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Abstract

The fundamental assumption of an economic order quantity (EOQ) model is that 100% of items in an ordered lot are

perfect. This assumption is not always pertinent for production processes because of process deterioration or other factors.

This paper develops an EOQ model for that each ordered lot contains some defective items and shortages backordered.

It is assumed that 100% of each lot are screened to separate good and defective items which are collection of imperfect

quality and scrap items. The effect of percentage defective on optimal solution is studied while numerical examples are

provided for the developed model.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Economic order quantity model (EOQ) is a
technique to find out optimum order quantity
generally by considering costs of procurement,
inventory holding, and backorder. The basic
assumption of the classical EOQ model is that
100% of ordered items are perfect. This assumption
may not be valid for most of the production
environments. Starting from this point, researchers
have developed different EOQ and economic
production quantity (EPQ) models with percentage
defective items.
e front matter r 2006 Elsevier B.V. All rights reserved
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Rosenblatt and Lee (1986) proposed an EPQ
model for a production system which contains
defective production. The basic assumption in their
model is that the production system produces 100%
non-defective products from the starting point of
production until a time point which is a random
variable. At this time point, system becomes out of
control and starts to produce defective items with a
percentage of production until end of the produc-
tion period. It is assumed that the distribution of
time passes until system becomes out of control
state is exponential. Backorder is not allowed in
their model. Kim and Hong (1999) extended
Rosenblatt and Lee’s (1986) model with the
assumption of the distribution of the time passes
until system becomes out of control is arbitrarily
distributed. Chung and Hou (2003) combined
aforementioned models by allowing assumption of
.
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Nomenclature

D demand rate in units per unit time
y order size for each cycle
w maximum backorder level allowed
k fixed cost of placing an order
c unit variable cost
p percentage of defective items in y

f(p) probability density function of p

s unit selling price of good-quality items
v unit selling price of imperfect-quality

items, uoc

cS unit disposal cost for scrap items

h holding cost per unit per unit time
p backorder cost per unit per unit time
y percentage of scrap items in defective

items
x screening rate in units per unit time
d unit screening cost
E(.) expected value operator
t1 time to build up a backorder level of ‘w’

units
t2 time to eliminate the backorder level of

‘w’ units
t3 time to screen y units ordered per cycle
t cycle length
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backorders. Also, all of these models did not
consider the time required to rework on defective
items to make them good-quality items.

Hayek and Salameh (2001) developed an EPQ
model for percentage defective that has a uniform
distribution. The basic assumptions of this model
are allowing backorders, all of the defective items
are reworked and become perfect quality and
rework time also is considered in the model. Chiu
(2003) extended Hayek and Salameh’s (2001) model
by combining the assumptions of a portion of the
defective items are reworked to make them good-
quality item instead of reworking on all of the
defective items and the remaining items are sold on
a sale price.

Chan et al. (2003) developed three EPQ models
with the assumption of the quantifiable basic
property of produced products has a Gaussian
distribution. They classified products as good
quality, good quality after reworking, imperfect
quality and scrap. Crucial assumptions of these
models are not allowing backorders, reworking time
is zero and imperfect-quality products are sold on
sale prices. The basic assumption which distin-
guishes these models is selling times of imperfect-
quality items are different from each other. There-
fore, holding costs per cycle are not identical.
Salameh and Jaber (2000) developed an EOQ model
for circumstances where a fraction of the ordered lot
is of imperfect quality and has a uniform distribu-
tion. Their model assumed that shortages are not
permitted to occur. Goyal and Cardenas-Barron
(2002) reworked on the paper by Salameh and Jaber
(2000) and presented a practical approach to
find out the optimal lot size. Papachristos and
Konstantaras (2006) re-studied and developed the
sufficient conditions for models given by Salameh
and Jaber (2000) and Chan et al. (2003).

In many real-life conditions, stockout is unavoid-
able because of various uncertainties in the related
system. Therefore, the occurrence of shortages in
inventory could be considered as a natural phenom-
enon. In this paper, Salameh and Jaber’s (2000)
model is extended by allowing shortages back-
ordered. Also, the effects of different levels of
defectives fractions on lot size and expected total
profit are examined.

2. Mathematical model

In this paper, we assumed that a lot size of ‘y’ is
replenished instantaneously at the beginning of each
period with a purchasing price of ‘c’ per unit and
ordering cost of ‘k’ per order. It is assumed that
each lot contains percentage defectives of ‘p’, with a
known probability density function, f(p). Each lot
received is screened 100% with a screening rate per
unit time of x to separate good and defective items.
It is assumed that defective items contain imperfect-
quality items with a rate of 1�y and scrap items
with a rate of y. At the end of screening process,
imperfect-quality items are sold as a single lot and
scrap items are subtracted from inventory with unit
cost of cS. The selling prices of good- and imperfect-
quality items are s and v per unit, respectively,
where s4v.

The behaviour of the inventory level is illustrated
in Fig. 1. It is assumed that the rate of good
-quality items which are screened during t2 is (1�p)
in Fig. 1. A part of these good-quality items meet
the demand with a rate of D and the remaining
is used to eliminate backorders with a rate of
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Fig. 1. Behaviour of the inventory level over time.
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(1�p)x�D ¼ x(1�p�D/x). The screening process
finishes up at the end of time interval of t3 and
defective items of py are subtracted from inventory.

Since the demand has been met from perfect-
quality items, the period length t is calculated by
dividing the amount of perfect-quality items in a
period to amount of demand in unit time

t ¼
ð1� pÞy

D
. (1)

Since percentage of defective items, p, is a random
variable, the expected value of period length is
given by

EðtÞ ¼
1� EðpÞ½ �y

D
. (2)

Referring to Fig. 1, the findings are as follows.
The time, t1, needed to build up a backorder level

of ‘w’ units is

t1 ¼
w

D
, (3)

the time, t2, needed to eliminate the backorder level
of ‘w’ units is

t2 ¼
w

xA
, (4)

where A ¼ 1�p�D/x, and

t2 ¼
y� z

ð1� pÞx
. (5)

The value of z is obtained by using Eqs. (4) and (5)
as follows:

z ¼ y�
ð1� pÞw

A
. (6)
The time, t3, needed to screen y units ordered per
cycle is

t3 ¼ y=x. (7)

Again, referring to Fig. 1, t3�t2 can be written as

t3 � t2 ¼ ðz� z1 � pyÞ=D. (8)

z1 is obtained from Eqs. (7) and (8) as follows:

z1 ¼ Ay� w. (9)

The components of total cost per cycle, TC,
which are procurement cost per cycle, screening cost
per cycle, disposal cost per cycle, shortage cost per
cycle, and holding cost per cycle are then written as
follows:

TC ¼ ðcyþ kÞ þ ðdyÞ þ ðcSy pyÞ þ
pðt1 þ t2Þw

2

� �

þ h
t2ðyþ zÞ

2
þ
ðt3 � t2Þðzþ z1 þ pyÞ

2

� ��

þ
ðt� t1 � t3Þz1

2

��

¼ ðcþ d þ cSy pÞyþ k þ
h

2

�
2�D=x

x
þ
ð1� p�D=xÞ2

D

� �
y2

�
hð1� pÞwy

D
þ
ðhþ pÞð1� pÞw2

2Dð1� p�D=xÞ
. ð10Þ

On the other hand, total revenue, TR, from good-
and imperfect-quality items is as follows:

TR ¼ sð1� pÞyþ vð1� yÞpy. (11)

Since cycle length is a variable, using the renewal
reward theorem, expected total profit per unit time
is given as

EðTPUÞ ¼
EðTRÞ � EðTCÞ

EðtÞ

¼ sDþ
vDð1� yÞEðpÞ

E1

�
Dðcþ d þ cSyEðpÞÞ

E1
�

kD

yE1

�
hE4y

2E1
þ hw�

ðhþ pÞE2w
2

2yE1
. ð12Þ

where

E1 ¼ 1� EðpÞ; E2 ¼ E
1� p

1� p�D=x

� �
,

E3 ¼ E ð1� p�D=xÞ2
� 	

; E4 ¼
Dð2�D=xÞ

x
þ E3.
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Because E(TPU) is strictly concave (see Appendix),
the partial derivatives of E(TPU), given in
Eq. (12), with respect to w and y are set equal to
zero separately to obtain optimum values of w, w*,
and y, y*.

Then, w* and y* are given as follows:

y� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kD

h E4 �
hE2

1

ðhþpÞE2

� �
vuut , (13)

w� ¼
hE1y�

ðhþ pÞE2
. (14)

The following conditions must be hold that the
developed model is valid:
1.
 Following constraints must be kept in mind to
eliminate backorders:

xEð1� p�D=xÞ40 or EðpÞo1�D=x (15)

and

x4D. (16)
2.
 Screening time, t3, must be at least equal or
greater than the expected value of the time to
eliminate backorder, E(t2). This fact is shown
by Eq. (17). Otherwise, a portion of the back-
order would not be eliminated at the end of
a per

Eðt2Þpt3

or

h

hþ p
p

Eð1� p�D=xÞE2

1� EðpÞ
. (17)

2.1. Result verification

If shortage cost is infinite, and scrap rate and unit
scrap cost are zero then the model with no shortages
is attained. Thus, the following reduced forms of
Eqs. (12)–(14) are achieved:

EðTPUÞ ¼ sDþ
vDEðpÞ

E1
�

Dðcþ dÞ

E1
�

kD

yE1
�

hE4y

2E1
,

(18)

y� ¼

ffiffiffiffiffiffiffiffiffi
2kD

hE4

s
, (19)

w� ¼ 0. (20)
It is expected to obtain the same model that is
given by Salameh and Jaber (2000) herein. Their
model is characterized by Eq. (9) and the corrected
form of Eq. (10), which is given by Cardenas-
Barron (2000). Since Salameh and Jaber (2000) did
not employ the renewal reward theorem when
expected total profit per unit time is obtained, the
reduced model is different from their model.

Further, suppose that defective’s fraction, p, is
zero. This yields screening time, t3, and unit
screening cost, d, are zero and screening rate, x,
is infinite. Thus, E1 ¼ E2 ¼ E3 ¼ E4 ¼ 1 and
Eqs. (12)–(14) are reduced to the following equa-
tions which are the same equations as those given by
classical EOQ model with shortages:

TPU ¼ ðs� cÞD�
kD

y
�

hy

2
þ hw�

ðhþ pÞw2

2y
,

(21)

y� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kDðhþ pÞ

hp

r
, (22)

w� ¼
hy�

ðhþ pÞ
. (23)

3. Numerical example

A company orders a product as lots to meet
outside demand. The defective fraction in each lot
has a uniform distribution with the following
probability density function:

f ðpÞ ¼
10; 0ppp0:1;

0 otherwise:

�

The demand rate is 15,000 units while the
screening rate is 60,000 units annually. Order cost
is $400 per order. Unit holding and shortage costs
per year are $4 and $6, respectively. Unit purchase,
screening and disposal costs are $35, $1, and $2,
respectively. Selling price of good- and imperfect-
quality items are $60 and $25, respectively. The
portion of scrap items in defective items is 20%.

Thus, the model parameters are given as follows:
D ¼ 15,000, k ¼ 400, h ¼ 4, p ¼ 6, x ¼ 60,000,
d ¼ 1, c ¼ 35, s ¼ 60, v ¼ 25, y ¼ 0.2, cS ¼ 2.

By using the above parameters; E(p) ¼ 0.05,
E1 ¼ 0.95, E2 ¼ 1.357752, E3 ¼ 0.490833, E4 ¼

0.928333, the optimum values of solution are
calculated as: y* ¼ 2128.06 units, w* ¼ 595.59 units,
E(TPU)* ¼ $341,116.89. In addition, Eqs (15)–(17)
are valid herein.
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Fig. 4. Variation of scrap rate effects on optimal E(TPU).
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3.1. Effect of defective rate on w*, y* and E(TPU)

Suppose that the probability density function of p

is given as follows to study the effects of defectives
and scrap rate to optimal solution:

f ðpÞ ¼
1=b; 0pppb;

0 otherwise:

�

Figs. 2 and 3 illustrate behaviour of optimal
order, y*, and backorder, w*, quantities, and
optimal E(TPU) for the upper bounds of different
defectives fractions, b, respectively. One notices
that, when b, equally the expected defectives rate,
increases then values of w* and E(TPU)* decrease
while y* increases.

On the other hand, Fig. 4 shows behaviour of
optimal E(TPU) for different scrap rates, y . When
scrap rates increase, values of E(TPU) decrease.
Since y* and w* are independent of scrap rate (see
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Fig. 2. Variation of defective rate effects on optimal order and

backorder quantities.
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Fig. 3. Variation of defective rate effects on optimal E(TPU).
Eqs. (13) and (14)) their values will not change over
the ranges of scrap rates.

4. Summary and conclusion

Classical EOQ model is not appropriate when
ordered lots have some defective items. Therefore,
new models are required for more realistic solutions
in real-life problems. Such an EOQ model is
developed when each ordered lot contains some
defective items and shortages backordered in this
paper. It is assumed that defective rate is a random
variable with uniformly distributed and defective
items are classified as scraps and imperfects, which
are sold on a discounted selling price as a single lot.
An example is provided for the developed model
and effects of individual changes in defective and
scrap rates on optimal solution have been studied.
One notices that, when defective and scrap rates
increase individually, the optimal total profit per
unit time decreases.

Appendix. Proof of concavity of E(TPU) function

Let us consider the following Hessian matrix (H):

H ¼

q2EðTPUÞ
qy2

q2EðTPUÞ
qy@w

q2EðTPUÞ
qwqy

q2EðTPUÞ
qw2

2
64

3
75.

If

y w½ � � H½ � �
y

w

� �
o0; y; wa0,
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then the function of E(TPU) is strictly concave.

q2EðTPUÞ

qy2
¼ �

2kDþ ðhþ pÞE2w
2

E1y3
,

q2EðTPUÞ

qw2
¼ �
ðhþ pÞE2

E1y
,

q2EðTPUÞ

qyqw
¼

q2EðTPUÞ

qwqy
¼
ðhþ pÞE2w

E1y2

and

yw½ � H½ �
y

w

� �
¼ �

2kD

E1y
o0.

Therefore, the function of E(TPU) is strictly
concave. Thus, y* and w* which make E(TPU)
maximum have single values.
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