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Exact and approximate construction of offset polygonsI
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Abstract

The Minkowski sum of two sets A, B ∈ R2, denoted A ⊕ B, is defined as {a + b | a ∈ A, b ∈ B}. We describe an efficient and robust
implementation of the construction of the Minkowski sum of a polygon in R2 with a disc, an operation known as offsetting the polygon. Our
software package includes a procedure for computing the exact offset of a straight-edge polygon, based on the arrangement of conic arcs
computed using exact algebraic number-types. We also present a conservative approximation algorithm for offset computation that uses only
rational arithmetic and decreases the running times by an order of magnitude in some cases, while having a guarantee on the quality of the result.
The package will be included in the next public release of the Computational Geometry Algorithms Library, CGAL Version 3.3. It also integrates
well with other CGAL packages; in particular, it is possible to perform regularized Boolean set-operations on the polygons the offset procedures
generate.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Given two sets A, B ∈ R2, their Minkowski sum, denoted by
A ⊕ B, is the set {a + b | a ∈ A, b ∈ B}. Planar Minkowski
sums are used in many applications, such as motion planning
and computer-aided design and manufacturing. In this paper
we focus on one important variant of the planar Minkowski-
sum computation problem: computing the Minkowski sum of
a simple polygon with a disc. This operation is also known as
offsetting a polygon.

While the process of computing an offset polygon is quite
easy and straightforward to describe, giving a robust software
implementation for this process is a non-trivial task. The
offsetting process can be divided into three steps:

1. Computing the convolution of the polygon and the disc,
which is a closed curve comprising straight-line segments
and circular arcs.

2. Constructing the arrangement of the convolution compo-
nents, namely the planar subdivision they induce into 2-
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dimensional, 1-dimensional and 0-dimensional cells (faces,
edges and vertices, respectively).

3. Deducing the shape of the offset polygon from the
arrangement computed in the previous step. This is done by
determining which arrangement faces are contained in the
offset polygon.

The main difficulty lies in the second step. In the presence of
degeneracies (e.g., three or more arcs that intersect at a common
point, an intersection point that coincides with an arc endpoint,
etc.) – or even in nearly degenerate situations – the arrangement
construction is prone to numeric instabilities and cannot be
accomplished using machine-precision arithmetic. On the other
hand, computing the arrangement using exact arithmetic is a
computationally demanding operation, as it requires handling
algebraic numbers of degree up to 4 in a precise manner.

In this paper we present a software package that includes
the implementations of two algorithms for computing offset
polygons. The first uses an exact construction, and relies on
the exact number-types provided by external libraries, such as
CORE or LEDA (see below). The second algorithm provides a
conservative approximation scheme for the offset polygon. Its
main advantage is that it uses only exact rational arithmetic,
thus it is typically much faster than the exact construction.
Moreover, as it is often required to apply set-operations (e.g.
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2 Recall that the machine-precision float or double types have bounded
mantissas, so if the input coordinates are given as floating-point numbers, we
union or intersection) on the resulting offset polygons, using
the approximated offsets can lead to yet a larger benefit. The
algorithms presented in this paper are part of the Minkowski-
sum package, which will be included in the next public
release of CGAL (Version 3.3), and integrate well with other
CGAL packages.

1.1. Related work: exact computation of Minkowski sums

The simplest variant of the Minkowski-sum computation
problem involves two planar polygons. If P and Q are simple
planar polygons having m and n vertices respectively, then
P ⊕ Q is a subset of the arrangement (see, e.g., [8]) of O(mn)

line segments, where each segment is the Minkowski sum of an
edge of P with a vertex of Q, or vice versa. The size of the sum
is therefore bounded by O(m2n2), and this bound is tight [14].
However, if both P and Q are convex, then P ⊕ Q is a convex
polygon with m + n vertices at most, and can be computed in
O(m + n) time (see, e.g., [3, Chapter 13]). If only P is convex,
the Minkowski sum of P and Q is bounded by O(mn) [15],
and this bound is tight as well.

In a survey paper on Minkowski-sum computation, which
dates back less than a decade ago, Lee et al. [16] mention that
“in spite of the paramount importance of the Minkowski sum
operation in practice, . . . there has been no known implemented
algorithm that can determine the curve arrangement in a
robust way”. Indeed, robustness in geometric computation is a
fundamental, difficult and well-known problem arising from the
special nature of geometric algorithms; see, e.g., [10,11,25]. In
the classic computational-geometry literature two assumptions
are usually made to simplify the design and analysis of
geometric algorithms. First, inputs are in “general position”
— that is, degenerate input (e.g., three curves intersecting at
a common point) is precluded. Secondly, operations on real
numbers yield accurate results (the “real RAM” model [20],
which also assumes that each basic operation takes constant
time). Unfortunately, these assumptions do not hold in practice,
making the implementation of robust geometric algorithms
such a difficult task.

CGAL, the Computational Geometry Algorithms Library,1 is
the product of a collaborative effort of several sites in Europe
and Israel, aiming to provide a generic and robust, yet efficient,
implementation of widely used geometric data structures and
algorithms. The arrangement package of CGAL [23] adopts, as
does CGAL in general, the exact computation paradigm [26].
Namely, it requires that all geometric operations are carried
out in a precise manner, so it can correctly detect degenerate
situations and handle them properly. Furthermore, it makes
no general-position assumptions on its input. The arrangement
package of CGAL thus provides the required foundations for
the implementation of the basic Minkowski-sum operations.
We also mention the 2D Boolean set-operation package [5],
another important CGAL package whose implementation is
based on the arrangement infrastructure, which supports the
1 See the CGAL project homepage, at http://www.cgal.org/.
application of regularized Boolean set-operations on general
polygons, namely polygons whose edges are given as general
planar curves.

As mentioned above, computing the Minkowski sum of two
convex polygons can be performed in linear time in the total
number of their edges using a simple procedure that is easily
implemented in software. The prevailing method for computing
the sum of two non-convex polygons P and Q, is therefore
based on convex decomposition: we decompose P into convex
sub-polygons P1, . . . , Pk , and Q into convex sub-polygons
Q1, . . . , Q`, obtain the Minkowski sum of each pair of sub-
polygons, and compute the union of the k` pairwise sub-sums.
Namely, we calculate P ⊕ Q =

⋃
i, j (Pi ⊕ Q j ). We note that if

both polygons are given by sequences of vertices with rational
coordinates,2 then all calculations and geometric operations can
be carried out using rational arithmetic.

Flato [4] (see also [1]) developed an exact and robust
implementation of the decomposition method for computing
the Minkowski sum of two simple polygons. He implemented
about a dozen different polygon-decomposition strategies and
several methods for the union computation, and conducted
thorough experiments to determine the optimal decomposition
and union strategies. Flato’s code is based on CGAL Version
2.0, and employs exact rational arithmetic to guarantee
robustness and produce exact results even on degenerate
inputs. This was the first implementation capable of handling
degenerate inputs, and the only one that correctly identifies low-
dimensional elements of the Minkowski sum, such as antennas
or isolated vertices.

The LEDA library [18] also contains functions for
robust Minkowski-sum computation of two polygons based
on convex polygon decomposition that use exact rational
arithmetic.3 However, these functions are limited to performing
regularized Minkowski-sum computations, which eliminate
low-dimensional features of the output.

Another approach to computing the Minkowski sum of two
polygons is to calculate the convolution of the boundaries
of P and Q [6,7]. Our software package contains functions
for computing Minkowski sums of two polygons, employing
either the decomposition method or the convolution method,
using exact rational arithmetic. To the best of our knowledge,
this is the first implementation of software for robust and
exact computation of Minkowski sums that is based on the
convolution method. As our experiments show [22], using
the convolution method we construct intermediate geometric
entities that are more compact than the ones constructed using
the decomposition method. Subsequently, we obtain better
runtime performance.

While the Minkowski sum of two polygons can be
combinatorially complex, the complexity of the Minkowski
sum of a polygon with n vertices with a disc is always
can easily convert them into rational numbers.
3 For more details and detailed online documentation, see:

http://www.algorithmic-solutions.info/leda guide/geo algs/minkowski.html.
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O(n). However, the difficulty in offsetting a polygon in a
robust manner is numerical and not combinatorial. Let us
assume that all polygons we handle are rational — namely,
all the polygon vertices have rational coordinates. In this
paper we assume that a rational number is represented using
two unbounded integers (its numerator and denominator),
so the basic arithmetic operations on rational numbers (+,
−, × and ÷) can be carried out without any loss of
precision. As mentioned above, the Minkowski sums of two
such polygons is also a rational polygon, and we need
only exact rational arithmetic to compute it in a precise
manner. In contrast, rational arithmetic is insufficient for
offsetting a rational polygon by a rational radius. The resulting
offset polygon comprises line segments and circular arcs,
and the coordinates of its vertices are typically algebraic
numbers of degree up to four.4 While implementing an
exact rational number-type is not difficult for an experienced
programmer, and there are also several implementations that
are publicly available (e.g., GMP, the Gnu Multi-Precision
library5), handling algebraic numbers in a precise manner
is an extremely difficult, and a highly time-consuming task.
The CORE library6 [12] and the numerical facilities of
LEDA7 [18, Chapter 4]) provide certified computations with
algebraic numbers, but using the algebraic number-types
they provide may be too time consuming for industrial
applications.

Alongside an implementation of a robust algorithm that
computes the offset of a rational polygon in an exact manner,
we present a simple yet powerful approximation algorithm for
offsetting a simple polygon, which overcomes the algebraic
difficulties by using only exact rational arithmetic. Our
algorithm is conservative, namely if Pr = P ⊕ Br is the
exact Minkowski sum of a polygon P with a disc Br of radius
r , we compute a generalized polygon P̃r , bounded by line
segments and circular arcs with rational coefficients, such that
Pr ⊆ P̃r . We can also control the approximation error and make
it arbitrarily small.

1.2. Paper outline

The rest of this paper is organized as follows. In Section 2
we explain the algebraic difficulties that the exact construction
of the offset polygon poses, and present our approximation
scheme that offsets a polygon using only rational arithmetic in
Section 3. We also prove an upper bound on the approximation
error. The experimental results we bring in Section 4 show
the considerable speedup our approximation algorithm achieves
over the exact construction. We finally give some concluding
remarks in Section 5.
4 A real number α ∈ R is called algebraic of degree d if there exists a
polynomial of degree d with integer coefficients such that α is a root of this
polynomial, and α is not a root of any integer polynomial with smaller degree.

5 http://www.swox.com/gmp/.
6 http://www.cs.nyu.edu/exact/core/.
7 http://www.algorithmic-solutions.com/enleda.htm.
2. The exact offsetting procedure

Offsetting is a fundamental task in CAD/CAM. The main
body of the CAD literature on this subject concentrates on
computing offsets of curves and surfaces (see, e.g., [13,16,17]
and the references therein). In the general case, the offset curves
of rational planar curves are not rational, so it is possible to
compute them only using approximate techniques. As we focus
in this paper on the special case of offsetting a polygon, we are
able to provide exact construction of the offset, or alternatively
an approximate construction with guaranteed quality.

At first glance offsetting may seem an easier task compared
to computing the Minkowski sum of two polygons. However,
when we aim for a robust implementation, offsetting efficiently
is much more computationally demanding. Let us assume that
we are given a polygon P with n vertices (p0, . . . , pn−1)

that are ordered counterclockwise around P’s interior. All
vertices have rational coordinates. We wish to compute the
offset polygon Pr , namely the Minkowski sum of P with a disc
of radius r , where r is rational. We show that even this relatively
simple task involves exact computation with algebraic numbers,
if we wish our computations to be exact.

We use the arrangement package of CGAL [23] for comput-
ing the offset of a polygon. The arrangement package provides
one central class-template named Arrangement 2<Traits>
that is parameterized by a geometric traits-class. This traits-
class defines the type of curves it can handle and provides a
set of geometric predicates and constructions involving these
curves. Using these operations, the Arrangement 2 class can
construct and maintain an arrangement of curves of the type de-
fined by the traits class. For example, when computing the sum
of two polygons we need to construct arrangements of line seg-
ments, which is quite straightforward to implement using ex-
act rational arithmetic, based on the basic geometric operations
provided by the geometric kernels of CGAL [9]. When we offset
a polygon we need to handle more complex geometric curves.
In this section we explain how to construct the exact offset of a
polygon using arcs of conic curves, and in the next section we
introduce our approximation scheme that enables working with
simpler curves.

If P is a convex polygon, the offset is easily computed
by shifting each polygon edge by r away from the polygon,
namely to the right side of the edge (we regard each edge
of the polygon as directed from pi to pi+1). As a result we
obtain a collection of n disconnected offset edges. Each pair
of adjacent offset edges, induced by pi−1 pi and pi pi+1,8 are
connected by a circular arc of radius r , whose supporting circle
is centered at pi . The angle that defines such a circular arc
equals π − ](pi−1, pi , pi+1); see Fig. 1(a) for an illustration.
Naturally, the running time of this simple process is linear in
the size of the polygon.

If P is not convex, its offset can be obtained by decomposing
it into convex sub-polygons P1, . . . , Pm such that

⋃m
i=1 Pi =

P , computing the offset of each sub-polygon and finally
8 In this paper, when we increment or decrement an index of a polygon
vertex, we always do it modulo the size of the polygon n.

http://www.swox.com/gmp/
http://www.cs.nyu.edu/exact/core/
http://www.algorithmic-solutions.com/enleda.htm
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Fig. 1. (a) Offsetting a convex polygon. (b) Computing the offset of a non-convex polygon by decomposing it into convex sub-polygons by adding the dashed
diagonal; p̂ is a reflex vertex. The boundary curves of the two sub-offsets induce an arrangement with four faces, whose cover numbers are shown in brackets. (c)
Offsetting a non-convex polygon by computing its convolution with a disc. The convolution cycle induces an arrangement with three faces, whose winding numbers
are shown in brackets.
calculating the union of these sub-offsets (see Fig. 1(b)).
Flato [4, Appendix A] describes a simple algorithm for
computing the union of a set of polygons from the arrangement
of the curves that constitute their boundaries. This is done by
computing the cover number N ( f ) for each arrangement face
f , namely the number of polygons that cover this face. This
procedure is linear in the size of the arrangement and involves
only combinatorial operations (and no geometric operations,
which are usually more computationally expensive). Naturally,
the Minkowski sum is the union of all faces with a positive
cover number.

However, as the experiments in [22] show, it is more efficient
to compute Minkowski sums using the convolution method.
In our case, the convolution of the polygon with a disc is a
single cycle comprising line segments and circular arcs. The
sub-segments of the convolution cycle can be constructed by
applying the process described in the previous paragraphs. The
only difference is that a circular arc induced by a reflex vertex
pi is defined by an angle 3π − ](pi−1, pi , pi+1); see Fig. 1(c)
for an illustration. Once we obtain the convolution cycle, we
construct the arrangement of the line segments and circular
arcs that constitute this cycle. It is now possible to associate
a non-negative number with each face f in the arrangement,
which counts the number of times the convolution curve winds
in a counterclockwise direction around f , minus the number of
times it winds in a clockwise direction around this face. This
number is called the winding number of f and we denote it
W ( f ) (see, e.g., [19, Chapter 7] for the topological definition
of the winding number and some examples). As explained
in [22], computing the winding number in the arrangement of
the convolution segments is done in the same way the cover
numbers are computed in an arrangement of boundary curves
(see above). We finally report on the union of all faces with
W ( f ) > 0.

Note that the number of arcs in the convolution cycle of
a non-convex polygon P and a disc is always smaller than
the number of arcs that constitute the boundary of the sub-
offsets (namely, the offset polygon of the convex sub-polygons)
when using the convex decomposition method. As a result,
the arrangement we compute as an intermediate structure is
less complex and can be constructed faster. From now on we
therefore concentrate on the implementation of the convolution
method alone.

2.1. Exact representation of the offset edges

We now focus on the algebraic representation of the line
segments and circular arcs that form the convolution cycle. We
first note the all circular arcs are clearly supported by rational
circles, as their center points (the polygon vertices) always have
rational coordinates and their radii equal r ∈ Q. Nevertheless,
as we show next, the coordinates of the vertices of the offset of a
rational polygon by a rational radius r are in general irrational.

Let us examine how the offset edges look like. We consider
the polygon edge Ep1 p2 to be directed from p1 = (x1, y1) to
p2 = (x2, y2), and denote by θ the angle it forms with the x
axis. Let ` =

√
(x2 − x1)2 + (y2 − y1)2 be the edge length, so

we have cos θ = 1
`
(x2 − x1) and sin θ = 1

`
(y2 − y1). As we

traverse the polygon edges in a counterclockwise orientation,
we construct the offset edge v1v2 that corresponds to p1 p2 by
shifting either polygon vertex by a vector whose length is r and
which forms an angle of φ = θ − π

2 with the x-axis. It is easy
to see that:

sin φ = sin θ · cos
π

2
− cos θ · sin

π

2
= − cos θ =

1
`
(x1 − x2),

(1)

cos φ = cos θ · cos
π

2
+ sin θ · sin

π

2
= sin θ =

1
`
(y2 − y1).

(2)

Thus, v j = (x j +
r
`
(y2 − y1), y j +

r
`
(x1 − x2)) for j =

1, 2. Indeed, the coordinates of these points are solutions
of quadratic equations with rational coefficients (algebraic
numbers of degree two), but the segment v1v2 is supported by
a line with irrational coefficients: it is easy to show that if the
supporting line of p1 p2 is ax+by+c = 0 (where a, b, c ∈ Q),
then the line supporting p1 p2 is ax + by + (c + `r) = 0,
where ` is usually an irrational number. The intersection
points between two segments representing offset edges (see
for example the point v in Fig. 1(b) and (c)), or between an
offset edge and a circular arc that represents an offset vertex, are
algebraic numbers of degree four, namely roots of polynomials
with integer coefficients of degree 4.
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A simpler representation of the offset edges is based on the
fact that the locus of all points lying at distance r from the line
ax + by + c = 0 is given by:

(ax + by + c)2

a2 + b2 = r2. (3)

Eq. (3) above specifies a degenerate conic curve (a pair of
parallel lines) with rational coefficients, hence offset edges
can be represented as bounded arcs of rational conic curves.
Note that the circular arcs of the offset are also special
cases of conic arcs. Indeed, the arrangement package of
CGAL contains a traits-class that handles conic arcs with
rational coefficients [21]. This class uses the exact number-
types implemented in the CORE library (see Section 1) to
carry out the necessary geometric operations in a precise
manner. Offset polygons can therefore be constructed in an
exact manner using the conic-traits class.

3. Approximating the offset polygon

Although our software package is capable of constructing
the exact representation of offset polygons, as explained in
the previous section, the computational overhead incurred by
the exact computation with algebraic numbers makes this
process relatively slow (see more in Section 4), while for many
practical applications it is sufficient to obtain a conservative
approximation of the offset polygon with some bounded error,
rather than computing the exact representation.

In this section we introduce one-root numbers and explain
how they can be used to robustly construct arrangements of
segments of rational lines and arcs of rational circles using only
exact rational arithmetic. Then we introduce our approximation
algorithm that uses these algebraic foundations and constructs
a tight superset of the offset polygon using only rational
arithmetic.

3.1. One-root numbers and the circle/segment traits-class

Given α, β, γ ∈ Q with γ > 0, the real number α + β
√

γ

is called a one-root number. The term “one-root number” was
given by Berberich et al. [2]. In their work, they used the
fact that one-root numbers can be handled by LEDA rather
efficiently; this gives them the ability to compare two such
numbers in an exact manner. In our context, one-root numbers
play an important role, since the solution of any quadratic
equation with rational coefficients (namely ax2

+ bx + c = 0,
where a, b, c ∈ Q) is a one-root number, as it equals −b

2a ±
1

2a

√
b2 − 4ac.

Observe that if x = α + β
√

γ is a one-root number and
q ∈ Q, then x ± q , x · q and x

q are obviously one-root

numbers. In addition, q
x =

q
α+β
√

γ
=

q·(α−β
√

γ )

α2−β2γ
and x2

=

(α + β
√

γ )2
= (α2

+ β2γ ) + 2αβ
√

γ are also one-root
numbers. The important property of one-root numbers is that
the operations of evaluating the sign of a one-root number and
comparing two one-root numbers can be carried out precisely
using only exact rational arithmetic; see Appendix A.1 for the
proofs.
The arrangement package of CGAL contains the circle/
segment traits-class that handles curves that are either:

• Arcs of rational circles, namely circles of the form (x −
x0)

2
+ (y − y0)

2
= R, where the circle center (x0, y0)

has rational coordinates and the squared radius R is also
rational. Note that the radius itself may not be rational.
A general circular arc is given by its supporting circle,
two endpoints s and t that satisfy the equation of the
circle (these endpoints may be rational, or have one-root
coordinates), and the orientation of the arc between the
endpoints (clockwise or counterclockwise).
• Segments of rational lines, namely lines whose equation

is ax + by + c = 0, where a, b and c are rational. The
segment is given by its supporting line and its two endpoints
s and t , whose coordinates can either be rational or one-root
numbers.

Note that the coordinates of the intersection points of two
rational circles, or of a rational circle and a rational line, are
one-root numbers, as they are the roots of quadratic equations
with rational coefficients. Therefore, when we split a circular
arc at its intersection point with another arc or with a line
segment, the two resulting arcs are representable by the curve
type defined by the traits class.

Using the properties of one-root numbers it is possible to ro-
bustly implement all the geometric predicates and constructions
needed for the arrangement construction and maintenance using
only exact rational arithmetic; see Appendix A.2 for the fine
technical details. This fact makes the circle/segment traits-class
about an order of magnitude faster than the conic-traits class
(recall that circular arcs and line segments are special cases of
rational conic arcs); see [24] for experimental results. Unfortu-
nately, as we showed in the previous section, offset edges can-
not be realized as segments of lines with rational coefficients,
hence they are not representable by the circle/segment traits-
class. We next describe how we overcome this difficulty.

3.2. The approximation scheme

We next describe our approximation algorithm that avoids
using expensive computations with algebraic numbers. First,
we note that in case of a horizontal edge (where y1 = y2)
or a vertical edge (where x1 = x2) its length ` is a rational
number. In these cases we can construct the offset edge v1v2 in
an exact manner, so in the following we assume that x1 6= x2
and y1 6= y2.

We approximate the offset edge by two line segments with
rational coefficients, as shown in Fig. 2: in a manner we
describe next, we find two points v′1 and v′2 with rational
coefficients, such that v′j lies on the circle (x − x j )

2
+ (y −

y j )
2
= r2 (for j = 1, 2). Moreover, v′1 and v′2 are selected such

that the angle φ′1 that Ep1v
′

1 forms with the x-axis is slightly
smaller than φ, and we let 1φ1 = φ − φ′1, and the angle

φ′2 that Ep2v
′

2 forms with the x-axis is slightly larger than φ,
and we denote 1φ2 = φ′2 − φ (recall that φ is the angle that
the normal to the polygon edge Ep1 p2 forms with the x-axis).
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9 See, e.g., http://mathworld.w
Fig. 2. Approximating the offset edge induced by the polygon edge p1 p2.
Observe that the lines tangent to the two circles at v′1 and v′2
have rational coefficients, so their intersection point w′ also has
rational coordinates. We use the two line segments v′1w

′ and
w′v′2 to approximate the offset edge v1v2.

We now explain how to compute the rational points v′1
and v′2 with the properties mentioned above. Note that if
τ = tan φ

2 were a rational number, then sin φ = 2τ

1+τ 2 and

cos φ = 1−τ 2

1+τ 2 would be rational as well, and v1 and v2 would
both have rational coordinates. We therefore aim for a rational
approximation of τ . Using the half-angle formulae9 we can
write:

τ = tan
φ

2
=

1− cos φ

sin φ
=

1− 1
`
(y2 − y1)

1
`
(x1 − x2)

=
`+ (y1 − y2)

x1 − x2
,

(4)

τ = tan
φ

2
=

sin φ

1+ cos φ
=

1
`
(x1 − x2)

1+ 1
`
(y2 − y1)

=
x1 − x2

`+ (y2 − y1)
.

(5)

As ` > |y2 − y1|, the sign of τ is determined by sign(x1 − x2).
If x1 > x2 (as is the case in the example depicted in Fig. 2), we
have π

2 < θ < 3π
2 , hence 0 < φ < π and τ > 0. Let ` ∈ Q be a

rational approximation of ` from below (that is, 0 < `− ` < η

for some small η > 0). We now define the angles φ′1 and φ′2,
based on Eqs. (4) and (5), respectively:

τ ′1 = tan
φ′1

2
=

`+ (y1 − y2)

x1 − x2
<

`+ (y1 − y2)

x1 − x2
= τ, (6)

τ ′2 = tan
φ′2

2
=

x1 − x2

`+ (y2 − y1)
>

x1 − x2

`+ (y2 − y1)
= τ. (7)

It is clear that φ′1 < φ < φ′2. The two tangency points of the
approximating segments are therefore given by:

v′j =

(
x j +

1− τ ′j
2

1+ τ ′j
2 · r, y j +

2τ ′j

1+ τ ′j
2 · r

)
( j = 1, 2).

In case x1 < x2 we have τ < 0. In this case we compute
a rational approximation of ` from above, denoted ¯̀ (thus
0 < ¯̀ − ` < η for some small η > 0), and define τ ′1 < τ

and τ ′2 > τ in an analogous manner to the definitions in Eqs.
(6) and (7).
olfram.com/Half-AngleFormulas.html.
Obtaining a rational approximation for ` is easy. Recall that
`2
= (x2 − x1)

2
+ (y2 − y1)

2 is a rational number; for any
rational l0 > 0, the recursively defined series li+1 =

1
2 (li + `2

li
)

converges to `. If we need to approximate ` from below, we
simply look for the minimal index k such that 0 < `2

− l2
k < δ,

or such that 0 < `2
− ( `2

lk
)2 < δ; we take ` ←− lk in the

former case and ` ←− `2

lk
in the latter case. Computing an

approximation from above is symmetric. Observe that if we fix
a rational δ > 0 value, all calculations are carried out using
rational arithmetic.

3.3. The approximation bound

We next show how tight should the approximation of the
edge length ` be, in order to guarantee that the polyline v′1w

′v′2
we use for approximating the offset edge does not lie too far
from the exact offset v1v2.

Theorem 1. For any polygon edge connecting p1 = (x1, y1)

and p2 = (x2, y2), where x1 6= x2 and y1 6= y2, and any
given ε > 0, let ˆ̀ be a rational approximation of the edge
length ` = ‖v2 − v1‖ such that |`2

− ˆ̀
2
| < `|

`+(y1−y2)
2(x1−x2)

| · ε. If
we compute a polyline approximation v′1w

′v′2 of the offset edge
as described above, then the distance of the point w′ from the
supporting line of the true offset edge v1v2 is upper bounded
by ε.

Proof. Let us assume that x1 > x2 and that ˆ̀ is an
approximation of the edge length from below, so that we have
`2
− ˆ̀

2 < δ for some δ > 0 (the proof for x1 < x2 is
symmetric). Note that:

`2
− ˆ̀

2
= (`+ ˆ̀)(`− ˆ̀) < 2 ˆ̀(`− ˆ̀),

so `− ˆ̀ < δ

2 ˆ̀
. We now use the fact that tan(α−β) =

tan α−tan β
1+tan α tan β

and using Eqs. (4) and (6) we obtain:

tan
(

φ − φ′1

2

)
=

τ − τ ′1

1+ ττ ′1
=

`+(y1−y2)
x1−x2

−
ˆ̀+(y1−y2)

x1−x2

1+ `+(y1−y2)
x1−x2

·
ˆ̀+(y1−y2)

x1−x2

=
(x1 − x2)(`− ˆ̀)

(x1 − x2)2 + ` ˆ̀ + (`+ ˆ̀)(y1 − y2)+ (y1 − y2)2

<
(x1 − x2)

δ

2 ˆ̀

`2 + ` ˆ̀ + (`+ ˆ̀)(y1 − y2)
<

x1 − x2

4 ˆ̀2( ˆ̀ + (y1 − y2))
· δ.

http://mathworld.wolfram.com/Half-AngleFormulas.html
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Table 1
The running times (measured in milliseconds) of exact and approximate offset computations

Input polygon Size Bounding box Offset radius (r ) Running times
Exact offset Approx. offset

(ε = 10−7r ) (ε = 10−10r )

Wheel 40 (14) 108
× 108 5 · 106 88 35 54

Spiked 64 (40) 600 × 510 5 1378 60 71
Random 40 (19) 775 × 788 15 95 56 68
Comb 53 (24) 1250 × 200 25 138 45 50
Chain 82 (37) 1.2 · 108

× 4 · 107 2 · 106 1210 109 134
Country 50 (24) 1.7 · 106

× 4 · 106 105 451 66 82

The Size column lists the number of polygon vertices and the number of reflex vertices (in parentheses).

Fig. 3. Selected polygons used in the polygon-offset benchmarks: (a) wheel, (b) spiked, (c) random, (d) comb, (e) chain. The offset boundary is drawn in a thick
black line.
The approximated angle φ′1 is always very close to φ, namely
1φ1 = φ − φ′1 is small, and we can safely bound tan(1φ1) by

4 · tan(
φ−φ′1

2 ). Note that 1φ1 = ](v1, p1, v
′

1) is equal to the
angle between the supporting lines of v1v2 and v′1w

′ (see Fig. 2
for an illustration), so as 1 < `

ˆ̀
� 2, the distance of w′ from

v1v2 is upper bounded by:

` tan(1φ1) <
·(x1 − x2)

ˆ̀2( ˆ̀ + (y1 − y2))
· δ` <

2(x1 − x2)

ˆ̀( ˆ̀ + (y1 − y2))
· δ.

We conclude that if δ < `|
`+(y1−y2)
2(x1−x2)

| · ε, then this distance is
smaller than ε. �

An important property of our approximation algorithm is
that it is conservative. That is, given a polygon P and an offset
radius r it always computes a super-set P̃r of the exact offset
polygon Pr . This property is crucial for many applications.
For example, if we use our algorithm to approximate the
forbidden configuration space of a round tool-tip moving
amidst polygonal obstacles, we will never have “false positives”
— namely, we will never declare a location of the tool center
as collision-free when in fact it collides with an obstacles. We
can have “false negatives”, namely regarding a collision-free
location as forbidden, but these errors are usually not crucial
to the successful performance of the algorithm. Moreover, the
probability of having “false negatives” can be made arbitrarily
small by selecting a small enough approximation error ε, as
proved above in Theorem 1.

In other applications, where one wishes the approximate
offset polygon P̃r to be contained in the exact offset polygon
Pr , we proceed as follows. Given a rational ε > 0, we let
r = r−ε and apply the approximation algorithm with the offset
radius r . As the polylines that approximate the offset edges can
lie at most r+ε = r from the original polygon edges, the result
is guaranteed to be a subset of the exact offset polygon.

4. Experimental results

We compared the performance of the exact construction
algorithm using the conic-traits class with the approximate
construction scheme that based on the circle/segment traits-
class. Table 1 summarizes the running times of the two
approaches; the various input polygons and their offset
boundaries are shown in Fig. 3 (the country polygon is a map
of Israel).
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Fig. 4. Inputs of polygon sets: (a) house, (b) VLSI. The dashed disc that appear in each figure illustrate the offset radius we use in each case.
The offset radius chosen for each polygon is typically two
orders of magnitude smaller than the size of the bounding box
of the polygon. For the approximation scheme we selected the
error bound accordingly. Table 1 includes the running time
for error bounds of 10−7 and 10−10 times the offset radius.
Our approximation scheme yields a significant speedup in the
offset computations over the exact computation, especially for
polygons that contain many small-size features (e.g., chain),
spikes (e.g., spiked), or cavities (e.g., random). In such
cases, the intermediate arrangement induced by the convolution
cycle contains relatively many intersections; as computing
and manipulating the intersection points of two arcs in the
circle/segment traits-class is more efficient than in the conic-
traits class, we can gain considerable speed-ups in these cases.

Note that as we decrease the error bound, we have to
use rational numbers with longer bit-lengths (namely the
sizes of the numerators and denominators increase), which
incurs some running-time penalty. The graph below shows the
running time of the approximate offset-computation process
for three selected polygons as a function of the error bound
(for ε = 10−kr , where k = 3, 4, . . . , 12). It shows that the
running time is linear, or moderately super-linear, in log ε

r .

As we have already mentioned, the Minkowski-sum package
integrates well with other CGAL packages. In particular, it
is possible to perform Boolean operations on offset polygons
using the Boolean set-operations package [5]. The last set
of experiments demonstrates the application of the union
operation on a set of offset polygons, which has many important
applications in many fields, such as computer-aided design and
robotic motion planning.

Given a set of straight-edge polygons we compute the
Minkowski sum of each polygon with a disc of radius r , either
in an exact manner or using the approximation algorithm,
and finally compute the union of all offset polygons. In the
former case we use the traits-class for conic arcs to carry out
the union computation in an exact manner, while in the latter
case it is possible to use the circle/segment traits-class, as
we operate on segments of rational lines and arcs of rational
circles. Note that the results of the exact and the approximate
computations are not equal in the geometric sense. Yet, we
choose an approximation error-bound such that the two results
are topologically equivalent (namely they contain the same
number of polygons and the same number of holes in each
polygon).

The house data set (Fig. 4(a)) consists of 55 polygons. We
use an offset radius r = 200. It takes 0.376 s to compute the
union of the approximate offset polygons (with an error bound
of ε = 10−6r ), while the exact construction takes 3.176 s.
The VLSI data set (Fig. 4(b)) is much larger and contains
22,400 polygons and straight line segments; here we use an
offset radius of r = 1. The approximate computation (with
ε = 10−6r ) takes 51.81 s, while constructing the union of the
exact offset polygons takes 30.87 min.

5. Conclusions

We present the implementation of two algorithms that
compute the offset of a simple polygon. Our software package,
as does CGAL in general, employs the exact computation
paradigm and provides robust implementations that can
handle all inputs, including highly degenerate ones, yielding
topologically correct results. The main contributions of our
package is an algorithm that yields a conservative (and tight)
approximation of the Minkowski sum of a polygon with rational
vertices with a disc with a rational radius. This approximation
scheme allows the robust handling of offset polygons in
an efficient manner, using only exact rational arithmetic. It
significantly reduces the processing time compare to handling
exact offset polygons, which our software can also compute.
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We also mention that our package include a robust
implementation of the Minkowski-sum computation for two
polygons, using either convex polygon decomposition or the
convolution method. This package will be included in the next
public release of CGAL (the forthcoming Version 3.3).
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Appendix A. Computing with rational line segments and
circular arcs

A.1. One-root numbers

Given α, β, γ ∈ Q with γ > 0, the real number α+ β
√

γ is
called a one-root number. We next study the properties of one-
root numbers more closely and show how they can be handled
using only rational arithmetic.

Lemma 2. It is possible to determine the sign of a one-root
number x = α + β

√
γ using only rational arithmetic.

Proof. In case that sign(α) = sign(β), then this is also the sign
of the entire expression x and we are done. Otherwise, we have
to compare |α| and |β|

√
γ , such that the sign of x is the sign of

the term whose absolute value is larger. But this is easily done
by comparing α2 and β2γ , both are rational numbers. �

Lemma 3. It is possible to compare two one-root numbers
x1 = α1 + β1

√
γ1 and x2 = α2 + β2

√
γ2 using only rational

arithmetic.

Proof. We first note that if β2 = 0, then x2 ∈ Q, and the
comparison can be performed by evaluating the sign of the one-
root number x1 − α2. (Similarly, if β1 = 0 we evaluate the sign
of x2 − α1.)

If both x1 = α1 + β1
√

γ1 and x2 = α2 + β2
√

γ2 are non-
trivial one-root numbers, then comparing them is equivalent
to comparing α1 − α2 and β2

√
γ2 − β1

√
γ1. We therefore

compute the sign of β2
√

γ2 − β1
√

γ1 (this is easily done be
comparing β2

1γ1 and β2
2γ2, if sign(β1) 6= sign(β2)) and check

whether it is equal to the sign of α1 − α2. If the two terms
have different signs, then we can deduce the comparison result
at this stage. Otherwise, we continue by squaring both terms,
such that the comparison result is equivalent to evaluating the
sign of the one-root number ((α1 − α2)

2
− (β2

1γ1 + β2
2γ2)) +

2β1β2
√

γ1γ2. (If both terms are negative, we have to negate
the sign.) As Lemma 2 suggests, this can be done using only
rational arithmetic. �

We finally note that in the general case, given two non-trivial
one-root numbers x1 = α1+β1

√
γ1 and x2 = α2+β2

√
γ2 (with

β1, β2 6= 0), the numbers x1 ± x2, x1 · x2 and x1
x2

are not one-

root numbers, unless of course γ1 = q2γ2, where q ∈ Q. In the
next section we demonstrate how special care is taken so that no
such operations are invoked when constructing an arrangement
of circular arcs and line segments.
A.2. The circle/segment traits-class

The circle/segment traits-class included in the arrangement
package of CGAL handles curves that are either arcs of rational
circles, or segments of lines with rational coefficients. We next
describe how the traits-class implements the various predicates
and constructions needed for the aggregated construction of
arrangements of circular arcs and line segments, based on the
properties of one-root numbers.

To simplify the arrangement construction, it is easier to work
with x-monotone circular arcs. A continuous planar curve is
x-monotone if every vertical line intersects it at most once,
so a line segment is always x-monotone (we consider vertical
segments to be weakly x-monotone). A circular arc supported
by the rational circle (x − x0)

2
+ (y − y0)

2
= R can be

subdivided into three x-monotone arcs at most, depending on
whether it contains the two points (x0±

√
R, y0) (a whole circle

is subdivided into two x-monotone arcs). Moreover, we can
label each x-monotone as a “lower” arc, if it lies below the
horizontal line y = y0, or as an “upper” arc, if it lies above this
line.

The rest of the traits-class operations involve only points and
x-monotone curves. We give the details of the operations that
handle circular arcs and points with one-root coordinates. The
treatment of line segments is simpler, and we omit its details
here:

Compare xy: Compare two points lexicographically, by their
x and then by their y-coordinates. As the point
coordinates are one-root numbers, these operations
can be easily performed using rational arithmetic, as
stated by Lemma 3.

Point position: Given an x-monotone arc C of the rational
circle (x − x0)

2
+ (y − y0)

2
= R and a point p =

(x̂, ŷ), such that x̂ is in the x-range of C (namely
x̂ lies between the x-coordinates of C’s endpoints),
determine whether p is above, below, or lies on C .
If C is a lower arc, it lies under the horizontal line
y = y0, so if ŷ > y0, p obviously lies above C .
Otherwise, we have to substitute p into the equation
of the supporting circle, but as x̂ and ŷ are one-root
numbers (and not necessarily rational numbers), we
have to be a bit careful: we compare the one-root
numbers z1 = (ŷ − y0)

2 and z2 = r2
− (x̂ − x0)

2.
p lies above C if z1 < z2, below it if z1 > z2, and on
C in case of equality. Evaluating the predicate for an
upper arc is symmetric.

Compare to right: Given two x-monotone arcs C1 and C2 that
share a common left endpoint p = (x̂, ŷ), determine
the relative position of the two curves immediately to
the right of p. First note that we can easily detect
whether one of the arcs (say C1) has a vertical tangent
at p; in this case it is above C2 if it is an upper arc
and below it if it is a lower arc. Otherwise, the two
arcs have a well-defined slope at p and we simply
have to compare these slopes. The slope of C j at p

is given by x̂−x j
y j−ŷ , where (x j , y j ) is C j ’s center. It
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is easy to show that comparing these two slopes is
equivalent to comparing the two one-root numbers
y2(x̂ − x1) − y1(x̂ − x2) and ŷ(x2 − x1). In case
of equality, the two supporting circles are tangent at
p, and we can simply compare their radii in order to
determine their relative order near the tangency point.

Intersect: Compute the intersection points of two x-monotone
arcs C1 and C2. We first compute the intersection
points between the two supporting circles by solving
two quadratic equations, whose solutions are the x
and y-coordinates of the intersection point. For each
intersection point p = (x̂, ŷ), we have to check
whether it really lies on both C1 and C2: for this,
we simply check whether ŷ is above or below the y-
coordinate of the C j ’s supporting circle (depending on
whether C j is an upper or a lower arc), and if so we
just need to check whether it is in the x-range of the
arc.
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