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Abstract

3D models reconstructed from 2D sketches are inaccurate because of the inherent inaccuracies in the input and the reconstruction method. It is
therefore necessary to “beautify” them before use in CAD systems. We present a method that detects geometric constraints, such as parallel and
orthogonal faces, present in the reconstructed model and then selects a subset that constrains the object sufficiently and consistently. The subset
selection algorithm first prioritizes the constraints depending on their type and then uses a novel method, based on quasi-Newton optimization,
to detect and eliminate redundant and inconsistent constraints. The remaining constraints then define the dimensions of the model fully and
consistently. Results from our implementation show that the method can beautify and dimension recovered 3D models correctly at acceptable
speed.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

One active research area in computer-aided conceptual
design concerns a designer sketching a design in 2D and a 3D
model recovered automatically from the sketch [1–4]. Existing
work is mainly restricted to polyhedral objects with planar faces
only, which is also the case for this paper. Here all the edges
of the object are present in the sketch and all the lines in the
sketch represent edges. The sketch is first cleaned up to remove
gaps at the vertices. A 3D model as perceived in human minds
is then recovered, but it is inaccurate because the sketch, by
its very nature, is inaccurate. The recovery method also affects
the accuracy of the model. For example, the vertices in one
face may not lie exactly on one plane and parallel faces may
not be exactly parallel. Also, the size of the recovered model
usually bears no resemblance to the actual size the designer has
in mind, as a 2D sketch carries no dimensions. Improvement
on the recovered model is therefore necessary to enforce proper
geometric relationships and give it proper dimensions before
the model can be used further. Fig. 1 illustrates the main stages.
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It is neither practical nor desirable to require the user to
provide the data for every entity – vertex, edge or face –
present. One solution is to set up the constraints between the
entities, and resolve the dimensions based on these constraints
computationally. Many of the constraints can be established
automatically, but there may be some that need to be given by
the user. Clearly, it is desirable to minimize the user input on
such a potentially tedious and error-prone task.

A similar problem arises in reverse engineering where a 3D
model is recovered from a point cloud, although the inaccuracy
here is less severe. Langbein [5] presented a method in which
potential geometric constraints, such as parallelism, planarity
and orthogonality, present in a 3D reverse-engineered model
are found approximately at first, followed by a graph-based
method to detect inconsistencies between these constraints. The
result is a consistent subset of the potential constraints on the
initial model. This subset, when resolved numerically, leads
to an improvement in the geometry of the model. Langbein’s
study shows that the graph-based method works well and fast
in detecting inconsistencies.

One fast and simple step in the beautification of an object
recovered from a sketch is to enforce planarity on its faces.
Chen [6] solves this problem using a least-square method to
adjust vertices of a face on to the same plane. But he did not
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Fig. 1. Conceptual design by sketching.
take into account the effects of other constraints, such as faces
being parallel.

Varley [4] beautified the 3D model reconstructed from a line
drawing by determining the face normals and distances between
faces separately using an optimization method.

Wilczkowiak et al. incorporated camera calibration and 3D
reconstruction of 3D models built from images in computer
vision [7]. The constraints, stored in a graph, are used to find
a smaller set of input parameters and functions that yield all the
parameters which are used in a subsequent refinement step. The
approach is based on a dictionary of rules, called r -methods,
that relate geometric entities through constraints, represented
as a graph. Attempts are made iteratively to match the graph of
an r -method to a subgraph of the constraint graph of the object,
in which the entities are the nodes and the constraints are the
edges. Then a reverse sequence of the r -methods identified is
executed to solve the constraints. Implicit constraints are not
considered because the system cannot contain redundancies.

The approaches described above beautify a 3D model, but
the improved model carries no proper dimension. Martı́nez
and Félez presented a constraint-based solver to provide a
completely dimensioned 2D part [8]. Their method establishes
the constraints from two or three sketches of different views of
a model, and chooses a set of independent constraints of the
system by determining if the system is over-constrained. The
constraints form a system of equations, the Jacobian of which,
when solved, reveals the redundant constraints. The work does
not deal with dimensioning a 3D model.

A set of constraints needs to be sufficient to describe a model
completely. There can be over-constraint or under-constraint,
and there may also be redundancies, which include structural
and numerical redundancies. A structural redundancy over-
constrains the system. For instance, f (x1, x2) = 0, which
constrains two variables x1 and x2 in a system, will lead to
structural redundancy if two other constraints g1(x1, x2) = 0
and g2(x1, x2) = 0 are also present, since the values of x1 and
x2 are implicitly determined already by g1 and g2. The problem
can be rectified by discarding one of the constraints. A system
can be numerically inconsistent or redundant. For example, two
constraints expressed by x1 + x2 = 1 and x1 + x2 = 0 are
inconsistent and one of x1 + x2 = 1 and 2x1 + 2x2 = 2 is
redundant.

Buchanan [9] determined whether a system of equations
is inconsistent by using the Gröbner basis. Gao [10] gave
a complete method for deciding whether the constraints in
a set are independent and whether they are numerically
inconsistent based on Wu–Ritt’s [11] decomposition algorithm.
Despite their advantages, both the Gröbner basis and the
Wu–Ritt method require exponential time complexity. It is not
uncommon for them to take tens of minutes or even hours,
which is not acceptable in a real time interactive system.

Numerous researchers have addressed the problem of
structural redundancies. In 2D, the triangle decomposition
method was used by some researchers in geometric constraint
solving [10,12–15]; their methods for identifying over-
constrained subgraphs were based on triangle decomposition
too. For example, Fudos’s method [12] concludes that if
two well-constrained clusters share more than one geometric
element, then over-constraint exists. But the method can be
used only within a limited domain and cannot be applied in
3D. Latham [16] proposed a method based on the maximum
b-matching algorithm to decompose a constraint problem
into a sequence of solvable subgraphs. The crux of this
algorithm is the detection and correction of over-constraints
and under-constraints. Maximum b-matching is a special case
in generalized maximum matching (MM), of which Hoffmann
stated [17], “the MM method may or may not detect over-
constrained subgraphs, depending on the initial choice of
vertices for reducing weights”. He proposed a method MM1
to correct this drawback, but did not deal with 3D cases. Li’s
method [18] can detect over-constraint in 3D, but all the entities
in the constraint graph must have six degrees of freedom. So his
algorithm cannot be used in cases where the entities are points,
lines and planes, which do not have six degrees of freedom.
Recently, Langbein [5] proposed a method of identifying over-
constraint based on Kramer’s degree of freedom analysis [19]
and Li’s method of analyzing dependencies between geometric
objects [18]. Jermann described a new concept of extensive
structure rigidity [20,21], which is useful and is used in our
algorithm.

There are limitations in redundant constraint detection
using graph-based methods. Graphs have been used to detect
structurally redundant constraints without solving the constraint
system [5,16,18,22,23]. However, some constraints are implicit;
they can be inferred from a set of constraints in a graph, but
are not explicitly represented. Graph-based methods therefore
cannot be used to detect all redundant constraints. We
demonstrate it using two examples.

Fig. 2 illustrates Pappus’s Theorem in 2D: If A, B, and C
are three points on one line, D, E , and F are three points on
another line, and AE meets B D at X, AF meets C D at Y ,
and B F meets C E at Z , then the three points X, Y , and Z are
collinear [24]. The collinear constraint can be inferred from the
given set of constraints. The constraint graph of the theorem,
which includes all the points, lines, intersections and collinear
constraints, is an under-constrained system, and there are no
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Fig. 2. Pappu’s theorem.

Fig. 3. An example of an implicit constraint in 3D.

over-rigid subgraphs or redundant constraints given the graph,
though in fact the collinear constraint is redundant.

Fig. 3 illustrates another example in 3D: Let A, B and C
be three faces of a block. B and C are perpendicular to A,
and if Line L is the intersection of B and C , then L is also
perpendicular to A.

L being perpendicular to A can be inferred from it being the
intersection of B and C , and therefore would be redundant in a
constraint system that includes both.

In a constraint system, many constraints can be inferred from
the existing ones.

A constraint system can be expressed as a system of
equations [25], which can be solved numerically. This solution
accounts for a large proportion of the cost in geometric
constraint solving, which is directly proportional to the size
of the system. To minimize this cost, the constraint system
is decomposed into smaller sub-systems [17], which are
solved separately. The decomposition of constraints requires
analyzing the relationships between the weights of entities and
weights of constraints, without considering the properties of
the entities and constraints [16]; implicit constraints are not
considered. In the sequence of the partially ordered solvable
subgraphs, a subgraph may include new constraints which can
be inferred from previously solved subgraphs in an under-
constrained system. New inferred constraints affect the solution
to a subgraph, and hence the solution to the whole system.
Therefore, before knowing if a system is well constrained, we
cannot ignore the implicit constraints in redundancy detection
or decomposition of constraints. When and which implicit
constraints are selected for the decomposition is yet another
problem.

It is necessary to obtain the inferred constraints in a
constraint system. Redundant constraint detection requires the
relationships between entities in the known constraint sets.
Theorem proving [26–28] can be used to answer “true” or
“false” to a specific geometry statement such as Pappus’s
Theorem. But it is not possible to use Gröbner basis techniques
or Wu’s method in redundant constraint detection because
both have exponential time complexity. The extension of their
methods to 3D cases is possible but expensive.
Because graph based methods can only detect redundancy
from constraints explicit in a graph, a new method is needed for
the detection in a graph with implicit constraints.

An increasing amount of literature is devoted to detecting
redundancy by numerical methods. Li [29] and Langbein [30]
determined the numerical redundancies of a 3D geometric
constraint system by a disturbance method. If the system is
unsolvable after adding the disturbance value to a constraint,
then the constraint is redundant or inconsistent. If redundancy
exists, then the Jacobian matrix of the system of equations
is singular [25]. In the presence of redundancy, that is, when
there is a set of mutually dependent constraints, Martı́nez [8]
breaks the redundancy by removing a constraint from the set
of dependent constraints. The methods of Light and Martı́nez
work well on 2D cases, but extension to 3D cases is still an
open issue.

The main objective of this paper is the “beautification” of
3D planar polyhedral models reconstructed from 2D sketches,
to get the models close to the shapes the designers intend,
and give the models proper dimensions. We first introduce
the types and expressions for the geometric constraints and
the method for finding them, followed by the procedure for
selecting a consistent constraint subset from those found.
Finally, this constraint subset is used to beautify and dimension
the recovered model. Some experimental results are presented.

2. Constraint system

A geometric constraint system contains a set of entities and
a set of constraints associated with the entities. The entities are
defined by variables and the constraints specify a system that
allows these variables to be determined.

2.1. Entities

The entities are faces, edges and vertices.
A vertex is represented by a three-component vector

p(x, y, z). (We use bold to represent vectors and italics for
scalars.)

An edge lies on a straight line which has four degrees of
freedom (two translations and two rotations), represented by six
variables and two equations:

a2
+ b2

+ c2
= 1

and

ax + by + cz = 0

where the position vector p(x, y, z) is chosen to be the point on
the edge nearest to the origin and d(a, b, c) is the unit vector of
the edge direction.

A face lies on a plane which has three degrees of freedom
(one translation and two rotations), represented by a system
with six variables and three equations. The six variables are
accounted for in the unit face normal d(a, b, c) and the position
vector p(x, y, z), which is the nearest point on the face to the
origin. d and p must be parallel vectors, which means d×p = 0.
This gives rise to three equations ay − bx = 0, az − cx = 0
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Table 1
Representation of entities

Entity Parameters Equations to define the entity

Vertex Location p(x, y, z) –

Edge Edge direction d(a, b, c) a2
+ b2

+ c2
= 1

Edge position p(x, y, z), the point ax + by + cz = 0
on the edge nearest to the origin

Face Face normal d(a, b, c) ay − bx = 0
Face location p(x, y, z), the point az − cx = 0
on the face nearest to the origin a2

+ b2
+ c2

= 1

and bz − cy = 0, only two of which, say the first two, are
independent. The unit face normal requires that

a2
+ b2

+ c2
= 1,

thus forming a system of three independent equations.
Table 1 shows the equations that define the entities and their
parameters.

2.2. Constraint equations

There are two forms of constraints: topological constraints,
which define the connectivities between entities, and geometric
constraints, such as distance or angle between entities in a
model. Our system specifies only two topological constraints
“vertex on edge” and “vertex on face” directly. Other
constraints, such as edge on face and face/face adjacency, are
not specified because they can be inferred. For instance, the two
end points of an edge lying on a face are sufficient to ensure that
the edge lies on the face.

A geometric constraint is represented by two positions and
one or two directions as shown in Table 2, in which p1 is
the point on Entity 1 closest to the origin and d1 is a unit
direction vector, which is the normal for a plane and edge
direction for an edge; p2 and d2 are the corresponding values
for Entity 2. The weight of a constraint is the number of
degrees of freedom (DOF) eliminated by the constraint, which
is the number of equations required to define that constraint.
For example, the distance between two vertices requires one
equation that eliminates one degree of freedom, thus its weight
is 1. The sign ± in the table indicates that a value can be
either positive or negative, and the choice depends on the initial
values of the parameters. For example, the distance between a
vertex p1 and a face (p2, d2) is |(p1 − p2) · d2|, so the equation
describing the constraint is (p1 − p2) · d2 = ±h, where h is
a known value. The sign of this value depends on which half
space of the face the vertex is in.

2.3. Detecting the constraints

Given a 2D sketch and its reconstructed 3D model, we need
to automatically detect all the constraints that may be used to
define the model. The types of constraint to be detected are
those listed in Table 2. Some constraints may be introduced by
the user too, if required.

A constraint is a geometric relationship between two entities,
which can be expressed quantitatively. For example, how close
two lines are to being parallel can be determined by the angle
between the lines. The existence of a constraint is established
by checking if the quantity is within a certain threshold. This
threshold encompasses the tolerance which must be given to
take account of the inaccurate nature of the input. For example,
a parallelism constraint may be applied to lines within 7◦, say,
of each other. This tolerance value has a strong influence on the
eventual outcome of the beautification, including the closeness
of the beautified object to the original, because it dictates the
existence of certain constraints. So long as a sufficient set of
constraints that fully constrains the model can be found, a result
Table 2
Constraint equations

Geometric constraint Constraint equations Weight

Parallel Edge–edge (p1, d1–p2, d2) d1 = ±d2 2
Face–face (p1, d1–p2, d2) d1 = ±d2 2
Edge–face (p1, d1–p2, d2) d1 · d2 = 0 1

Perpendicular Edge–edge (p1, d1–p2, d2) d1 · d2 = 0 1
Face–face (p1, d1–p2, d2) d1 · d2 = 0 1
Edge–face (p1, d1–p2, d2) d1 = ±d2 2

Distance (h) Vertex–vertex (p1 − p2) |p1 − p2| = h 1
Vertex–edge (p1–p2, d2) |(p1 − p2) − ((p1 − p2) · d2)d2| = h 1
Vertex–plane (p1–p2, d2) (p1 − p2) · d2 = ±h 1
Edge–edge (p1, d1–p2, d2) d1 = ±d2, |p1 − p2| = h 3
Edge–plane (p1, d1–p2, d2) d1 · d2 = 0, (p1 − p2) · d2 = ±h 2
Plane–plane (p1, d1–p2, d2) d1 = ±d2, (p1 − p2) · d2 = ±h 3

Angle (α) Edge–edge (p1, d1–p2, d2) d1 · d2 = ± cos(α) 1
Face–face (p1, d1–p2, d2) d1 · d2 = ± cos(α) 1
Edge–face (p1, d1–p2, d2) d1 · d2 = ± sin(α) 1

Position (required by topology of model) Vertex lie on plane (p1–p2, d2) (p1 − p2) · d2 = 0 1
Vertex lie on edge (p1–p2, d2) |(p1 − p2) − ((p1 − p2) · d2)d2| = 0 2
Edge lie on plane (p1, d1–p2, d2) d1 · d2 = 0, (p1 − p2) · d2 = 0 2

p1 is the point on Entity 1 closest to the origin and d1 is a direction vector of Entity 1. p2 and d2 are the corresponding values for Entity 2.
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Fig. 4. A parallel face set.

Table 3
Priority values of constraints, a higher value denotes a higher priority

Entity 1 Entity 2 Constraint type Priority

Vertex Vertex Distance between two vertices 1

Vertex Edge Distance between vertex and edge 1
Vertex lies on edge 5

Vertex Face Distance between vertex and face 2
Vertex lies on face 5

Edge Edge Angle between two intersecting edges 1
Parallel & distance between two edges 2

Edge Face Parallel & distance between edge and face 3
Angle between edge and face 1
Edge and face perpendicular 2

Face Face Angle between two faces 3
Two perpendicular faces 4
Parallel & distance between two faces 4

can be obtained for the beautification. The establishment of
sufficiency is dealt with in Section 3.

We use the hierarchical clustering algorithm presented
in [31] to find groups of entities that are close to each other in
some properties. For example, for parallel faces, the clustering
into groups proceeds by a series of fusions of faces whose
normal vectors are nearly parallel. The normal vectors in a
group have a median, and the closeness between groups is
measured by the difference between the group medians.

After establishing the parallel face groups, the faces in each
group are sorted. In the example in Fig. 4, faces f1, f2, f3 and
f4 are found to be parallel to each other. They are sorted in
the order f1, f4, f3 and f2, according to their position. Then
one of the end faces, f1 or f2, is set to be the base face for
dimensioning, and only the parallel constraints between the
faces in the group and the base face are added to the list of
constraints for the object.

Rules such as “two faces are perpendicular if their normals
are almost perpendicular” are defined for perpendicular
constraints. The constraints of distance and angle are calculated
by the equations listed in Table 2.

Choosing the correct type of constraint is essential to
establishing the shape [8]. Certain types of constraint are more
likely to occur than others. Hence we establish the priority of
a constraint according to its type. Table 3 shows the priority
values defined for the types in our system. A higher value
denotes a higher priority. The choice of the values here is partly
based on the values given in [5,8] and partly through our own
experience.
3. Selecting and solving the constraints

In commercial CAD systems, the dimensions, which are
constraints, of a 3D model need to be given by the user. It is up
to the user to provide a complete set of consistent dimensions.

In our system, a large number of constraints are detected
using the method described in Section 2.3. The user may also
choose to introduce a constraint directly. Only a subset of these
constraints is needed to define the model completely. The result
should be a well-constrained system containing all the entities
and the selected constraints.

Topological constraints – “vertex on face” and “vertex on
edge” – are a part of the structure of a model and can be
identified correctly and directly from the model.

Geometric constraints are selected subsequently, with
constraints of higher priority selected first. A new constraint is
accepted if it is not redundant or inconsistent with the existing
ones. Otherwise, this new constraint or one of the existing
ones is eliminated. Redundancy may be structural or numerical.
This process repeats until the difference between the sum of
the weights of the entities and the sum of the weights of
the constraints is six, because a 3D model has six degrees
of freedom, three rotations and three translations. Finally, the
constraint equations are solved and the new model is obtained
by updating the parameters of the entities.

3.1. Solving the constraints

Given a set of entities and constraints, we want to derive
the values of the parameters that define the entities, which
satisfy all the constraints. When a system is well constrained
or even under-constrained, the parameters can be found. In this
section, we focus on solving the constraints through numerical
optimization.

Let fk(x) = 0 (k = 1 . . . m) be a set of m possibly
non-linear equations defining the constraints described earlier,
where the variable x is a vector of the parameters defining the
entities of the model (see Table 1). Typically, x contains many
elements, the number of which increases with the complexity
of the model. This is therefore a multivariate optimization
problem. Given the m equations, a solution for x can be
found using a least-square method, by minimizing the objective
function:

m∑
k=1

( fk(x))2 .

The initial value of x for the optimization can be obtained
from the reconstructed model; the solution at each step of the
optimization forms the input to the next.

When the objective function value approaches zero, the
optimization approaches a configuration of the model that
satisfies all the constraints. Failure to arrive at zero means that
the constraint system is not solvable, which means there are
conflicting constraints in the system.

Some global optimization techniques, such as genetic
algorithms, simulated annealing, branch and bound [32], are
effective even when the objective function is very complex, but
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they are highly time consuming, and therefore are not suitable
for an interactive real-time application, which we intend our
system to be.

We use the BFGS (Boyden–Fletcher–Goldfarb–Shanno)
method [33], which is mature, stable and effective. Derived
from the method of steepest descent, BFGS is a quasi-
Newton method based on the idea of reconstructing a quadratic
approximation of a function from values of its gradients at
a number of points, leading to a better approximation of the
minimum value. The time complexity of BFGS is O(n2) per
iteration, where n is the number of variables. But the number of
iterations is indeterminate, as it varies with each execution.

We turn now to the details of checking if the last constraint
selected is redundant or inconsistent.

3.2. Eliminating structurally redundant constraints

As had already been mentioned, it is difficult for graph-based
methods to detect all the numerically redundant constraints,
but they can detect the structurally redundant ones without
solving the constraint equations. If a constraint is structurally
redundant, then it must be numerically redundant also. Hence,
it is useful to use a graph-based method to detect structural
redundancy. We have published this method elsewhere [23]; a
summary is given below.

A geometric constraint system can be represented by a
constraint graph G = (V, E), where V is the set of nodes
representing the entities, including points, lines and planes,
and E is the set of arcs representing constraints between the
entities. Basically, it uses a flow-based algorithm to identify
the existence of structural redundancy and over-constrained
subgraphs in a 2D or 3D constraint system by distributing the
weights of the constraints to the DOF (degree of freedom) of the
entities, where the weight of a constraint is the number of DOFs
it eliminates. It exploits the degree of freedom and degree of
rigidity properties of subgraphs, and identifies the structurally
over-constrained by adding the constraints one by one to the
entities in the graph. If the weight of the detected constraint
cannot be distributed to the constraint system, then it is inside
an over-constrained subgraph, i.e. the detected constraint is
redundant or inconsistent.

The complexity of our graph-based method to detect the
over-constrained subgraph is O(m2(n + m/2)), where n is
the number of entities and m the number of constraints in the
graph [23].

3.3. Detecting numerical redundancy

A set of constraints can be expressed by a set of equations,
f (x) = 0, where x = (x1, . . . , xn) is a vector of n variables.
More explicitly, the equation can be written as

f1(x1, . . . , xn) = 0
...

fm(x1, . . . , xn) = 0
where m is the number of constraints. The Jacobian matrix is
then

J(x1, . . . xn) =


∂ f1

∂x1
· · ·

∂ f1

∂xn
...

. . .
...

∂ fm

∂x1
· · ·

∂ fm

∂xn

 =


∂ f1

∂x
...

∂ fm

∂x

 .

If a constraint, with equation gk(x) = 0, is redundant,
then it can be deduced from a subset of f (x) = 0, g1(x) =

0, . . . , gl(x) = 0, k 6∈ 1 . . . l, say. We can express gk(x) as a
function of g1(x), . . . , gl(x):

gk(x) = F(g1(x), . . . , gl(x)). (1)

When g1(x) = 0, . . . , gl(x) = 0, then gk(x) = 0. By
differentiating both sides of Eq. (1), we obtain

∂gk

∂x
=

∂ F
∂g1

∂g1

∂x
+

∂ F
∂g2

∂g2

∂x
+ · · · +

∂ F
∂gl

∂gl

∂x
. (2)

When f (x) = 0, that is, g1(x) = 0, . . . , gl(x) =

0, ∂ F
∂g1

, ∂ F
∂g2

, . . . , ∂ F
∂gl

must be constants. To simplify the notation,

we denote ∂ F
∂g1

by c1, ∂ F
∂g2

by c2, . . . , ∂ F
∂gl

by cl . So Eq. (2)
becomes

∂gk

∂x
= c1

∂g1

∂x
+ c2

∂g2

∂x
+ · · · + cl

∂gl

∂x
. (3)

Thus, if an equation of a constraint gk(x) = 0 in the system
is numerically redundant, its corresponding row vector in the
Jacobian matrix can be expressed as a linear combination of the
other row vectors, and the Jacobian matrix is singular as well.

We add the constraints with the highest priority to the
system one by one. So the last row of the Jacobian matrix
corresponds to the newly added constraint. The condition for
a non-redundant constraint is that the Jacobian is non-singular.
Let fm(x) = 0 be the last constraint added and J1, J2 . . . Jm be
the row vectors of the Jacobian matrix. If the last constraint
is redundant, then J1, J2 . . . Jm−1 of the Jacobian matrix are
linearly independent and J1, J2 . . . Jm are linearly dependent.
So we can write

Jm = c1J1 + c2J2 + · · · + cm−1Jm−1.

That is, [JT
1 , JT

2 . . . JT
m−1, JT

m][c1, c2 . . . cm−1, −1]
T

= 0,
where c1, c2 . . . cm−1 are scalars.

We detect the redundancy by solving the equation

JTc = 0, (4)

where c = [c1, c2 . . . cm−1, −1]
T is a vector of the unknowns

and JT is an n × m matrix. If there is no c for which Eq.
(4) holds, then the m row vectors are linearly independent.
Otherwise, they are linearly dependent, because then we can
express the last row vector of J as a linear combination of the
other row vectors.

We need to solve Eq. (4), in which JT is n by m, with n ≥ m
always. There are more equations than unknowns, so the system
is over-determined. We will now briefly review the techniques
related to solving a sparse over-determined system.
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A direct method may often be preferable to an interactive
method to solving an over-determined problem [34]. Normally,
methods based on normal equations and Q R factorization
are used to solve an over-determined problem. Golub’s
investigation into solving over-determined systems showed
that the flop (floating point operation) of the method via
normal equations is mn2

+ n3/3 and that via Householder
orthogonalization is 2mn2

− 2n3/3 when the matrix in the
system is m × n [35]. For a full rank system, it is difficult
to choose the right algorithm from the two. Note also that JT

may be rank deficient when the last constraint is redundant,
which raises another issue about selecting a numerical rank
determination technique. QR factorization can be used to
determine the rank of JT; the method based on normal
equations will fail in rank deficient cases.

In our system, JT may be rank deficient. There are a
number of ways to compute the rank of a matrix. The singular
value decomposition algorithm is very time consuming, so
Bischof [36] developed an algorithm for rank revealing
orthogonal factorization. His experimental results showed his
approach performs up to three times faster than the less reliable
QR factorization with column pivoting, and comes within 15%
of the speed for computing a QR factorization without any
column exchange.

The Jacobian matrix is a sparse matrix with about nine non-
zeros in each row on average. The exact cost of solving the
equations depends strongly on the structure of the problem, and
efficient computation of sparse rank-revealing decompositions
and sparse QR decomposition is an open area of research.
Our experiments using Matlab [37], with a sparse 500 × 400
matrix with 4500 non-zero elements, show that the run time
for sparse QR decomposition is almost the same as that of QR
decomposition of a dense matrix. When the size of the matrix
is smaller, QR decomposition of a dense matrix is much faster
than sparse QR decomposition.

Therefore, the solution of the linear system is computed
using QR factorization for a dense matrix in our system. The
idea of factoring JT

= Q R is used, where Q is orthogonal and
R is the upper triangular, and Q is n by n and R is n by m. Then
JTc = Q Rc = 0 is solved by

Rc = 0, (5)

where c = [c1, c2 . . . cm−1, −1]
T, is a vector of the unknowns.

In contrast to general rank detection of a matrix, we know in
advance that the last equation introduces the redundancy. So we
detect the redundancy by simply using Rmm , which is the entry
in the mth row and mth column of the upper triangular matrix
R. When the magnitude of Rmm is not zero, it is impossible for
Eq. (4) to have a solution, because the mth equation of the set
in Eq. (5) is Rmm ∗ (−1) = 0.

If Rmm is not zero, then Eqs. (4) and (5) have no solution;
that means the last row vector of the Jacobian matrix is not
a linear combination of the other row vectors and the last
constraint is not redundant. When rank deficiency exists, we can
detect it from the R of the QR factorization, without solving the
equations. That is another reason for choosing QR factorization.
In our method, the redundancy or rank of the matrix J is
determined by QR factorization of J only, without using another
special technique for rank revealing such as singular-value
decomposition or QR with column pivoting. In our system,
Householder transformations are utilized for QR factorization.

The flow chart for determining if the last constraint is
redundant or inconsistent is shown in Fig. 5.

If the last constraint is found to be structurally redundant
by the graph-based method, it is rejected directly without
invoking the numerical method described above. Otherwise, the
action moves to the numerical stage. When a new constraint is
added to the system, we need to solve the system of constraint
equations to obtain the values of the entries in the Jacobian
matrix. Because the cost for QR factorization of the Jacobian
matrix is small compared to that for solving the equations, we
try to avoid solving the equations. But this is possible only
when the last constraint is a distance or angle between entities,
because the values of such constraints can be obtained from the
existing entities in the model.

The complexity of QR factorization is O(2mn2
− 2n3/3),

where m is number of variables and n is number of constraints
in the Jacobian matrix [35].

3.4. A simple example for redundancy detection

A simple example is given below to demonstrate the general
working principles in redundancy detection. The example
object has three faces, nine edges and seven vertices (Fig. 6).
Using Table 1, we see that these entities contain 3 × 6 + 9 ×

6 + 7 × 3 = 93 variables and 9 × 2 + 3 × 3 = 27 constraints
within themselves. There are 4 × 3 = 12 “vertex on face” and
2×9 = 18 “vertex on edge” topological constraints; the weight
of the former is 1 and that of the latter is 2 (see Table 2), thus
giving a total of 12 + 2 × 18 = 48 topological constraints,
which are identified automatically directly from the structure
of the graph. Hence there are 27 + 48 = 75 constraints in
the structure. We demonstrate redundancy detection by adding
three other constraints one by one (thus giving 78 constraints
in all). Two of these constraints, Face f0 perpendicular to Face
f1, f0 perpendicular to Face f2, are introduced first. There are
no structural or numerical redundancies, so the two constraints
are accepted.

The final constraint is Edge e6 perpendicular to f0. It is not
structurally redundant; we thus focus on numerical redundancy.
The variables and the constraints result in a 78 × 93 Jacobian
matrix. Table 4 illustrates its structure, in which asterisks denote
components which are not zero. To simplify the table, we use
the entity name such as v0 to represent all the parameters of
each entity, instead of the parameters themselves. Each row
indicates the row vector for the equation of a constraint. The
inherent constraints of an edge or a face are the equations
defining the entity given in Table 1, and their corresponding row
vectors are in the top rows of Table 4. These are followed by
the row vectors of the equations for the topological constraints.
The last three rows are the vectors for the equations of the two
vertical faces and the vertical edge between the two faces.

After the QR factorization of the Jacobian matrix, the
element R78,78, which is the entry in the 78th row and 78th
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Fig. 5. Flow chart for determining if a constraint is redundant or inconsistent.
Fig. 6. An example with numerical redundant constraint.

column of the upper triangular matrix R, is zero. That means
the last constraint is numerically redundant.

By solving Eq. (5), the vector of the linear combination can
be obtained:

c = {0 0 0 0 0 0 0 0 0 0 0 0 −0.054 0 0 0 0 0 0 0

−0.054 0 0 0 0 0 0 0 0 0 0 0.003 0 0 −0.003 0

−0.008 0.008 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−0.008 0 0.008 0 0 0 0 0 0 0 0 0 0.389 −0.951 −1}
T.

Not all the elements in c are zeros. In the Jacobian matrix,
the row vector of the last constraint is a linear combination
of the row vectors which correspond to the non-zero elements
in c. That is, if the i th element in c is non-zero, then the i th
row vector in the Jacobian matrix is a member of the linear
combination upon which the last row vector is dependent.
Hence, in the example, the linear constraint of e6 perpendicular
to f0, which is the last constraint added, is dependent on these
eight constraints: v5 on f1, v2 on f1, v5 on f2, v2 on f2, v5 on
e6, v2 on e6, f0 perpendicular to f1 and f0 perpendicular to f2.
The system or user can select and delete one constraint from the
group, except the topological constraints.

The cost of every procedure for checking for redundancy
in the example is shown in Table 5. This result shows that
the cost in solving the constraints is the largest among all the
procedures. It is the same in other more complex examples.
One observation we can make is that the system of equations is
large. Given the very simple example here, the Jacobian matrix
is already 78 × 93 in size. Hence an efficient solution is very
important.

3.5. Comparison with Langbein’s method

The method reported in the literature closest to ours is
that of Langbein’s [5,30], which uses a similar framework of
selecting and then reducing the constraints to a sufficient and
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Table 4
An example of a Jacobian matrix

v0 v1 v2 v3 v4 v5 v6 e0 e1 e2 e3 e4 e5 e6 e7 e8 f0 f1 f2
Constraints in edge (18) Extra e0 *

. . .
Extra e8 *

Constraints in face (9) Extra f0 *
Extra f1 *
Extra f2 *

Vertices on face (12) v3 lie on f0 * *
. . .
v1 lie on f2 * *

Vertices on line (36) v0 lie on e0 * *
. . .
v5 lie on e8 * *

Constraints detected (3) f0⊥ f1 * *
f0⊥ f2 * *
l6⊥ f0 * *
Table 5
Time (in seconds) for redundancy detection

Last
constraint
added

Checking
structural
redundancy

Solving the
constraints

Checking
numerical
redundancy by QR
factorization of the
Jacobian matrix

Total

f0⊥ f1 0.015 0.375 0.031 0.421
f0⊥ f2 0.016 0.312 0.031 0.359
e6⊥ f0 0.015 0.265 0.031 0.311

consistent set. Langbein’s work is applied to geometric models
recovered from 3D point clouds, where the inaccuracy is much
smaller than 3D objects recovered from sketches. Langbein’s
experiments show that his graph-based method is successful
when applied to real problems. It saves time by avoiding
computing for the solution of the constraint system. But his
graph-based method does not investigate the property of rigid
subgraphs, resulting in it missing some redundant constraints.
It also cannot obtain the minimum over-constrained subgraph.
Langbein has not provided a rigorous proof for the method.

Because only some of the redundancies and inconsistencies
can be detected by a graph-based method, a numerical
solvability test is required. Langbein’s numerical solvability
test checks for the redundancy of a constraint by perturbing
the values involved in the constraint and solving the resulting
system [38]. It requires performing BFGS n times when
n constraints are needed to check for redundancy, a costly
process. In our approach, QR decomposition of the Jacobian
matrix is employed to detect redundancy without solving the
constraint system by BFGS, which is cheaper. At the same
time, if the last constraint added is found to be redundant, our
method can return its dependent constraint group, which makes
it possible for the user to remove the redundancy by selecting
and deleting one constraint from the group.

4. Changing dimensions by the user

After setting up the constraints through the procedures
described above, the object is well-constrained. At this point,
the dimensions in the object are directly derived from the
drawing, which do not normally correspond to the dimensions
the designer has in mind.

The user can establish a relationship between the size of
the reconstructed model and the size that the user requires by
specifying the correct value to a known dimension. This then
provides a scaling factor, which can be applied easily to scale
the whole object to the required size. After that, the user can
manually reset the value of any individual dimension if so
required. Finally, the constraint system can be solved again to
generate a model with the desired dimension.

The running time for constraint solving of a well constrained
system can be reduced by decomposing the constraint problem
into smaller ones. There are many methods that can be
used to decompose the constraints of a well constrained
system [16,39–41]. The method of Latham [16] and Gao [39]
is employed in our system. By analyzing the connectivities
between constraints and the geometric entities which they
constrain, construction sequences can be generated. After
the decomposition, the time needed to solve the constraint
equations decreases greatly. So, when the user changes some
dimension values, the system reacts much faster.

5. Application examples

The examples in Fig. 7 show some results of our system
that implements our method of beautification and dimensioning
of a reconstructed 3D model. The system was implemented in
Visual C++ with OpenGL, running on a 2.8G Pentium 4 PC.

There are too many constraints detected for each example,
so we do not present them in detail. Fig. 7 shows the original
reconstructed 3D models, the models after beautification and
the models with dimensions. In the examples, all the vertices
of a model lie on faces, all the constraints selected are
satisfied. Table 6 lists the time cost for detecting the constraints
for beautification and dimensioning, the time for solving an
equation set, the time for solving an equation set after constraint
decomposition, the time for determining structural redundancy
and then for numerical redundancy when a new constraint is
added. It can be seen from the table that when the model is
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Fig. 7. Test examples. The left line drawing for each object is the input to our beautification system, and the centre drawing is the output. The right shaded figure is
not generated by our system but created separately to show the dimensions (or constraints) that have been found and retained, as we have yet to include the posting
of dimensions in our system.
more complex, the time for detecting a correct set of constraints
is greater, as expected. The constraint solving process is
the most time consuming. Fortunately, after the constraint
decomposition, the processing time decreases dramatically.

6. Conclusions

This paper establishes a theoretical framework for beautifi-
cation and automatic dimensioning of a 3D model recovered
from a 2D sketch. The recovered model may be very “rough”,
given that a sketch is often inaccurate. Our experimental results
show that our method beautifies the recovered model very well,
to something more akin to a well-designed object. It also gener-
ates the dimensions correctly. The dimensions can be modified
if they do not meet the design requirements.

It should be noted that the BFGS algorithm may fail if the
initial input is far from the desired solution. That may happen
when the initial model for the start point of the optimization
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Table 6
Computing times (seconds) for objects in Fig. 7

Object Number of
faces

Number of
constraintsa

Constraint
detection time

Solving time Solving time
after constraint
decomposition

Checking
structural
redundancy of a
new constraint

Checking numerical
redundancy of a new constraint

1 9 9 19.93 2.56 0.14 0.03 0.25
2 8 10 24.18 1.96 0.60 0.03 0.17
3 10 10 30.00 2.96 0.20 0.03 0.35
4 7 9 8.51 1.09 0.23 0.01 0.10
5 8 10 18.90 1.65 0.37 0.01 0.17
6 10 9 35.82 3.15 0.18 0.03 0.37
7 9 13 34.35 2.39 1.11 0.03 0.26
8 10 12 40.78 3.43 0.56 0.03 0.37
9 16 16 112.15 6.36 0.13 0.04 0.70

10 19 21 300.00 12.54 0.11 0.04 0.97

a Exclude topological constraints.
is very different from the model defined by the constraints.
Thus a good initial variable vector is important. In all our
experiments, because the sketches are discernable, the initial
variable vectors extracted from the recovered models are good
enough for the beautification. But if the user interferes by
drastically changing some dimensions, there is no guarantee
that the BFGS algorithm will deliver the right solution. Though
the method described in this paper is much more reliable
for redundant constraint detection compared to graph-based
methods, the running time, especially in constraint solving,
needs to be improved still. A new speedy optimization method
or a faster computer would help.

This paper has focused its attention on detecting redun-
dant/inconsistent constraints and selecting constraints to form
a well constrained system. However, it does not mean that us-
ing the simple priority scheme introduced in Section 2 will al-
ways lead to correct dimensioning of a model. It should be
noted that the system, being well-constrained, is a necessary
but not unique condition to a correct dimension set. The prob-
lem of how to define the priority of detected constraints is
complex. Much work remains to be done here. We are con-
sidering a solution based on feature identification within the
model and the constraints being applied within and between
features.

External factors, like dimensioning and tolerancing stan-
dards, will also affect constraint selection.

Algorithms for locating dimensions, including position and
angle of dimensions, also require further research.
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