H∞ 1.2279 0.3299 1.3989
Ding, Jeinsh et al. (2000): H−/H∞ 1.0000 0.3154 0.9005
Theo 5 (Alg 2): H−/H∞ 1.0000 0.3153 0.9006

Nobrega et al. (2000). Finally, it should be pointed out the it-
erative LMI method of Theo 5 requires more computational
power. The computation time for the three methods are, re-
spectively, Rambeaux: 0.34 s, Nobrega: 0.340 s, Ding: 0.281 s,
Theo 5: 102.005 s.

9. Conclusion

In this paper, we have investigated the problem of H− in-
dex and multiobjective H−/H∞ fault detection observer de-
sign problems. Necessary and sufficient conditions for the ex-
istence of such a fault detection observer are given in terms of
matrix inequalities. The design methods for both infinite and
finite frequency range H− index and H−/H∞ fault detec-
tion observers are presented. Iterative linear matrix inequality
(ILMI) algorithms are given to obtain the solutions, and the ef-
fectiveness of the proposed approaches is shown by numerical
examples.

Finally, it should be pointed out that the frequency weight-
ing methods proposed in this paper provides only an indirect
approach to the H− index and H−/H∞ fault detection ob-
server problems for strictly proper systems. The development
of a more direct approach (without the facilitating design pa-
rameters FW(s) and 
) is more desirable and is a topic of further
research.
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