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Abstract

An analytical decoupling control method is proposed for multiple-input–multiple-output (MIMO) processes with multiple time
delays. The desired diagonal system transfer matrix is proposed first in terms of the H2 optimal performance specification, resulting
in the ideal desired decoupling controller matrix derived within the framework of a unity feedback control structure. It is demonstrated
that dead-time compensators must be enclosed in the decoupling controller matrix to realize absolute decoupling for MIMO processes
with multiple time delays. To alleviate the difficulties associated with the implementation, the ideal desired decoupling controller matrix is
transformed into a practical form using an analytical approximation approach. Correspondingly, the stability of the resultant control
system is assessed, together with its robust stability in the presence of process uncertainties. An on-line tuning rule for the single adjust-
able parameter of each column controllers in the decoupling controller matrix is given to cope with the process unmodeled dynamics.
Finally, illustrative examples are given to show the superiority of the proposed method over the recently improved decoupling control
methods.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Effective control of multivariable processes is a difficult
issue in the context of process control. Because of loop
interactions, well established control methods for single-
input–single-output (SISO) systems can hardly be extended
to multiple-input–multiple-output (MIMO) systems [1,2].
Besides, due to the existence of multiple time delays in such
a multivariable process, high gains are kept from being
used in the individual control loops, resulting in sluggish
system response and degraded decoupling regulation
[3,4]. Many different control strategies have been developed
to overcome the aforementioned obstacles. On the basis of
successful application of the Smith predictor (abbr. SP) for
SISO systems, earlier literature [3,5] applied SP to MIMO
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processes with time delays to obtain a delay-free character-
istic equation of such a system transfer function matrix,
and then extended some previous decoupling/decentralized
control methods developed for linear multivariable systems
without time delay. Improved tuning capacity within the
framework of a multivariable SP structure have been
reported [6,7] in terms of frequency response specifications
such as ultimate frequency and magnitude/phase margins.
In contrast, based on the internal model control (IMC)
structure [8], essentially similar to an SP structure,
enhanced decoupling control methods have been proposed
[9–11] using some numerical optimization algorithms in
frequency domain. Subsequently, an analytical tuning
method [12] was derived to relieve such a computation
effort. About the same time, on-line sequential tuning
methods using frequency response data obtained from
relay feedback tests have been reported [13–16], while the
simultaneous auto-tuning methods [17–19] have also been
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Fig. 1. Conventional unity feedback control structure.
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presented for some industrial multivariable processes with
time delays. Owing to the primary requirement of decou-
pling regulation for many industrial MIMO processes, a
large number of existing methods utilized a decoupler aug-
mented to such a MIMO process to procure diagonal dom-
inance of the system transfer matrix, and then configured
the decentralized controllers by means of some up-to-date
decentralized/multiloop control methods. For example,
recent Refs. [20–23] presented some decoupling control
strategies based on dynamic decouplers, while the static
decoupler, i.e. the inverse of the process static gain transfer
matrix, was adopted in the recent literature [24–26]. How-
ever, the requirements of properness and causality for
implementation make it difficult for dynamic decouplers
to be configured precisely, especially for MIMO processes
with high dimension or large time delays [13,20]. A static
decoupler, on the other hand, does not affect dynamic
decoupling for the resultant system. It should be noted that
although recently enhanced multiloop/decentralized con-
trol methods, e.g. Refs. [27–30], can achieve remarkable
improvement in system performance, tuning of the loop
controllers aims at the compromise between achievable sys-
tem performance and cross-interaction level among indi-
vidual loops. This, inevitably, leads to performance
degradation when compared to a MIMO control system
with a full controller matrix [4,8]. Therefore, when high
performance of both system response and decoupling regu-
lation is required, decoupling control strategies are pre-
ferred in engineering practice.

Recently, Wang et al. [31] presented a decoupling con-
troller matrix design method within the framework of a
unity feedback control structure. By proposing a desirable
system response transfer matrix, the executable decoupling
controller matrix was derived using a recursive-least-square
(RLS) optimization algorithm. Obvious improvement in
both system response and decoupling regulation can be
found over other decoupling control methods developed
recently. However, the numerical computation effort seems
burdensome for practical implementation, and evaluation
of the control system robust stability was left open despite
that it is common to be faced with process uncertainties in
practice. Based on the analytical controller design devel-
oped recently [12,32], this paper proposes a new analytical
design method for the decoupling controller matrix. As a
result, the computation effort can be relieved significantly
and the resultant decoupling controller matrix can be con-
veniently tuned on line to cope with process uncertainties.
Besides, an intuitive approach in terms of the multivariable
spectral radius criterion is presented for robust stability
analysis of the resultant control system. The paper is orga-
nized as follows: Section 2 briefly introduces the decoupling
control preconditions for MIMO processes. In Section 3,
the desired system response transfer matrix is proposed
according to the H2 optimal performance specification.
The ideal desired decoupling controller matrix and its prac-
tical form are derived analytically in Section 4. In Section
5, robust constraints for tuning the adjustable parameters
in the decoupling controller matrix are established to check
the closed-loop system stability in the presence of process
additive/multiplicative uncertainties. A corresponding
on-line tuning rule is also provided. Illustrative examples
are given in Section 6 to demonstrate the superiority of
the proposed method. Finally, conclusions are drawn in
Section 7.

2. Decoupling control preconditions

Consider the general transfer matrix form for a MIMO
process with time delays as the following:

G ¼

g11 � � � g1m

..

. ..
. ..

.

gm1 � � � gmm

2
664

3
775; ð1Þ

where gij ¼ g0;ije
�hijs; i, j = 1,2, . . . ,m, of which g0,ij is a de-

lay-free, physically proper and stable transfer function. The
application of the widely adopted unity feedback control
structure to the process is illustrated in Fig. 1, where di

and do represent respectively load disturbances injected
into the process inputs and outputs, and n the system out-
put measurement noises. The closed-loop system transfer
matrix can be determined as

H ¼ GCðI þ GCÞ�1
: ð2Þ

The decoupled system response transfer matrix, ideally,
should be in the form of

H ¼

h11 0 � � � � � � 0

0 h22 0 � � � 0

0 . .
. . .

. . .
.

0

0 � � � � � � 0 hmm

2
66664

3
77775; ð3Þ

where hii is a physically proper and stable transfer function,
and hij = 0 for i 5 j, i, j = 1,2, . . . ,m. That is, H should be a
non-singular diagonal transfer matrix, i.e., H = diag[hii]m·m

and det(H) 5 0.
Combining Eqs. (2) and (3), the fundamental decoupling

precondition can be ascertained as det[G(0)] 5 0, i.e., the
multivariable process to be regulated must be non-singular
in essence, or in other words, not ill-conditioned. Many
existing decoupling control methods had based exactly on
the process static gain matrix G(0) for the decoupler design.
This paper focuses on MIMO processes with det[G(0)] 5 0,
that is, the process output responses deserve to be decou-
pled from each other in essence.
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It can be seen from Eq. (2) that the controller matrix C

should be non-singular and bear the responsibility for
keeping (I + GC)�1 stable. Furthermore, to make system
operation easier, there should be no cross-interaction
between tuning each column controllers of C since each
column controllers have the same input signal and there
exists a mathematical postmultiplication relationship
between G and C. Thereby, decoupling regulation for indi-
vidual system output variables can be conveniently imple-
mented on line.
3. Desired system response transfer matrix

For a multivariable process, the achievable system out-
put responses are constrained by the process time delays
and right-half-plane (RHP) zeros of the process transfer
matrix determinant [4,8]. What is the optimal desired sys-
tem response transfer matrix corresponding to the achiev-
able system output responses? If this problem can be
explicitly ascertained in the first place, the ideal desired
decoupling controller matrix can then be inversely derived
within the framework of a unity feedback control structure.

Note that the inverse of H in Eq. (3) is also a diagonal
transfer matrix. Substituting Eq. (3) into Eq. (2), we obtain
the following controller matrix:

C ¼ G�1ðH�1 � IÞ�1 ¼ adjðGÞ
detðGÞ diag

hii

1� hii

� �
m�m

; ð4Þ

where adjðGÞ ¼ ½Gij�Tm�m is the adjoint of the process trans-
fer matrix G, and Gij denotes the complement minor corre-
sponding to each transfer element gij of G. Denote the
controller matrix C = [cij]m·m. According to the postmulti-
plication relationship between a square matrix and a diag-
onal matrix, each column controllers of C can be derived as

cji ¼
Gij

detðGÞ �
hii

1� hii
; i; j ¼ 1; 2; . . . ;m: ð5Þ

Let

pij ¼
Gij

detðGÞ ¼ p0;ije
Lijs; i; j ¼ 1; 2; . . . ;m; ð6Þ

where p0,ij represents the ‘delay-free’ part of pij, that is, at
least one term in either of the nominator and denominator
polynomials of p0,ij does not include any time delay and
thus is rational. It can be seen from Eqs. (4) and (6) that
G�1 ¼ ½pij�

T
m�m.

Define the ‘inverse relative degree’ of p0,ij to be nij

(i, j = 1,2, . . . ,m), that is, the largest integer that satisfies

lim
s!1

snij�1

p0;ij

¼ 0 ð7Þ

and let

Ni ¼ maxfnij; j ¼ 1; 2; . . . ;mg; i ¼ 1; 2; . . . ;m; ð8Þ
hi ¼ maxfLij; j ¼ 1; 2; . . . ;mg; i ¼ 1; 2; . . . ;m: ð9Þ
It can be seen from Eq. (5) that each column controllers of
C are related to the same diagonal element of H, i.e., all of
cji (j = 1,2, . . . ,m) are corresponding to the same diagonal
transfer function hii for i = 1,2, . . . ,m. Note that hi in Eq.
(9) is positive, which can be identified through Eq. (6) using
the algebra of linear matrix. Some or even all of the ith col-
umn controllers cji (j = 1,2, . . . ,m) may not be physically
realizable if the desired diagonal transfer function hii for
the ith system output response does not include an equiva-
lent time delay to offset hi. Also, it can be seen from Eq. (5)
that if the relative degree of the delay-free part of hii were
lower than Ni, some or even all of cji (j = 1,2, . . . ,m) would
not be proper and thus cannot be physically implemented.
In addition, det(G) may contain RHP zeros and if hii does
not include these RHP zeros, each of cji (j = 1,2, . . . ,m)
would be bundled with unstable poles, which is not allowed
in practice.

Considering the H2 optimal performance specification
of IMC theory [8] with the above implementation con-
straints, the practical desired diagonal elements of the
system response transfer matrix are proposed in the form
of

hii ¼
e�his

ðkisþ 1ÞNi

Yqi

k¼1

�sþ zk

sþ z�k
; i ¼ 1; 2; . . . ;m; ð10Þ

where ki is an adjustable parameter set for obtaining the
desirable response performance for the ith process output
variable, and zk (k = 1,2, . . . ,qi) are the RHP zeros of
det(G) excluding those canceled by the common RHP zeros
of Gij (j = 1,2, . . . ,m), and qi is their number and z�k the
complex conjugate of zk.

With the above practical desired diagonal elements
shown in Eq. (10), it can be ascertained from Eqs. (5)–(9)
that at least one of each column controllers of C can be
physically implemented in a proper and rational form,
while the others of the corresponding column controllers
can be practically implemented in series with some specified
dead-time compensators. Thus, the desired diagonal system
response transfer matrix shown in Eq. (3) can be realized,
resulting in decoupling regulation for the individual system
output variables.

The RHP zero number of det(G) can be ascertained
by observing its Nyquist curve. For the case of det(G)
with no RHP pole, the number of its Nyquist curve
encircling the origin is equal to its RHP zero number
according to the Nyquist stability criterion. Alterna-
tively, the RHP zeros of det(G) can be explicitly com-
puted using numerical solutions or any mathematical
software package.

For MIMO processes with multiple time delays, det(G)
may has infinite many RHP zeros due to multiple time
delay terms involved. In the case that det(G) has infinite
many RHP zeros but finite left-half-plane (LHP) zeros,
the desired system transfer matrix are proposed with the
following diagonal elements
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hii ¼
e�his

ðkisþ 1ÞNi
� /ðsÞe

ðhmax�hminÞs

/ð�sÞ
Yqi

k¼1

�s� zk

s� z�k
;

i ¼ 1; 2; . . . ;m; ð11Þ
where zk (k = 1,2, . . . ,qi) denote the finite LHP zeros of
det(G) excluding those equal to the complex conjugates
of the common RHP zeros of Gij (j = 1,2, . . . ,m), and hmin

is the minimum of all the time delay factors involved in
det(G) and hmax is the corresponding maximum. /(s) is de-
fined from the following reformulation of det(G), i.e.

detðGÞ ¼ /ðsÞe�hmins

wðsÞ ;
where w(s) is the least common denominator of all terms of
det(G), and /(s) is the corresponding numerator polyno-
mial, in which there exists at least one term that does not
contain any time delay and thus is rational. Apparently,
det(G) has the same zeros with /(s).

Note that /(�s) in Eq. (11) is the complex conjugate of
/(s) and all the zeros of /(�s) are located at the mirror
points of /(s) across the imaginary axis in the complex
plane. In fact, it can be seen that /(�s) may include time
prediction factors that are not allowed in a physical all-pass
filter, of which hmax � hmin is the maximal time prediction
length. The second part of hii shown in Eq. (11),

/ðsÞeðhmax�hminÞs

/ð�sÞ
Yqi

k¼1

�s� zk

s� z�k
thus can be ideally viewed as an all-pass filter, contributing
to achieving the H2 optimal performance specification for
system output response. It should be noted that there inev-
itably exists RHP zero-pole cancellation in this filter,
which, however, cannot be removed directly from the
expression. A transformation is therefore needed to
approximate it for implementation. For this reason, an
analytical approximation method will be presented in Sec-
tion 4. Besides, it should be noted that although det[G(s)]/
det[G(�s)] can be directly utilized to configure the all-pass
part of these diagonal elements, an additional all-pass fil-
ter, w(�s)/w(s), will be unfavorably introduced, which
tends to degrade the achievable system performance and
thus is not recommended.

For the case that det(G) has infinite number of RHP and
LHP zeros, it is suggested to use those dominant RHP
zeros of det(G) to construct the desired system response
transfer matrix. This will facilitate the decoupling control-
ler matrix to be analytically derived in a simple way, but at
the cost of certain system performance. Hence, a balance
needs to be made by the users between the achievable con-
trol system performance and the calculation complexity for
deriving the corresponding controller matrix and its cost of
implementation. According to the frequency domain con-
trol theory, e.g. [4], off-dominant zeros of a control system
characteristic equation actually have little impact on the
achievable system performance.

To sum up, the desired diagonal system response trans-
fer matrix forms are listed in Table 1 according to four pos-
sible cases of the RHP zero distribution of det(G) in the
complex plane.
4. Decoupling controller matrix design

According to the proposed diagonal system response
transfer matrix listed in Table 1, the ideal desired decou-
pling controller matrix C can be derived by using Eq. (5).
For instance, with Case 2 that det(G) has finite RHP zeros,
each column controllers of the ideal desired decoupling
controller matrix can be derived as

cideal;ji ¼
Gij

detðGÞ �
e�hi s

ðkisþ1ÞNi

Qqi
k¼1

�sþzk
sþz�k

1� e�hi s

ðkisþ1ÞNi

Qqi
k¼1

�sþzk
sþz�k

;

i; j ¼ 1; 2; . . . ;m: ð12Þ
For a MIMO process with multiple time delays, it can be
seen from Eq. (6) that the first part of Eq. (12) is not a ra-
tional transfer function and thus difficult to be imple-
mented in practice. In addition, the RHP zeros of det(G)
will cause RHP zero-pole cancellation in Eq. (12), trigger-
ing the decoupling controller matrix to behave in an unsta-
ble manner. A practical form is therefore required to
transform the ideal desired form of Eq. (12) for
implementation.

Using Eqs. (6)–(9), we rearrange Eq. (12) in the form
of

cji ¼
Dije

�ðhi�LijÞs

ðkisþ 1ÞNi
Qqi

k¼1ðsþ z�kÞ
� 1

1� e�his

ðkisþ1ÞNi

Qqi
k¼1

�sþzk
sþz�k

;

i; j ¼ 1; 2; . . . ;m; ð13Þ

where ki becomes the common adjustable parameter of
each column controllers in C and

Dij ¼ p0;ij

Yqi

k¼1

ð�sþ zkÞ: ð14Þ

Note that the second part of cji has the following
properties:

lim
s!1

1

1� e�his

ðkisþ 1ÞNi

Yqi

k¼1

�sþ zk

sþ z�k

¼ 1; ð15Þ

lim
s!0

1

1� e�his

ðkisþ 1ÞNi

Yqi

k¼1

�sþ zk

sþ z�k

¼ 1: ð16Þ

Thus it can be viewed as a special integrator with relative
degree of zero that is capable of eliminating the steady-
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Fig. 2. Positive feedback control unit.

Table 1
Ideal desired forms of system response transfer matrix and decoupling controller matrix

det(G) hii (i = 1,2, . . . ,m) cji (i, j = 1,2, . . . ,m)

Case 1 No RHP zero

e�his

ðkisþ 1ÞNi

Dije
�ðhi�LijÞs

ðkisþ 1ÞNi
� 1

1� e�his

ðkisþ 1ÞN i

; Dij ¼ p0;ij:

Case 2 Finite RHP zeros
[zk (k = 1,2, . . . ,qi) = the RHP
zeros excluding those canceled
by the common RHP zeros of
Gij(j = 1,2, . . . ,m)] e�his

ðkisþ 1ÞNi

Yqi

k¼1

�sþ zk

sþ z�k

Dije
�ðhi�LijÞs

ðkisþ 1ÞNi
Qqi

k¼1ðsþ z�kÞ
� 1

1� e�his

ðkisþ 1ÞNi

Yqi

k¼1

�sþ zk

sþ z�k

;

Dij ¼ p0;ij

Yqi

k¼1

ð�sþ zkÞ:
Case 3 Infinite RHP and LHP zeros

[zk (k = 1,2, . . . ,qi) = the
dominant RHP zeros excluding
those canceled by the common
RHP zeros of
Gij (j = 1,2, . . . ,m)]

Case 4 Infinite RHP but finite LHP
zeros [zk (k = 1,2, . . . ,qi) = the
LHP zeros excluding those
equal to the complex conjugates
of the common RHP zeros of
Gij (j = 1,2, . . . ,m)]

e�his

ðkisþ 1ÞNi
� /ðsÞe

ðhmax�hminÞs

/ð�sÞ

�
Yqi

k¼1

�s� zk

s� z�k

GijDijwðsÞeðhmin�hiÞs

ðkisþ 1ÞNi
Qqi

k¼1ðs� z�kÞ
� 1

1� Dij/ðsÞe�his

ðkisþ 1ÞNi
Qqi

k¼1ðs� z�kÞ

;

Dij ¼
eðhmax�hminÞs

/ð�sÞ
Yqi

k¼1

ð�s� zkÞ:
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state system output offset, which in fact can be imple-
mented using a positive feedback control unit as shown
in Fig. 2.

For Dij in Eq. (13), the linear fractional Padé expansion
has been shown to be able to approximate the similar func-
tion with high accuracy [12,32], so it is adopted here for Dij

by

DU=V ¼
PU

k¼0akskPV
k¼0bksk

; ð17Þ
where U and V are the user-specified orders to achieve the
desirable system response performance specification, and
the constant coefficients ak and bk are determined by the
following two matrix equations:
a0

a1

..

.

aU

2
6666664

3
7777775
¼

d0 0 0 � � � 0

d1 d0 0 � � � 0

..

. ..
. . .

.
� � � ..

.

dU dU�1 dU�2 � � � dU�V

2
6666664

3
7777775

b0

b1

..

.

bV

2
6666664

3
7777775
; ð18Þ

dU dU�1 � � � dU�Vþ1

dUþ1 dU � � � dU�Vþ2

..

. ..
. . .

. ..
.

dUþV�1 dUþV�2 � � � dU

2
6666664

3
7777775

b1

b2

..

.

bV

2
6666664

3
7777775
¼�

dUþ1

dUþ2

..

.

dUþV

2
6666664

3
7777775
; ð19Þ
where dk (k = 0,1, . . . ,U + V) are the constant coefficients
of each term in the Maclaurin expansion series of Dij

shown in Eq. (14), i.e.,

dk ¼
1

k!
lim
s!0

dkDij

dsk ; k ¼ 0; 1; . . . ;U þ V ð20Þ

and b0 should be chosen as

b0 ¼
1; bk P 0;

�1; bk < 0:

�
ð21Þ

It should be noted that Eqs. (18) and (19) can be ob-
tained by substituting Eq. (17) into the Maclaurin expan-
sion series of Dij and then comparing the constant
coefficients of the complex variable at both sides of the
equation.

Remark. Note that a physical constraint for specifying U
and V, U � V 6 Ni + qi, is required so that cji obtained by
substituting Eq. (17) into Eq. (13) can be proper and
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realizable. Generally, V may be specified first and then U

can be taken by U = V + Ni + qi so as to obtain the best
approximation level. From a mathematical point of view,
y

u

� �
¼ GCðI þ GCÞ�1 ðI þ GCÞ�1G I � GCðI þ GCÞ�1 �GCðI þ GCÞ�1

CðI þ GCÞ�1 �CðI þ GCÞ�1G CðI þ GCÞ�1 �CðI þ GCÞ�1

" # r

d i

do

n

2
6664

3
7775: ð22Þ
it is preferred to reformulate p0,ij in Eq. (6) first in the form
of

p0;ij ¼
aðsÞ½1þ g1ðsÞe�r1s þ � � � þ gm�lðsÞe�rm�ls�
bðsÞ½1þ n1ðsÞe�d1s þ � � � þ nm�mðsÞe�dm�ms� ;

where a(s) and b(s) are rational polynomials, rk > 0
(k = 1,2, . . . ,m � l), dk > 0 (k = 1,2, . . . ,m � m), l < m

and m < m. U then can be taken initially as the order of
a(s) and V the order of b(s), in view of that those terms
with time delays in the nominator and denominator decay
much faster than a(s) and b(s) as s!1. It is obvious that
increasing the orders of U and V will result in better
approximation level, but at the cost of higher computation
effort and implementation complexity.

As for the choice of b0 in Eq. (21), the purpose here is to
keep all of bk (k = 0,1, . . . ,V) the same sign so as to exclude
any possibility of RHP zeros in the denominator of DU/V in
Eq. (17). This is a necessary but not sufficient condition.
The existence of such RHP zeros may be identified by the
Routh–Hurwitz stability criterion. It is therefore suggested
to utilize the Routh–Hurwitz criterion (or its simplified
version [34]) to check the stability of such a high order
approximation before being used in practice. Nevertheless,
the proposed approximation in terms of V 6 2 can be
directly utilized without such exercise, and thus is recom-
mended in engineering practice for simplicity.
For other cases of the RHP zero distribution of det(G)
as categorized in Section 3, the desired decoupling control-
ler matrix can be derived analytically following a similar
design procedure as the above. They are summarized in
Table 1, in which Dij of each case can be approximated
in a rational form for implementation using Eqs. (17)–(21).
5. Control system stability analysis

As analytical approximation is utilized to transform the
ideal desired decoupling controller matrix in Table 1 for
implementation, the stability of the resultant control sys-
tem needs to be checked. Besides, there exist always the
process unmodeled dynamics in practice. Evaluation of
the control system robust stability needs to be conducted
in the presence of process uncertainties, and correspond-
ingly, on-line tuning of the adjustable parameters in the
decoupling controller matrix needs to be studied to cope
with the process uncertainties.
For the nominal control system, it can be derived from
Fig. 1 that the transfer matrix from the system inputs r, di,
do and n to the outputs y and u is
It can be seen that r, do and n have similar impact on y and
u. Hence, the stability analysis for the nominal system can
be limited to the submatrix connecting r and di to y and u.
In view of that G has been assumed to be non-singular and
stable, and that there exists an equivalent transformation
GC(I + GC)�1 = I � (I + GC)�1, the sufficient and neces-
sary condition for holding the nominal system stability
can be concluded as that (I + GC)�1 must be stable, which
may be checked graphically by using the Nyquist curve cri-
terion, or numerically by computing whether det(I + GC)
has any RHP zeros.

In the presence of process uncertainties, the transfer
matrix in Eq. (22) could become very complex and the
closed-loop control system may lose stability in an
intangible manner. How to assess all of the stabilizing set
of C for various process uncertainties is difficult and
has remained as an open issue in the process control
community [4,33]. Here, the robust stability analysis is
focused on the process additive, multiplicative input and
output uncertainties, which are commonly encountered
in engineering practice. Usually, the process additive
uncertainties, shown in Fig. 3(a), can be viewed as param-
eter perturbation to the process transfer matrix and the
actual process family may be described as PA ¼ fG

_

AðsÞ :
G
_

AðsÞ ¼ GðsÞ þ DAg, where DA is assumed to be stable.
The process multiplicative input uncertainties, shown in
Fig. 3(b), can be loosely interpreted as the process input
actuator uncertainties and the actual process family may
be described as PI ¼ fG

_

IðsÞ : G
_

IðsÞ ¼ GðsÞðI þ DIÞg, where
DI is assumed to be stable. The process multiplicative out-
put uncertainties, shown in Fig. 3(c), can be practically
viewed as the process output measurement uncertainties
and the actual process family may be described as PO ¼
fG
_

OðsÞ : G
_

OðsÞ ¼ ðI þ DOÞGðsÞg, where DO is assumed to
be stable. Note that many other types of process
unstructured or structured uncertainties may be incor-
porated into the above-mentioned types of pro-
cess uncertainties in practice [4]. Hence, the robust
stability analysis presented in the following, without loss
of generality, can be applied to a wide variety of process
uncertainties.

By reorganizing the perturbed control system in the
form of the standard M � D structure for robustness anal-
ysis [33], the transfer matrix from the outputs to inputs of
DA, DI and DO can be derived respectively as
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Fig. 3. The process additive (a), multiplicative input (b), and output (c) uncertainties.

Fig. 4. Nyquist curve of the transfer matrix determinant of Example 1.
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MA ¼ �CðI þ GCÞ�1
; ð23Þ

M I ¼ �CðI þ GCÞ�1G; ð24Þ

MO ¼ �GCðI þ GCÞ�1
: ð25Þ

Note that MA, MI and MO hold stability provided that
the nominal control system has been conducted
stable, i.e., the transfer matrix in Eq. (22) has been guarded
stable.

Then using the small gain theorem, the robust stability
constraints can be obtained as

kCðI þ GCÞ�1k1 <
1

kDAk1
; ð26Þ

kCðI þ GCÞ�1Gk1 <
1

kDIk1
; ð27Þ

kGCðI þ GCÞ�1k1 <
1

kDOk1
: ð28Þ

The robust stability constraints shown in Eqs. (26)–
(28), however, are not analytical and the computation
effort for H infinity norm is considerably large, espe-
cially for MIMO processes with multiple time delays.
To relieve the computation burden, the equivalent rela-
tionship between the small gain theorem and the multivar-
iable spectral radius stability criterion [4] can be explored,
i.e.,

kMDk1 < 1 () qðMDÞ < 1 8x 2 ½0;1Þ:

Thereby, the above robust stability constraints can be
reformulated respectively as

qðCðI þ GCÞ�1DAÞ < 1 8x 2 ½0;1Þ; ð29Þ

qðCðI þ GCÞ�1GDIÞ < 1 8x 2 ½0;1Þ; ð30Þ

qðGCðI þ GCÞ�1DOÞ < 1 8x 2 ½0;1Þ: ð31Þ

Correspondingly, the spectral radius stability constraints
shown in Eqs. (29)–(31) can be checked graphically by
observing whether the magnitude plots of the left sides of
Eqs. (29)–(31) fall below the unity for all x 2 [0, +1). In
this way, the admissible tuning range of the adjustable
parameters of the decoupling controller matrix C can be
numerically ascertained. With a given bound of DA, DI or
DO, Eqs. (29)–(31) may be employed to evaluate the control
system robust stability. Even though the precise forms of
these uncertainties are usually not available in practice,
they may be characterized in the forms similar to those
illustrated in Section 6.
Combined with Eq. (10), it can be seen that with small
adjustable parameter ki in the decoupling controller matrix
C, the corresponding ith system output response becomes
faster, but the output energy of the ith column controllers
of C and their corresponding actuators grows larger, tend-
ing to surpass their output capacities in practice. Besides,
more aggressive dynamic behavior of the ith system output
response is likely to occur in the presence of process uncer-
tainties. On the contrary, increasing ki will slow down the
corresponding ith system output response, but the output
energy of the ith column controllers of C and their corre-
sponding actuators will be required smaller. Consequently,
less aggressive dynamic behavior of the ith system output
response will be yield in the presence of process uncertain-
ties. Therefore, tuning the adjustable parameters ki

(i = 1,2, . . . ,m) is a trade-off between the achievable system
response performance and the output capacities of C and
its corresponding actuators.

Based on the robust stability analysis and our simula-
tion experience, it is suggested to set the adjustable param-
eters ki (i = 1,2, . . . ,m) within the range of (1.0–10)hi

initially, and then adjust them monotonously on line to
achieve a desirable specification of system output
responses.

To cope with the process uncertainties, it is suggested to
increase monotonously the adjustable parameters ki

(i = 1,2, . . . ,m) of C on line, so that the nominal system
response will be gradually slowed down for better system
robust stability. If by doing so, the control system perfor-
mance and robust stability are still not acceptable, the pro-
cess re-identification will need to be conducted to obtain a
better process model for the derivation of C, so that the
process unmodeled dynamics can be effectively reduced to
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achieve better nominal system performance and robust
stability.

6. Illustrative examples

Two widely studied examples are employed here to dem-
onstrate the effectiveness and superiority of the proposed
decoupling control method. The first example is used for
the case that the process transfer matrix determinant has
no RHP zero, and the second example is for one of the
opposite cases.

Example 1. Consider the widely studied 3 · 3 industrial
distillation column [35]
Fig. 5. Nominal system res
G ¼

1:986e�0:71s

66:7sþ 1

�5:24e�60s

400sþ 1

�5:984e�2:24s

14:29sþ 1

�0:0204e�0:59s

ð7:14sþ 1Þ2
0:33e�0:68s

ð2:38sþ 1Þ2
�2:38e�0:42s

ð1:43sþ 1Þ2

�0:374e�7:75s

22:22sþ 1

11:3e�3:79s

ð21:74sþ 1Þ2
9:811e�1:59s

11:36sþ 1

2
6666666664

3
7777777775
:

The Nyquist curve of the process transfer matrix determi-
nant is drawn in Fig. 4. It is seen that the Nyquist curve
does not encircle the origin, so there is no RHP zero in
det(G). Using Eq. (6) yields L11 = 0.71, L12 = 0.8,
L13 = �1.4. Thus, h1 = 0.8 can be obtained from Eq. (9).
ponses for Example 1.



Fig. 6. Magnitude plots of spectral radius for Example 1.
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Then, Eq. (7) gives n11 = 1, n12 = 1, n13 = 0, so N1 = 1 can
be derived from Eq. (8). Similarly, the use of Eqs. (6)–(9)
can yield h2 = 0.68, h3 = 1.85 and N2 = 2, N3 = 1. Accord-
ing to the design formula for Case 1 in Table 1, the diago-
nal elements of the desired system response transfer matrix
are obtained as

h11 ¼
e�0:8s

k1sþ 1
; h22 ¼

e�0:68s

ðk2sþ 1Þ2
; h33 ¼

e�1:85s

k3sþ 1
:

Thereby, the decoupling controller matrix can be
derived using the analytical design formulae given in
Table 1 and Eqs. (17)–(21). Wang’s method [31] had
demonstrated its superiority over many existing decou-
pling control methods for this process, and thus is
adopted here for comparison. To obtain the similar con-
troller orders with those of Wang’s method for a fair com-
parison, the following executable controller matrix form is
given:
c11 ¼ f1 �
14543s2 þ 256:3578sþ 0:5502

ðk1sþ 1Þð438:7353sþ 1Þ e�0:09s;

c21 ¼ f1 �
12391s3 þ 746:2116s2 þ 9:7508sþ 0:0199

ðk1sþ 1Þð3940:3s2 þ 447:8424sþ 1Þ ;

c31 ¼ f1 �
1736:5s3 � 21:7287s2 � 0:8474s� 0:002

ðk1sþ 1Þð4815:4s2 þ 449:8302sþ 1Þ e�2:2s;

c12 ¼ f2 �
4773900s6 � 6620600s5 � 3286200s4 � 532380s3 � 41045s2 � 526:1791s� 0:296

ðk2sþ 1Þ2ð611700s4 þ 109510s3 þ 12128s2 þ 465:9313sþ 1Þ
e�3:73s;

c22 ¼ f2 �
13471000s6 þ 3306200s5 þ 892990s4 þ 117120s3 þ 6709:9s2 þ 142:0148sþ 0:3149

ðk2sþ 1Þ2ð336570s4 þ 33465s3 þ 9959:2s2 þ 461:3811sþ 1Þ
;

c32 ¼ f2 �
�197040s5 � 104730s4 � 29099s3 � 4024:9s2 � 171:9233s� 0:374

ðk2sþ 1Þ2ð257300s4 þ 55907s3 þ 10254s2 þ 461:9346sþ 1Þ
e�2:2s;

c13 ¼ f3 �
400930s4 þ 33536s3 þ 1342:3s2 þ 31:5279sþ 0:2638

ðk3sþ 1Þð33025s3 þ 3869:9s2 þ 447:5041sþ 1Þ e�1:79s;

c23 ¼ f3 �
16790s3 þ 1582:9s2 þ 39:2646sþ 0:0885

ðk3sþ 1Þð511:4853s2 þ 440:0233sþ 1Þ ;

c33 ¼ f3 �
2195s3 þ 212:3057s2 þ 5:2157sþ 0:01

ðk3sþ 1Þð1319:1s2 þ 441:8636sþ 1Þ e�0:26s;
where

f1 ¼
1

1� e�0:8s

k1sþ1

; f 2 ¼
1

1� e�0:68s

ðk2sþ1Þ2
; f 3 ¼

1

1� e�1:85s

k3sþ1

:

Note that f1, f2 and f3 can be implemented respectively
using the feedback control unit shown in Fig. 2. The
adjustable parameters are taken as k1 = 15, k2 = 12 and
k3 = 18 to have the similar rising speed of the system out-
put responses with Wang’s method. It should be mentioned
that although a unit step change of the setpoint inputs is
seldom adopted in engineering practice, it is performed
here for benchmark comparison as well as in Wang et al.
[31]. By adding a unit step change at t = 0, t = 200 and
t = 400 to the ternary setpoint inputs respectively, and a
step change of load disturbance with a magnitude of 0.1
to each of the ternary process inputs at t = 600 simulta-
neously, we obtain the system responses shown in Fig. 5.
It should be noted that the simulation solver option is cho-
sen as ode5 (Dormand-Prince) and the simulation step size
is fixed as 0.02 throughout this paper.

From Fig. 5, it is clearly seen that there is no overshoot
in the setpoint responses by using the proposed method,
and the ternary process output responses are almost decou-
pled from each other. Moreover, obviously improved load



182 T. Liu et al. / Journal of Process Control 17 (2007) 173–186
disturbance rejection performance is obtained. It should be
noted that better nominal system performance for the set-
point tracking and the load disturbance rejection can be
conveniently obtained in the proposed method by gradually
decreasing the adjustable parameters k1, k2 and k3 on line,
or by using a higher order controller matrix form that can
be analytically obtained using the design formulae Eqs.
(17)–(21). Besides, it should be mentioned that conventional
PID controllers are not capable of obtaining acceptable
system response performance or even cannot stabilize the
system output responses, due to the petty approximation
capacity for the ideal desired decoupling controller matrix
shown in Table 1. The same conclusion was illustrated in
Wang et al. [31] by using the Nyquist curve comparison.
Fig. 7. Perturbed system responses for Example 1 due to the
To demonstrate robustness of the proposed method, the
same perturbation tests are conducted as in Wang et al.
[31], that is, all the static gains of each element in the pro-
cess transfer matrix are actually 40% larger, and in another
case, all the time constants of each element in the process
transfer matrix are assumed 40% larger to introduce the
unmodeled dynamics. According to the robust stability
analysis given in Section 5, the magnitude plots of spectral
radius for identifying robust stability of the corresponding
perturbed systems are shown in Fig. 6. It can be seen that
both of the peak values (dotted and dash dot lines) are
much less than the unity, indicating that the proposed
control system facilitates good robust stability. Corre-
spondingly, the perturbed system responses are provided
process static gains (a) and time constants (b) variation.



Fig. 8. Perturbed system responses for Example 1 due to the process
multiplicative uncertainties.
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respectively in Fig. 7(a) and (b). Note that Fig. 7(a) has
demonstrated also that the process static gains perturba-
tion does not affect decoupling regulation of the system
output responses, as can be concluded from the analytical
controller matrix design procedure given in Section 4.
The corresponding ternary control outputs have varied lit-
tle compared with those shown in Fig. 5, and thus are omit-
ted for saving space.

To demonstrate robust stability of the proposed control
system against the process multiplicative uncertainties,
assume that there actually exist the process multiplicative
input uncertainties DI = diag[(s + 0.3)/(s + 1), (s + 0.2)/
(s + 1), (s + 0.2)/(s + 1)]3·3. This can be loosely interpreted
as the first process input actuator has up to 100% uncer-
tainty at high frequencies and almost 30% uncertainty in
the low frequency range, while the other two process inputs
increase by up to 100% uncertainty at high frequencies and
by almost 20% uncertainty in the low frequency range. In
another case, assume that there exist the process multipli-
cative output uncertainties DO = diag[�(s + 0.2)/(2s + 1),
�(s + 0.2)/(2s + 1),�(s + 0.3)/(2s + 1)]3·3, which can be
practically viewed as the first two process output measure-
ments obtained from the corresponding sensors decrease by
up to 50% uncertainty at high frequencies and by almost
20% uncertainty in the low frequency range, while the third
process output measurement decreases by up to 50% uncer-
tainty at high frequencies and by almost 30% uncertainty in
the low frequency range. Fig. 6 has shown the correspond-
ing magnitude plots of spectral radius based on the
assumed DI (thin solid line) and DO (thick solid line), both
of which indicate that the proposed control system could
preserve robust stability well. The corresponding perturbed
system responses are shown in Fig. 8.

Example 2. Consider the binary process studied by Jerome
and Ray [9]

G ¼

1:05e�4:58s

1:64sþ 1

0:32

ð1:6sþ 1Þð1:61sþ 1Þ
1:18e�15:2s

3:6sþ 1

0:9

ð4:5sþ 1Þð4:51sþ 1Þ

2
6664

3
7775:

It had been ascertained in Jerome’s paper that there are
infinite many RHP zeros and four LHP zeros in the process
transfer matrix determinant, and the four LHP zeros are
the approximate roots of the following polynomial:

vðsÞ ¼ ð1:64sþ 1Þð4:0542sþ 1Þð40:459s2 þ 11:116sþ 1Þ:

Thus this process belongs to Case 4 in Table 1.

First, we write the process transfer matrix determinant
in the form of
detðGÞ ¼ ½0:945ð1:6sþ 1Þð1:61sþ 1Þð3:6sþ 1Þ � 0:3776ð1:64sþ
ð1:64sþ 1Þð4:5sþ 1Þð4:51sþ 1Þð1:6sþ
Thereby, it follows that hmin = 4.58, hmax = 15.2, and /(s)
is the polynomial within the square bracket of the numer-
ator and w(s) the denominator polynomial.
1Þð4:5sþ 1Þð4:51sþ 1Þe�10:62s�e�4:58s

1Þð1:61sþ 1Þð3:6sþ 1Þ :
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Subsequently, using Eqs. (6)–(9) yields h1 = h2 = 4.58
and N1 = N2 = 2. So the diagonal elements of the desired
system response transfer matrix can be obtained using
Table 1 as

h11 ¼
D/ðsÞe�4:58s

vðsÞðk1sþ 1Þ2
; h22 ¼

D/ðsÞe�4:58s

vðsÞðk2sþ 1Þ2
;

where
D ¼ ð�1:64sþ 1Þð�4:0542sþ 1Þð40:459s2 � 11:116sþ 1Þ
0:945ð�1:6sþ 1Þð�1:61sþ 1Þð�3:6sþ 1Þe�10:62s � 0:3776ð�1:64sþ 1Þð�4:5sþ 1Þð�4:51sþ 1Þ :
Note that D cannot be directly implemented due to the
RHP zero-pole cancellation. The proposed analytical
approximation formula Eq. (17) is therefore used by taking
U = 2 and V = 1 for simplicity, resulting in its rational
approximation

D2=1 ¼
20:1786s2 þ 10:0787sþ 1:7624

0:5868sþ 1
:

Then, the use of the design formula for Case 4 in Table 1
results in the decoupling controller matrix
C ¼ Dc �

0:9F 1ð1:64sþ 1Þ
ðk1sþ 1Þ2

� 0:32F 2ð1:64sþ 1Þð4:5sþ 1Þð4:51sþ 1Þ
ðk2sþ 1Þ2ð1:6sþ 1Þð1:61sþ 1Þ

� 1:18F 1ð1:64sþ 1Þð4:5sþ 1Þð4:51sþ 1Þe�15:2s

ðk1sþ 1Þ2ð3:6sþ 1Þ
1:05F 2ð4:5sþ 1Þð4:51sþ 1Þe�4:58s

ðk2sþ 1Þ2

2
6664

3
7775;
where

Dc ¼
D2=1ð1:6sþ 1Þð1:61sþ 1Þð3:6sþ 1Þ

vðsÞ ;

F 1 ¼
1

1� D2=1/ðsÞe�4:58s

vðsÞðk1sþ1Þ2

; F 2 ¼
1

1� D2=1/ðsÞe�4:58s

vðsÞðk2sþ1Þ2

:

Note that both F1 and F2 can be practically implemented
using the feedback control unit shown in Fig. 2.

It should be noted that Jerome and Ray [9], based on the
standard IMC structure, suggested a controller matrix
design that seemed to be capable of dumping all of the
undesirable response dynamics on a single-output variable
to obtain apparently improved response performance of
the other output variables. For comparison, the optimiza-
tion of the second output variable at the cost of severely
degraded response performance of the first output variable,
is repeated here. In our proposed method, the adjustable
parameters are taken as k1 = 3.5 and k2 = 3.0 to obtain
the similar rising speed of the system output responses with
Jerome’s method. By adding a unit step change at t = 0 and
150 respectively to the binary setpoint inputs, and an
inverse step change of load disturbance with a magnitude
of 0.1 to the binary process inputs at t = 300 simulta-
neously, we obtain the system output responses shown in
Fig. 9.

From Fig. 9, it can be seen that entirely decoupled bin-
ary system output responses have been achieved by using
the proposed method (solid line), and the second process
output response is comparable with that of Jerome’s
method, baring from a small time delay that is employed
to yield the decoupled output responses. Note that Jer-
ome’s method has resulted in severe oscillation in the first
process output response and the oscillatory binary control
output signals are less likely acceptable from a practical
point of view. Therefore, it is demonstrated that the
method of sacrificing the dynamic response performance
of one process output for improvement of the other process
output responses is worthless in contrast to the proposed
decoupling control method.

To compare the control system robust stability, assume
that all the time constants of the process transfer matrix are
actually 20% larger to introduce the unmodeled dynamics.
The perturbed system output responses are provided in
Fig. 10.

It is obvious again that the proposed decoupling control
system holds good robust stability in the presence of these
severe process uncertainties. It should be noted that the
control outputs of the proposed control system have varied
only slightly while those of Jerome’s method exhibited
much severer oscillation, both of which are omitted for sav-
ing space.
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Fig. 10. Perturbed system output responses for Example 2.
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Fig. 9. Nominal system output responses for Example 2.
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7. Conclusions

An analytical decoupling controller matrix design has
been proposed within the framework of a conventional
unity feedback control structure that is widely adopted in
engineering practice. It has been demonstrated that the
proposed method can realize significant or even absolute
decoupling regulation for the nominal system. The key lies
with the formulation of a practical desired closed-loop sys-
tem transfer matrix in terms of the H2 optimal performance
specification and analysis of the non-minimum-phase
(NMP) characteristic of the process inverse transfer matrix
(i.e. G�1). New concepts of ‘inverse relative degree’ and
‘time delay’ have been introduced and defined in this paper
for each transfer element of G�1. The resultant controller
design can be conducted with much reduced computation
effort compared with recently improved decoupling control
methods based on some numerical optimization algo-
rithms. The stability has been analyzed for both the
nominal system and the perturbed system with process
additive, multiplicative input and output uncertainties that
are often encountered in practice. Tuning of the decoupling
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controller matrix for balance between the nominal system
performance and its robust stability can be conveniently
performed on line, owing to that each column controllers
of the proposed decoupling controller matrix can be tuned
in common by a single adjustable parameter in a monoto-
nous manner.
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