
ARTICLE IN PRESS
0952-1976/$ - se

doi:10.1016/j.en

�Correspond
E-mail addr
Engineering Applications of Artificial Intelligence 20 (2007) 89–99

www.elsevier.com/locate/engappai
An effective co-evolutionary particle swarm optimization for
constrained engineering design problems

Qie He, Ling Wang�

Department of Automation, Tsinghua University, Beijing 100084, P.R. China

Received 13 June 2005; received in revised form 20 February 2006; accepted 29 March 2006

Available online 19 May 2006
Abstract

Many engineering design problems can be formulated as constrained optimization problems. So far, penalty function methods have

been the most popular methods for constrained optimization due to their simplicity and easy implementation. However, it is often not

easy to set suitable penalty factors or to design adaptive mechanism. By employing the notion of co-evolution to adapt penalty factors,

this paper proposes a co-evolutionary particle swarm optimization approach (CPSO) for constrained optimization problems, where PSO

is applied with two kinds of swarms for evolutionary exploration and exploitation in spaces of both solutions and penalty factors. The

proposed CPSO is population based and easy to implement in parallel. Especially, penalty factors also evolve using PSO in a self-tuning

way. Simulation results based on well-known constrained engineering design problems demonstrate the effectiveness, efficiency and

robustness on initial populations of the proposed method. Moreover, the CPSO obtains some solutions better than those previously

reported in the literature.

r 2006 Elsevier Ltd. All rights reserved.

Keywords: Particle swarm optimization; Co-evolution; Penalty function
1. Introduction

Generally, a constrained optimization problem can be
described as follows:

find x to minimize f ðxÞ (1)

Subject to : giðxÞp0; i ¼ 1; 2; . . . ; n, (2)

hjðxÞ ¼ 0; j ¼ 1; 2; . . . ; p, (3)

where x ¼ ½x1;x2; . . . ;xd �
T denotes the decision solution

vector, n is the number of inequality constraints and p is
the number of equality constraints. In a common practice,
equality constraint hjðxÞ ¼ 0 can be replaced by a set of
inequality constraints hjðxÞXd and hjðxÞX� d (d is a small
tolerant amount). Thus, all constraints can be transformed
to N ¼ nþ 2p inequality constraints.

Many engineering design problems can be formulated as
constrained optimization problems. The presence of con-
e front matter r 2006 Elsevier Ltd. All rights reserved.

gappai.2006.03.003

ing author. Tel.: +8610 62783125; fax: +86 10 62786911.

ess: wangling@mail.tsinghua.edu.cn (L. Wang).
straints may significantly affect the optimization perfor-
mances of any optimization algorithms for unconstrained
problems. With the increase of the research and applica-
tions based on evolutionary computation techniques
(Wang, 2001), constraint handling used in evolutionary
computation techniques has been a hot topic in both
academic and engineering fields (Coello 2002; Michalewicz
1995). So far lots of constraint-handling techniques have
been proposed for evolutionary algorithms (EAs).
For most constraint-handling techniques, both infeasible

and feasible solutions could be generated at the search
stage, and constraints are dealt with when evaluating
solutions. The violation of constraints for each solution is
considered separately, and the relationship between in-
feasible solutions and feasible regions is exploited to guide
search. The difficulty lies in that there is no certain metric
criterion to measure this relationship. Michalewicz (1995)
proposed at least three choices: count the number of
violations for a given solution; consider the amount of
infeasibility in terms of constraints violation; and compute
the effort of ‘repairing’ the individual. As we all know, the

www.elsevier.com/locate/engappai
dx.doi.org/10.1016/j.engappai.2006.03.003
mailto:wangling@mail.tsinghua.edu.cn

ARTICLE IN PRESS
Q. He, L. Wang / Engineering Applications of Artificial Intelligence 20 (2007) 89–9990
penalty function method has been the most popular
constraint-handling technique due to its simple principle
and easy implementation. Constraints are incorporated
into the objective function so as to transform constrained
problems into unconstrained ones. The penalty factors are
used to balance the search for the global optimum and
satisfaction of the constraints. However, it is often not easy
to set suitable penalty factors. Coello (2000, 2002)
proposed a self-adaptive penalty approach based on a
genetic algorithm (GA) by using a co-evolution model to
adapt the penalty factors. Hamida and Schoenauer (2002)
proposed an adaptive segregational constraint-handling
technique with EA, which adapts penalty factors with
the percentage of feasible solutions in the population at
every generation and keeps infeasible solutions in the
population to maintain diversity. Nevertheless, this ap-
proach introduces several extra parameters that need
tuning empirically.

Another kind of constraint-handling techniques is
inspired by multi-objective optimization techniques, in
which objectives and constraints are considered separately.
Runarsson and Yao (2000) proposed a constraint-handling
technique (Stochastic Ranking, SR) from the viewpoint of
balancing dominance between the objective and penalty
functions, which does not need a penalty factor and focuses
on the rank of the individuals directly using a bubble-sort
like algorithm. Coello and Montes (2002) proposed a
dominance-based selection scheme to handle constraints in
a GA, motivated by the earlier constraint-handling
technique known as NPGA (Horn et al., 1994). Recently,
Montes and Coello (2005) applied a similar feasibility-
based rule to propose a multimembered evolution strategy
for constrained optimization problems.

Besides, some other constraint-handling methods are
problem specific. In these methods, special operators are
designed for generating solutions that do not violate
constraints so as to keep the search always in feasible
regions. For example, Koziel and Michalewicz (1999)
proposed a homomorphous mapping (HM) between a
high-dimensional cube and a feasible search space to
transform the original problem to an unconstrained one.
However, due to the complexity of constraints (e.g., linear,
nonlinear, high dimensional and highly constrained), the
design of special operators is problem-dependent and short
of generality. Moreover, such a technique needs to find an
initial set of feasible solutions, which in itself is also very
hard for many constrained problems.

During the past decade, another novel evolutionary
computation technique, particle swarm optimization (PSO),
has been proposed and it has attracted much attention
(Kennedy and Eberhart 1995; Kennedy et al., 2001). The
development of PSO was based on observations of the
social behavior of animals such as bird flocking, fish
schooling and swarm theory. PSO is initialized with a
population of random solutions. Each individual is assigned
a random velocity according to both its own and its
companions’ flying experiences, and the individuals called
particles are then flown through hyperspace. Compared
with GAs, PSO has some attractive characteristics. It has
memory, so knowledge of good solutions is retained by all
particles; whereas in GAs, previous knowledge of the
problem is destroyed once the population changes. In PSO,
there is a mechanism of constructive cooperation and
information sharing between particles. Due to the simple
concept, easy implementation and quick convergence, PSO
has gained much attention and been successfully applied in
a variety of fields mainly for unconstrained continuous
optimization problems (Kennedy et al., 2001). So far, as for
the constrained optimization problems, relatively less work
based on PSO can be found than those based on other EAs.
Parsopoulos and Vrahatis (2002) proposed a non-stationary
multi-stage assignment penalty function method to trans-
form the constrained problem to the unconstrained
problem. Simulation results showed that PSO outper-
formed other EAs, but the design of the multi-stage
assignment penalty function is too complex. In the work
of Hu and Eberhart (2002), the initial swarm contains only
feasible solutions and a strategy to preserve feasibility is
employed. Motivated by multi-objective optimization
techniques, Ray and Liew (2001) proposed a swarm
algorithm with a multilevel information sharing strategy
to deal with constraints. In their work, a better performer
list (BPL) is generated by a multilevel Pareto ranking
scheme treating every constraint as an objective, while the
particle which is not in the BPL gradually congregates
round its closest neighbor in the BPL.
In this paper, a co-evolutionary particle swarm optimi-

zation approach (CPSO) is proposed for constrained
optimization problems by applying PSO and employing
the notion of co-evolution. In the CPSO, two kinds of
swarms evolve interactively using PSO; one kind of
multiple swarms is used for searching good solutions and
another kind of a single swarm is used for evolving suitable
penalty factors. In particular, the notion of co-evolution is
employed to provide a framework to deal with both
decision solutions and constraints, and PSO is applied for
evolutionary exploration and exploitation in spaces of both
solutions and penalty factors. The proposed CPSO is
population based and easy to implement in parallel.
Especially, penalty factors also evolve using PSO in a
self-tuning way. Simulation results and comparisons based
on three famous constrained engineering design problems
demonstrate the effectiveness and efficiency of the pro-
posed CPSO as well as its robustness on initial populations.
Moreover, the CPSO obtains some solutions better than
those previously reported in the literature.
The rest of this paper is organized as follows: Section 2

provides some basics for particle swarm optimization. In
Section 3 the CPSO is proposed and explained in detail.
Simulation results based on some engineering design
problems and comparisons with previously reported
resulted are presented in Section 4, and the discussion is
provided in Section 5. Finally, we end the paper with some
conclusions and future work in Section 6.

ARTICLE IN PRESS
Q. He, L. Wang / Engineering Applications of Artificial Intelligence 20 (2007) 89–99 91
2. Basics of PSO

PSO is an evolutionary computation technique with the
mechanism of individual improvement, population coop-
eration and competition, which is based on the simulation
of simplified social models, such as bird flocking, fish
schooling and the swarming theory (Kennedy and Eber-
hart, 1995). The theoretical framework of PSO is very
simple, and PSO is easy to be coded and implemented, and
it is computationally inexpensive in terms of memory
requirements and CPU times (Kennedy et al., 2001).
Nowadays PSO has gained much attention and been
successfully applied in various fields, especially for
unconstrained continuous optimization problems (Kenne-
dy et al., 2001).

In PSO, it starts with the random initialization of a
population (swarm) of individuals (particles) in the search
space and works on the social behavior of the particles in
the swarm. Therefore, it finds the global best solution by
simply adjusting the trajectory of each individual towards
its own best location and towards the best particle of the
swarm at each time step (generation). However, the
trajectory of each individual in the search space is adjusted
by dynamically altering the velocity of each particle,
according to its own flying experience and the flying
experience of the other particles in the search space.

The position and the velocity of the ith particle in the d-
dimensional search space can be represented as X i ¼

½xi;1;xi;2; :::; xi;d �
T and V i ¼ ½vi;1; vi;2; :::; vi;d �

T; respectively.
Each particle has its own best position (pbest) Pi ¼

½pi;1; pi;2; :::; pi;d �
T corresponding to the personal best objec-

tive value obtained so far at time t. The global best particle
(gbest) is denoted by Pg, which represents the best particle
found so far at time t in the entire swarm. The new velocity
of each particle is calculated as follows:

vi;jðtþ 1Þ ¼ wvi;jðtÞ þ c1r1ðpi;j � xi;jðtÞÞ

þ c2r2ðpg;j � xi;jðtÞÞ; j ¼ 1; 2; :::; d ð4Þ

where c1 and c2 are constants called acceleration coeffi-
cients, w is called the inertia factor, r1 and r2 are two
independent random numbers uniformly distributed in the
range of [0, 1].

Thus, the position of each particle is updated in each
generation according to the following equation:

xi;jðtþ 1Þ ¼ xi;jðtÞ þ vi;jðtþ 1Þ; j ¼ 1; 2; :::; d. (5)

In the standard PSO, Eq. (4) is used to calculate the new
velocity according to its previous velocity and to the
distance of its current position from both its own best
historical position and its neighbors’ best position. Gen-
erally, the value of each component in Vi can be clamped to
the range ½Vi;min;Vi;max� to control excessive roaming of
particles outside the search space ½X i;min;X i;max�. Then the
particle flies toward a new position according to Eq. (5).
The process is repeated until a user-defined stopping
criterion is reached. We refer to Kennedy et al. (2001) for
more detail.
The procedure of standard PSO is summarized as

follows.
Step 1: Initialize a population of particles with random

positions and velocities, where each particle contains d

variables.
Step 2: Evaluate the objective values of all particles, set

pbest of each particle and its objective value equal to its
current position and objective value, and set gbest and its
objective value equal to the position and objective value of
the best initial particle.

Step 3: Update the velocity and position of every particle
according to Eqs. (4) and (5).

Step 4: Evaluate the objective values of all particles.
Step 5: For each particle, compare its current objective

value with the objective value of its pbest. If current value
is better, then update pbest and its objective value with the
current position and objective value.

Step 6: Determine the best particle of current whole
population with the best objective value. If the objective
value is better than the objective value of gbest, then
update gbest and its objective value with the position and
objective value of the current best particle.

Step 7: If a stopping criterion is met, then output gbest
and its objective value; otherwise go back to Step (3).

3. Co-evolutionary PSO

3.1. Mechanism of co-evolution

Due to the simplicity of principle and easiness to
implement, the penalty function method is the most
popular technique to handle constraints. With respect to
the main difficulty of setting appropriate penalty factors,
Michalewicz and Attia (1994) indicated that a self-adaptive
scheme is a promising direction. In the previous work by
Coello (2000), a notion of co-evolution was proposed and
incorporated into a GA to solve constrained optimization
problems. In this paper, we will make some modifications
on co-evolution and incorporate it into PSO for con-
strained optimization problems.
The principle of co-evolution model in CPSO is shown in

Fig. 1. In our CPSO, two kinds of swarms are used. In
particular, one kind of a single swarm (denoted by Swarm2)
with size M2 is used adapt suitable penalty factors, another
kind of multiple swarms (denoted by Swarm1,1, Swarm1,2,
y, Swarm1,M2) each with size M1 are used in parallel to
search good decision solutions. Each particle Bj in Swarm2

represents a set of penalty factors for particles in Swarm1,j,
where each particle represents a decision solution.
In every generation of co-evolution process, every

Swarm1,j will evolve by using PSO for a certain number
of generations (G1) with particle Bj in Swarm2 as penalty
factors for solution evaluation to get a new Swarm1,j. Then
the fitness of each particle Bj in Swarm2 will be determined.
After all particles in Swarm2 are evaluated, Swarm2 will

ARTICLE IN PRESS

.

.

.

B1

B2

A1 A2 Ak

A1 A2 Ak

A1 A2 Ak

BM 2

.

.

.

Swarm2

Swarm 1,2

Swarm 1,1

Swarm 1, M 2

…...

…...

…...

Fig. 1. Graphical illustration for the notion of co-evolution.

Q. He, L. Wang / Engineering Applications of Artificial Intelligence 20 (2007) 89–9992
also evolve by using PSO with one generation to get a new
Swarm2 with adjusted penalty factors. The above co-
evolution process will be repeated until a pre-defined
stopping criterion is satisfied (e.g., a maximum number of
co-evolution generations G2 is reached).

In brief, two kinds of swarms evolve interactively, where
Swarm1,j is used to evolve decision solutions while Swarm2

is used to adapt penalty factors for solution evaluation.
Due to the co-evolution, not only decision solutions are
explored evolutionary, but also penalty factors are adjusted
in a self-tuning way to avoid the difficulty of setting
suitable factors by trial and error.
3.2. Evaluation function for Swarm1,j

For constrained optimization problems, we design the
penalty function following the guidance suggested by
Richardson et al. (1989), i.e., not only how many
constraints are violated but also the amounts in which
such constraints are violated. In particular, the ith particle
in Swarm1,j in CPSO is evaluated by using the following
formula:

FiðxÞ ¼ f iðxÞ þ sum_viol� w1 þ num_viol� w2, (6)

where f iðxÞ is the objective value of the ith particle,
sum_viol denotes the sum of all the amounts by which the
constraints are violated, num_viol denotes the number of
constraints violation, w1 and w2 are penalty factors
corresponding to the particle Bj in Swarm2.

The value of sum_viol is calculated as follows:

sum_viol ¼
XN

i¼1

giðxÞ; 8giðxÞ40 (7)

where N is the number of inequality constraints (here it is
assumed that all equality constraints have been trans-
formed to inequality constraints).
3.3. Evaluation function for Swarm2

Each particle in Swarm2 represents a set of factors (w1

and w2). After Swarm1,j evolves for a certain number of
generations (G1), the jth particle Bj in Swarm2 is evaluated
as follows.
(1) If there is at least one feasible solution in Swarm1,j,

then particle Bj is evaluated using the following formula
and is called a valid particle:

PðBjÞ ¼

P
f feasible

num_feasible
� num_feasible, (8)

where
P

f feasible denotes the sum of objective function
values of feasible solutions in Swarm1,j, and num_feasible
is the number of feasible solutions in Swarm1,j.
The reason for only considering feasible solutions is to

bias the Swarm1,j towards feasible regions. Moreover, the
subtraction of num_feasible in Eq. (8) is to avoid Swarm1,j

stagnating at certain regions in which only very few
particles will have good objective values or even be
feasible. Consequently, Swarm1,j will be encouraged to
move towards regions including a lot of feasible solutions
with good objective values. In addition, num_feasible also
acts as a scaling factor when used to divide

P
f feasible.

(2) If there is no feasible solution in Swarm1,j (it can be
considered that the penalty is too low), then particle Bj in
Swarm2 is evaluated as follows and is called an invalid
particle.

PðBjÞ ¼ maxðPvalidÞ þ

P
sum_violP
num_viol

�
X

num_viol, (9)

where maxðPvalidÞ denotes the maximum fitness value of all
valid particles in Swarm2,

P
sum_viol denotes the sum of

constraints violation for all particles in Swarm1,j, andP
num_viol counts the total number of constraints

violation for all particles in Swarm1,j.
Obviously, by using Eq. (9), the particle in Swarm2 that

results in a smaller amount of constraints violation of
Swarm1,j is considered better. Consequently, the search
may bias Swarm1,j to the region where the sum of
constraints violation is small (i.e. the boundary of the
feasible region). Moreover, the addition of item max(Pvalid)
is to assure that the valid particle is always better than the
invalid one to guide the search to the feasible region. In
addition,

P
num_viol acts as a scaling factor.

3.4. Evolution of Swarm1,j and Swarm2

Particles in both the two kinds of swarms will evolve by
using PSO procedure described in Section 2. In particular,
the particle in Swarm2 encodes a set of penalty factors (w1

and w2), while the particle in Swarm1,j encodes a set of
decision variables. Both kinds of particles will apply Eqs.
(4) and (5) to adjust their positions so as to obtain good
decision solution and suitable penalty factors. Due to the
merits of PSO, such a process can be implemented easily
and is proved effective by later simulation results.

ARTICLE IN PRESS
Q. He, L. Wang / Engineering Applications of Artificial Intelligence 20 (2007) 89–99 93
3.5. The framework of CPSO

After explaining the main elements of co-evolutionary
PSO, the framework of CPSO is clearly illustrated in Fig. 2.
The features of CPSO can be summarized as follows. (a)
Two kinds of swarms evolve by using PSO interactively,
where one is for decision solutions and the other is for
penalty factors. (b) Penalty factors are adjusted by using a
self-tuning approach. (c) The CPSO is population based
and easy to implement in parallel.

4. Simulation results

In this section, we will carry out numerical simulation
based on some well-known constrained engineering design
problems to investigate the performances of the proposed
CPSO. The selected problems have been well studied before
No

No

l = G2?

t = G1?

Evolve Swarm1,1 using PSO
with penalty factors 1B .

t = t +1

Calculate fitness of all

iB in Swarm2 (,2,1i =

Evolve Swarm2 usin

Let l = l +1 and t

Yes

Yes

Initialize Swarm1 and Swarm2, and evalua
Swarm1 2M copies as Swarm1,1, Swarm1,2,

Output the best gbest
of all Swarm1, i.

…

Fig. 2. Flow chart of co
as benchmarks by various approaches. We will also
compare our results with some good results previously
reported by EA-based methods and other traditional
mathematical programming methods.
For each testing problem, the parameters of the CPSO

are set as follows: M1 ¼ 50, G1 ¼ 25, M2 ¼ 20, G2 ¼ 8,
c1 ¼ c2 ¼ 2.0, w in PSO linearly decreases from 0.9 to 0.4.
The maximum and minimum positions for particles in
Swarm1,j (X1,max and X1,min) depend on the variable region
given by the problems. The maximum and minimum
positions of particles in Swarm2 are set as
w1,max ¼ w2,max ¼ 1000 and w1,min ¼ w2,min ¼ 0 for the first
two problems and as w1,max ¼ w2,max ¼ 10000 and w1,min ¼

w2,min ¼ 5000 for the third problem. Moreover, the
maximum and minimum velocities for particles in both
the two kinds of swarms are set as Vi;max ¼ 0:2� ðX i;max �

X i;minÞ and Vi;min ¼ �V i;max (i ¼ 1, 2).
 particles

2..., M).

g PSO

 = 0.

te particles in Swarm1. Duplicate
…, Swarm1,M 2. Let l = 0, t = 0.

Evolve Swarm1,M 2 using PSO
with penalty factors

2MB .

-evolutionary PSO.

ARTICLE IN PRESS
Q. He, L. Wang / Engineering Applications of Artificial Intelligence 20 (2007) 89–9994
4.1. Simulation results for welded beam design problem

(Example 1)

The welded beam design problem is taken from Rao
(1996), in which a welded beam is designed for minimum
cost subject to constraints on shear stress (t), bending stress
in the beam ðyÞ, buckling load on the bar (Pc), end
deflection of the beam ðdÞ, and side constraints. There are
four design variables as shown in Fig. 3, i.e. h (x1), l (x2), t

(x3), and b (x4).
The problem can be mathematically formulated as

follows:

Minimize f ðxÞ ¼ 1:10471x2
1x2 þ 0:04811x3x4ð14:0þ x2Þ.

(10)

subject to : g1ðxÞ ¼ tðxÞ � 13000p0, (11)

g2ðxÞ ¼ sðxÞ � 30000p0, (12)
Fig. 3. Welded beam design problem (Example 1).

Table 1

Comparison of the best solution for Example 1 found by different methods

Design variables CPSO Ragsdell and Phillips (1976)

x1(h) 0.202369 0.245500

x2(l) 3.544214 6.196000

x3(t) 9.048210 8.273000

x4(b) 0.205723 0.245500

g1(x) �12.839796 �5743.826517

g2(x) �1.247467 �4.715097

g3(x) �0.001498 0.000000

g4(x) �3.429347 �3.020289

g5(x) �0.079381 �0.120500

g6(x) �0.235536 �0.234208

g7(x) �11.681355 �3604.275002

f(x) 1.728024 2.385937
g3ðxÞ ¼ x1 � x4p0, (13)

g4ðxÞ ¼ 0:10471x2
1 þ 0:04811x3x4ð14:0þ x2Þ � 5:0p0,

(14)

g5ðxÞ ¼ 0:125� x1p0, (15)

g6ðxÞ ¼ dðxÞ � 0:25p0, (16)

g7ðxÞ ¼ 6000� PcðxÞp0, (17)

where

tðxÞ ¼

ffi
ðt0Þ2 þ 2t0t00

x2

2R
þ ðt00Þ2

r
, (18)

t0 ¼
6000ffiffiffi
2
p

x1x2

, (19)

t00 ¼
MR

J
, (20)

M ¼ 6000 14þ
x2

2

� �
, (21)

R ¼

ffi
x2
2

4
þ

x1 þ x3

2

� �2r
, (22)

J ¼ 2
ffiffiffi
2
p

x1x2
x2
2

12
þ

x1 þ x3

2

� �2� �� �
, (23)

sðxÞ ¼
504000

x4x2
3

, (24)

dðxÞ ¼
2:1952

x3
3x4

, (25)

PcðxÞ ¼ 64746:022ð1� 0:0282346x3Þx3x
3
4. (26)

The approaches applied to this problem include geometric
programming (Ragsdell and Phillips, 1976), genetic algo-
rithm with binary representation and traditional penalty
function (Deb, 1991), a GA-based co-evolution model
(Coello, 2000) and a feasibility-based tournament selection
Deb (1991) Coello (2000) Coello and Montes (2002)

0.248900 0.208800 0.205986

6.173000 3.420500 3.471328

8.178900 8.997500 9.020224

0.253300 0.210000 0.206480

�5758.603777 �0.337812 �0.074092

�255.576901 �353.902604 �0.266227

�0.004400 �0.001200 �0.000495

�2.982866 �3.411865 �3.430043

�0.123900 �0.083800 �0.080986

�0.234160 �0.235649 �0.235514

�4465.270928 �363.232384 �58.666440

2.433116 �1.748309 1.728226

ARTICLE IN PRESS

Table 2

Statistical results of different methods for Example 1

Method Best Mean Worst Std Dev

CPSO 1.728024 1.748831 1.782143 0.012926

Ragsdell and Phillips (1976) 2.385937 N/A N/A N/A

Deb (1991) 2.433116 N/A N/A N/A

Coello (2000) 1.748309 1.771973 1.785835 0.011220

Coello and Montes (2002) 1.728226 1.792654 1.993408 0.074713 Fig. 4. Tension/compression string design problem (Example 2).

Table 4

Statistical results of different methods for Example 2

Method Best Mean Worst Std Dev

CPSO 0.0126747 0.012730 0.012924 5.198500e-005

Belegundu

(1982)

0.0128334 N/A N/A N/A

Arora (1989) 0.0127303 N/A N/A N/A

Coello (2000) 0.0127048 0.012769 0.012822 3.939000e-005

Coello and

Montes

(2002)

0.0126810 0.0127420 0.012973 5.900000e-005

Table 3

Comparison of the best solution for Example 2 by different methods

Design

variables

CPSO Belegundu

(1982)

Arora

(1989)

Coello

(2000)

Coello and

Montes

(2002)

x1(d) 0.051728 0.050000 0.053396 0.051480 0.051989

x2(D) 0.357644 0.315900 0.399180 0.351661 0.363965

x3(P) 11.244543 14.250000 9.185400 11.632201 10.890522

g1(x) �0.000845 �0.000014 0.000019 �0.002080 �0.000013

g2(x) �1.2600e-05�0.003782 �0.000018 �0.000110 �0.000021

g3(x) �4.051300 �3.938302 �4.123832 �4.026318 �4.061338

g4(x) �0.727090 �0.756067 �0.698283 �4.026318 �0.722698

f(x) 0.0126747 0.0128334 0.0127303 0.0127048 0.0126810

Q. He, L. Wang / Engineering Applications of Artificial Intelligence 20 (2007) 89–99 95
scheme inspired by the multi-objective optimization
techniques (Coello and Montes, 2002). In this paper, the
CPSO is run 30 times independently with the following
variable regions: 0.1px1p2, 0.1px2p10, 0.1px3p10,
0.1px4p2. The best solutions obtained by the above-
mentioned approaches are listed in Table 1, and their
statistical simulation results are shown in Table 2.

From Table 1, it can be seen that the best feasible
solution found by CPSO is better than the best solutions
found by other techniques. From Table 2, it can be seen
that the average searching quality of CPSO is also better
than those of other methods, and even the worst solution
found by CPSO is better than the best solution found by
Ragsdell and Phillips (1976) and the best solution found by
Deb (1991). In addition, the standard deviation of the
results by CPSO in 30 independent runs is very small.

4.2. Simulation results for a tension/compression string

design problem (Example 2)

This problem is from Arora (1989) and Belegundu
(1982), which needs to minimize the weight (i.e. f(x)) of a
tension/compression spring (as shown in Fig. 4) subject to
constraints on minimum deflection, shear stress, surge
frequency, limits on outside diameter and on design
variables. The design variables are the mean coil diameter
D (x2), the wire diameter d (x1) and the number of active
coils P (x3).

The mathematical formulation of this problem can be
described as follows:

Minimize f ðxÞ ¼ ðx3 þ 2Þx2x2
1. (27)

subject to : g1ðxÞ ¼ 1�
x3
2x3

71785x4
1

p0, (28)

g2ðxÞ ¼
4x2

2 � x1x2

12566ðx2x3
1 � x4

1Þ
þ

1

5108x2
1

� 1p0, (29)

g3ðxÞ ¼ 1�
140:45x1

x2
2x3

p0, (30)

g4ðxÞ ¼
x1 þ x2

1:5
� 1p0. (31)

The approaches applied to this problem include eight
different numerical optimization techniques (Belegundu,
1982), a numerical optimization technique called constraint
correction at constant cost (Arora, 1989), a GA-based co-
evolution model (Coello, 2000) and a feasibility-based
tournament selection scheme (Coello and Montes, 2002).
In this paper, the CPSO is run 30 times independently with
the following variable regions: 0.05px1p2, 0.25px2p1.3,
2px3p15. The best solutions obtained by the above-
mentioned approaches are listed in Table 3, and their
statistical simulation results are shown in Table 4.
From Table 3, it can be seen that the best feasible

solution found by CPSO is better than the best solutions
found by other techniques. From Table 4, it can be seen
that the average searching quality of CPSO is also better
than those of other methods, and even the worst solution
found by CPSO is better than the best solutions found
by Belegundu (1982) and the best solutions found by
Arora (1989). Moreover, the standard deviation of the
results by CPSO in 30 independent runs for this problem is
also very small.

ARTICLE IN PRESS
Q. He, L. Wang / Engineering Applications of Artificial Intelligence 20 (2007) 89–9996
4.3. Simulation results for a pressure vessel design problem

(Example 3)

In this problem, the objective is to minimize the total
cost (f(x)), including the cost of the material, forming and
welding. A cylindrical vessel is capped at both ends by
hemispherical heads as shown in Fig. 5. There are four
design variables: Ts (x1, thickness of the shell), Th (x2,
thickness of the head), R (x3, inner radius) and L (x4,
length of the cylindrical section of the vessel, not including
the head). Among the four variables, Ts and Th are integer
multiples of 0.0625in that are the available thicknesses of
rolled steel plates, and R and L are continuous variables.

The problem can be formulated as follows (Kannan and
Kramer, 1994):

Minimize f ðxÞ ¼ 0:6224x1x3x4 þ 1:7781x2x
2
3

þ 3:1661x2
1x4 þ 19:84x2

1x3. ð32Þ

subject to : g1ðxÞ ¼ �x1 þ 0:0193x3p0, (33)

g2ðxÞ ¼ �x2 þ 0:00954x3p0, (34)

g3ðxÞ ¼ �px2
3x4 �

4

3
px3

3 þ 1296000p0, (35)

g4ðxÞ ¼ x4 � 240p0. (36)

The approaches applied to this problem include genetic
adaptive search (Deb, 1997), an augmented Lagrangian
Fig. 5. Center and end section of pressure vessel design problem

(Example 3).

Table 5

Comparison of the best solution for Example 3 found by different methods

Design variables CPSO Sandgren (1988) Kannan and Krame

x1(Ts) 0.812500 1.125000 1.125000

x2(Ts) 0.437500 0.625000 0.625000

x3(Ts) 42.091266 47.700000 58.291000

x4(Ts) 176.746500 117.701000 43.690000

g1(x) �0.000139 �0.204390 0.000016

g2(x) �0.035949 �0.169942 �0.068904

g3(x) �116.382700 54.226012 �21.220104

g4(x) �63.253500 �122.299000 �196.310000

f(x) 6061.0777 8129.1036 7198.0428
multiplier approach (Kannan and Kramer, 1994), a branch
and bound technique (Sandgren, 1988), a GA-based co-
evolution model (Coello, 2000) and a feasibility-based
tournament selection scheme (Coello and Montes, 2002).
In this paper, the CPSO is run 30 times independently with
the following variable regions: 1px1p99, 1px2p99,
10px3p200, 10px4p200. The best solutions obtained
by the above mentioned approaches are listed in Table 5,
and their statistical simulation results are shown in Table 6.
From Table 5, it can be seen that the best solution found

by CPSO is better than the best solutions found by other
techniques but slightly inferior to the result by Coello and
Montes (2002). Comparing the results of CPSO with those
by Coello and Montes (2002) statistically, it can be seen
from Table 6 that the mean result, the worst result and the
standard deviation by CPSO for this problem are all
smaller than that by Coello and Montes (2002). In
addition, from Table 6 it can be seen that the average
searching quality of CPSO is also better than those of other
methods, and even the worst solution found by CPSO is
better than the best solutions found by Kannan and
Kramer (1994) and the best solutions found by Sandgren
(1988).
Based on the above simulation results and comparisons,

it can be concluded that CPSO is of superior searching
quality and robustness for constrained engineering design
problems. Especially, our PSO-based co-evolution is more
effective than GA-based co-evolution by Coello (2000).
Moreover, the total number of fitness evaluations is
r (1994) Deb (1997) Coello (2000) Coello and Montes (2002)

0.937500 0.812500 0.812500

0.500000 0.437500 0.437500

48.329000 40.323900 42.097398

112.679000 200.000000 176.654050

�0.004750 �0.034324 �0.000020

�0.038941 �0.052847 �0.035891

�3652.876838 �27.105845 �27.886075

�127.321000 �40.000000 �63.345953

6410.3811 6288.7445 6059.9463

Table 6

Statistical results of different methods for Example 3

Method Best Mean Worst Std Dev

CPSO 6061.0777 6147.1332 6363.8041 86.4545

Sandgren (1988) 8129.1036 N/A N/A N/A

Kannan and

Kramer (1994)

7198.0428 N/A N/A N/A

Deb (1997) 6410.3811 N/A N/A N/A

Coello (2000) 6288.7445 6293.8432 6308.1497 7.4133

Coello and

Montes (2002)

6059.9463 6177.2533 6469.3220 130.9297

ARTICLE IN PRESS
Q. He, L. Wang / Engineering Applications of Artificial Intelligence 20 (2007) 89–99 97
900 000 in the GA-based co-evolution by Coello (2000),
while in our CPSO the number of fitness evaluations is
200 000. So, it can be pointed out that PSO is a better
alternative for constrained optimization. As for more
discussion about the searching efficiency, it will be
presented in Section 5.

5. Discussion

In this section, we will discuss the searching efficiency
and the parameter setting of the CPSO.

Although the notion of the co-evolution model is
introduced and two kinds of swarms evolve simultaneously
in CPSO, it is not necessary to cost a large number of
fitness evaluations to reach good solutions. Note that the
total number of fitness evaluation is 900 000 in the GA-
based co-evolution by Coello (2000), while in our CPSO it
is 200 000. We investigate the smallest number of fitness
evaluations for hitting the best known solution. The
statistical information is listed in Table 7, where it can be
seen that CPSO only requires small number of solution
evaluation to reach the global optimum. In Fig. 6 a typical
evolving process of fitness function for decision solutions
when solving Example 1 is illustrated, from which it can be
seen that CPSO can converge to the global optimum very
quickly and much more solution evaluation is not
Table 7

Statistical smallest number of solution evaluation to hit the global

optimum

Problem Lowest number Average number Largest number

Example 1 30 000 34 500 39 000

Example 2 23 000 32 800 40 000

Example 3 24 000 32 500 36 000

Fig. 6. A typical evolving process of fitness function for Example 1.
necessary. Due to the easy implementation and parallel
searching structure, the efficiency of CPSO can be
improved further by using parallel processors or parallel
computational techniques.
During the simulation experiments, it is found that the

parameter M1 (size of Swarm1,j) plays a crucial role in the
CPSO. Figs. 7 and 8 illustrate the average objective values
that resulted from CPSO (30 independent runs are
executed) and the total number of evaluation with different
M1 when solving Example 1. As shown in Fig. 7, if M1 is
too small, the solution region covered at each co-evolution
is not enough so that the results are poor. As M1 increases,
the results become better at a cost of more fitness
evaluations, but there is a threshold beyond which the
results will not be affected in a significant manner. So,
Fig. 7. Average objective values resulted by CPSO with different M1 for

Example 1.

Fig. 8. Total number of fitness evaluations in CPSO with different M1 for

Example 1.

ARTICLE IN PRESS
Q. He, L. Wang / Engineering Applications of Artificial Intelligence 20 (2007) 89–9998
considering both the search quality and computational
effort, it is recommended to choose M1 between 50 and 70.

As for the two parameters used in Swarm2, i.e., M2 (the
population size of Swarm2) and G2 (the max number of
evolution generations for Swarm2), it is found in simula-
tion experiments that the increment of M2 will not affect
the search quality greatly. So, it is not necessary to set M2

too large. Besides, it is found that the increment of G2 is
also not very beneficial to the search quality but will cause
the increment of the number of evaluations, so it is
preferred to set G2 relatively smaller than G1.

6. Conclusion

This paper has introduced a novel constraint-handling
method—co-evolutionary particle swarm optimization.
This is the first report to incorporate a co-evolution model
into PSO to solve constrained optimization problems. In
CPSO, two kinds of swarms evolve with PSO interactively,
where one kind of multiple swarms are used for searching
good solutions and another kind of a single swarm is used
for evolving suitable penalty factors. Simulation results
based on some well-known constrained engineering design
problems and comparisons with previously reported results
demonstrate the effectiveness, efficiency and robustness of
the CPSO. Our future work is to incorporate suitable local
search methods and diversity mechanisms into CPSO to
further enhance and balance the exploration and exploita-
tion abilities so as to achieve better performance. In
addition, we will study the parallel implementation of
CPSO and the application of CPSO for constrained
combinatorial optimization problems.

Acknowledgments

The authors wish to thank the Editor-in-Chief Prof. R.
Vingerhoeds and anonymous reviewers for their construc-
tive and valuable comments. And this research is partially
supported by National Science Foundation of China
(60204008, 60374060 and 60574072) and 973 Program
(2002CB312200).

References

Arora, J.S., 1989. Introduction to Optimum Design. McGraw-Hill,

New York.

Belegundu, A.D., 1982. A study of mathematical programming methods

for structural optimization. Department of Civil and Environmental

Engineering, University of Iowa, Iowa City, Iowa.

Coello, C.A.C., 2000. Use of a self-adaptive penalty approach for

engineering optimization problems. Computers in Industry 41,

113–127.

Coello, C.A.C., 2002. Theoretical and numerical constraint handling

techniques used with evolutionary algorithms: a survey of the state of

the art. Computer Methods in Applied Mechanics and Engineering

191 (11/12), 1245–1287.

Coello, C.A.C., Montes, E.M., 2002. Constraint-handling in genetic

algorithms through the use of dominance-based tournament selection.

Advanced Engineering Informatics 16, 193–203.
Deb, K., 1991. Optimal design of a welded beam via genetic algorithms.

AIAA Journal 29 (11), 2013–2015.

Deb, K., 1997. GeneAS: a robust optimal design technique for mechanical

component design. In: Dasgupta, D., Michalewicz, Z. (Eds.), Evolu-

tionary Algorithms in Engineering Applications. Springer, Berlin,

pp. 497–514.

Hamida, S.B., Schoenauer, M., 2002. ASCHEA: new results

using adaptive segregational constraint handling. In: Fogel, D.B.

et al. (Eds.), Proceedings of the 2002 Congress on Evolu-

tionary Computation IEEE Service Center, Piscataway, NJ,

pp. 884–889.

Horn, J., Nafpliotis, N., Goldberg D.E., 1994. A niched pareto genetic

algorithm for multiobjective optimization. In: Proceedings of the First

IEEE Conference on Evolutionary Computation, IEEE World

Congress on Computational Intelligence, IEEE Service Center,

Piscataway, NJ, pp. 82-87.

Hu, X., Eberhart, R.C., 2002. Solving constrained nonlinear optimi-

zation problems with particle swarm optimization. In: Callaos, N.

(Ed.), Proceedings of the Sixth World Multiconference on

Systemics. Cybernetics and Informatics, Orlando, Fl,

pp. 203–206.

Kannan, B.K., Kramer, S.N., 1994. An augmented Lagrange multiplier

based method for mixed integer discrete continuous optimization and

its applications to mechanical design. Transactions of the ASME,

Journal of Mechanical Design 116, 318–320.

Kennedy, J., Eberhart, R.C., 1995. Particle swarm optimization.

In: Proceedings of the 1995 IEEE International Conference

on Neural Networks, IEEE Service Center, Piscataway, NJ,

pp. 1942–1948.

Kennedy, J., Eberhart, R.C., Shi, Y. (Eds.), 2001. Swarm Intelligence.

Morgan Kaufmann, San Francisco.

Koziel, S., Michalewicz, Z., 1999. Evolutionary algorithms, homomor-

phous mappings, and constrained parameter optimization. Evolu-

tionary Computation 7 (1), 19–44.

Michalewicz, Z., 1995. A survey of constraint handling techniques

in evolutionary computation methods. In: McDonnell, J.R.

et al. (Eds.), Proceedings of the fourth Annual Conference on

Evolutionary Programming, MIT Press, Cambridge, MA,

pp. 135–155.

Michalewicz, Z., Attia, N., 1994. Evolutionary optimization of con-

strained problems. In: Sebald, A.V., Fogel, L.J. (Eds.), Proceedings of

the third Annual Conference on Evolutionary Programming. World

Scientific, River Edge, NJ, pp. 98–108.

Montes, E.M., Coello, C.A.C., 2005. A simple multimembered evolution

strategy to solve constrained optimization problems. IEEE Transac-

tions on Evolutionary computation 9 (1), 1–17.

Parsopoulos, K.E., Vrahatis, M.N., 2002. Particle swarm optimi-

zation method for constrained optimization problems. In: Kvasnička,

V. et al. (Eds), Proceedings of the second Euro-International

Symposium on Computational Intelligence, Košice, Slovakia,

pp. 214–220.

Ragsdell, K.M., Phillips, D.T., 1976. Optimal design of a class of welded

structures using geometric programming. ASME Journal of Engineer-

ing for Industries 98 (3), 1021–1025.

Rao, S.S., 1996. Engineering Optimization. Wiley, New York.

Ray, T., Liew, K.M., 2001. A swarm with an effective information sharing

mechanism for unconstrained and constrained single objective

optimisation problems. In: Kim, J.H. et al. (Eds.), Proceedings of

the 2001 Congress on Evolutionary Computation, IEEE Service

Center, Piscataway, NJ, pp. 75–80.

Richardson, J.T., Palmer, M.R., Liepins, G., Hilliard, M., 1989. Some

guidelines for genetic algorithms with penalty functions. In: Schaffer,

J.D. (Ed.), Proceedings of the Third International Conference on

Genetic Algorithms, George Mason University, Morgan Kaufmann,

pp. 191–197.

Runarsson, T.P., Yao, X., 2000. Stochastic ranking for constrained

evolutionary optimization. IEEE Transactions on Evolutionary

Computation 4 (3), 284–294.

ARTICLE IN PRESS
Q. He, L. Wang / Engineering Applications of Artificial Intelligence 20 (2007) 89–99 99
Sandgren, E., 1988. Nonlinear integer and discrete programming in

mechanical design. In: Proceedings of the ASME Design Technology

Conference, Kissimine, FL, pp. 95–105.

Wang, L., 2001. Intelligent optimization algorithms with application.

Tsinghua University and Springer, Beijing.

Qie He is currently a MS student in Department of Automation at

Tsinghua University. His current research interests include particle swarm

optimization, constrained optimization.
Ling Wang completed Ph.D. in Department of Automation from

Tsinghua University in 1999 and now is an Associate Professor. His

current research interests include optimization theory and algorithms,

production scheduling. Dr. Wang has published two books and over 100

refereed academic papers, and he gained Outstanding Paper Award in

ICMLC’02 and National Natural Science Award (1st Place Prize)

nominated by Ministry of Education of China in 2003.

	An effective co-evolutionary particle swarm optimization for constrained engineering design problems
	Introduction
	Basics of PSO
	Co-evolutionary PSO
	Mechanism of co-evolution
	Evaluation function for Swarm1,j
	Evaluation function for Swarm2
	Evolution of Swarm1,j and Swarm2
	The framework of CPSO

	Simulation results
	Simulation results for welded beam design problem (Example 1)
	Simulation results for a tension/compression string design problem (Example 2)
	Simulation results for a pressure vessel design problem (Example 3)

	Discussion
	Conclusion
	Acknowledgments
	References

