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Abstract

In this paper, a stable adaptive fuzzy-based tracking control is developed for robot systems with parameter uncertainties
and external disturbance. First, a fuzzy logic system is introduced to approximate the unknown robotic dynamics by using
adaptive algorithm. Next, the effect of system uncertainties and external disturbance is removed by employing an integral
sliding mode control algorithm. Consequently, a hybrid fuzzy adaptive robust controller is developed such that the result-
ing closed-loop robot system is stable and the trajectory tracking performance is guaranteed. The proposed controller is
appropriate for the robust tracking of robotic systems with system uncertainties. The validity of the control scheme is
shown by computer simulation of a two-link robotic manipulator.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In the recent decades, the tracking control of robot manipulators has received a great of attention. Tracking
control is needed to make each joint track a desired trajectory as close as possible. Many control algorithm
such as computer torque method [1,2], optimal control [3,4], adaptive control [5,6], variable structure control
(VSC) [7–9], neural networks (NNs) [10–12] and fuzzy system [3,4,13–17] have been proposed to deal with this
robotic control problem. In [1,2], a computer torque control is developed on the basis of the feedback linear-
ization. However, these designs are possible only the dynamics of the robotic dynamic are well known. The
adaptive control schemes can be employed to deal with the unknown robotic dynamics. In these approaches,
the linear parameterizations must be assumed, i.e. the unknown parameters must be of linear structure. More-
over, the unknown parameters are assumed to be constant or slowly varying. However, as the robotic dynamic
systems are nonlinear, highly coupled, and time varying, the linear parameterization property may not be
applicable. Also the implementation also requires a precise knowledge of the structure of the dynamic model.

Generally, uncertainties may not be known in practical robotic systems such as changing payload, nonlin-
ear friction, unknown disturbance, and the high-frequency part of the dynamics. Therefore, it is necessary to
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consider these effects containing both structured uncertainties (parametric) and unstructured uncertainties
(un-modeled dynamics). Variable structure control (VSC) is one of the robust control strategies to compensate
these uncertainties in robotic dynamics. In these robust control design approaches [8,9], a fixed control law
based on a priori bound of uncertainty is designed to compensate the effects of system uncertainties. However,
the assumptions in these approaches may be restrictive and difficult to be evaluated. On the other hand, exten-
sive approaches have been developed to deal with the adaptive control and robust control of robotics system
with uncertainties.

Fuzzy control is a technique of incorporating expert knowledge in designing a controller. Past research of
universal approximation theorem [18] shown that any nonlinear function over a compact set can be approx-
imated by a fuzzy system with arbitrary accuracy. There has been significant research work on the adaptive
fuzzy control of nonlinear systems [19–22]. In order to eliminate the effect of the modeling errors and distur-
bance in the system, robust compensators have been developed by H1 control [22] and sliding mode control
[20] methods. However, the sliding mode control inherits a discontinuous control action and the undesirable
chattering problem will exist in practical application.

In this paper, a novel control algorithm is developed by combining the fuzzy approach with the integral
sliding mode control method. The proposed method combines the adaptive fuzzy algorithm and robust con-
trol technique to guarantee a robust tracking performance for uncertain robotic system. In the proposed algo-
rithm, the adaptive fuzzy systems are used to cancel the nonlinear robot dynamics, which do not need to have
a linear parameterized structure as in the case of conventional adaptive control scheme’s assumption. More-
over, by combining the integral variable structure control (IVSC) [23] with uncertainties bound estimation, the
proposed control scheme becomes a new robust fuzzy control algorithm of robot manipulators. It is proved
that the closed-loop system is globally stable in the Lyapunov sense if all the signals are bounded and the sys-
tem output can track the desired reference output asymptotically with modeling uncertainties and
disturbances.

This paper is organized as follows. A description of fuzzy system is included in Section 2. In Section 3, the
robot dynamics, its property and control design is described. A robust fuzzy control with bound estimation is
developed in Section 4. Simulation results for the proposed control algorithm are included in Section 5.
Finally, the paper is concluded in Section 6.
2. Functional approximation using fuzzy logic system

The fuzzy logic system [13] consists of four parts, the fuzzifier, the knowledge base, the inference engine and
the defuzzifier. The fuzzy knowledge base comprises a collection of fuzzy IF–THEN rules in the following
form.

RðlÞ : IF x1 is Al
1 and � � � and xn is Al

n Then y is Bl ð1Þ

The fuzzy logic system performs a mapping from U = U1 · � � � · Un � Rn to V � R, where x = [x1, � � �, xn]T 2
U and y 2 V � R are the input and output of the fuzzy logic system, respectively. Al

i and Bl denote the linguistic
variables of the input and output of the fuzzy set in U and V, respectively. The variable i = 1, . . ., n and n

denotes the number of input for the fuzzy logic system and l = 1, . . . m, m denotes the number of the fuzzy
IF–THEN rules. Based on the fuzzy IF–Then rules in the knowledge base and the compositional rules of the
inference engine, the fuzzy inference engine performs a mapping from fuzzy sets in U to fuzzy sets in V. The
defuzzifier maps fuzzy sets in U to a crisp point in V. In general, there are many different choices for the design
of fuzzy system if the mapping is static. More detailed information of these fuzzy systems can be found in [18].

The fuzzy logic systems with singleton fuzzifier, product inference engine, center average defuzzifier are in
the following form:

yðxÞ ¼

Pm
l¼1yl

Qn
i¼1

lAl
i
ðxiÞ

� �
Pm

l¼1

Qn
i¼1

lAl
i
ðxiÞ

ð2Þ
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where lAl
i
ðxiÞ is the membership function of the linguistic variable xi , and yl represents a crisp value at which

the membership function lBl for output fuzzy set reaches its maximum. As a usual practice, we assume that
lBlðylÞ ¼ 1. By introducing the concept of fuzzy basis function vector or the antecedent function vector. (2)
can be rewritten as

yðxÞ ¼ hTnðxÞ ð3Þ

nlðxÞ ¼
Qn

i¼1lAl
i
ðxiÞPm

l¼1

Qn
i¼1lAl

i
ðxiÞ

ð4Þ

where h = [y1, . . ., ym]T 2 Rm is called the parameter vector and n(x) = [n1(x), . . ., nm(x)]T 2 Rm is called the
fuzzy basis function vector. One of the most important advantages of fuzzy logic system is that the fuzzy logic
system has the capability to approximate nonlinear mappings. More precisely, the universal approximation
theorem is quoted as follows.

Theorem 2.1 [18]. For any given real continuous function f(x) on a compact set U 2 Rn and arbitrary e > 0.

There exists a fuzzy logic system f*(xjh) is in the form of (3), such that

sup
x2U
jf �ðxjhÞ � f ðxÞj < e ð5Þ

Based on this result, the function f(x) can be expressed as

f ðxÞ ¼ h�
T

nðxÞ þ e 8x 2 U � Rn ð6Þ

h*is the optimal parameters of fuzzy logic system

h� ¼ arg min
h2X

sup
x2Xx

jhTnðxÞ � f ðxÞj
� �

ð7Þ

X and Xx denote the sets of suitable bounds on h and x, respectively. The fuzzy logic system described above is for
single-output system. However, it is straightforward to show that a multi-output system can always be approxi-

mated by a group of single-output approximation systems.
3. Robot manipulator dynamics and control

A robotic manipulator is defined as an open kinematics chain of rigid links. According to the Lagrangian
formulation, the dynamic equation of an n-joint robotic manipulator with revolute joints can be formulated as
dynamical model [25,26]:

MðqÞ€qþ Cðq; _qÞ _qþ GðqÞ ¼ s ð8Þ
where q; _q; €q 2 Rn is the vectors of joint position, velocities and accelerations; M(q) 2 Rn · n is the matrix of the
moment inertia; Cðq; _qÞ _q 2 Rn is the vector of centripetal and Coriolis forces; G(q) 2 Rn is the vector of grav-
itational force; and s 2 Rn is the vector of applied joint torques. In general, a robotic manipulator is always
presented of uncertainties such as frictions and disturbances. Then, (8) can be rewritten as

MðqÞ€qþ Cðq; _qÞ _qþ GðqÞ þ D ¼ s ð9Þ
where D is the uncertainties of the dynamics, including frictions F rð _qÞ and disturbance sd. Several fundamental
properties of the robot model (9) have been obtained as follows:

Property 1. The inertia matrix M(q) is a positive definite symmetric matrix, e.g. non-singular and bounded by

mmin kxk2
6 xTM(q)x 6 mmaxkxk2 "x 2 Rn, where mmin and mmax are minimum and maximum eigenvalues of M.

Property 2. _MðqÞ � 2Cðq; _qÞ is skew-symmetric matrix, i.e., xTð _M � 2CÞx ¼ 0 "x 2 Rn.

Property 3. The unknown disturbance sd are assumed to be unknown but bounded, i.e. ksdk < bd.
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Property 4. The friction in the dynamic equation (9) is in the form F rð _qÞ ¼ F v _qþ F csgnð _qÞ with Fv the coefficient

matrix of viscous friction and Fc a dynamic friction term. The friction is depended on the angular velocity and the

bound of the friction terms may be assumed to be in the form of kF vð _qÞ þ F cð _qÞk 6 br1
k _qk þ br2

, br1
; br2

> 0.

In the following analysis, it will be assumed that the nonlinear dynamic model of the robot manipulator to
be controlled is well known and uncertainties are negligible. As a consequence, (8) can be rewritten as

€q ¼ F ðq; _qÞ þM�1ðqÞs ð10Þ
where F ðq; _qÞ is a n · 1 vector defined by

F ðq; _qÞ ¼ �M�1ðqÞ½Cðq; _qÞ _qþ GðqÞ� ð11Þ
If F ðq; _q; €qÞ and M�1(q) are known, we can use the state feedback control law

s ¼ MðqÞ½�F ðq; _qÞ þ v0� ð12Þ
to linearize and decouple the robot dynamic system (8), where v 0 is an external input vector v0 ¼ ½v01; . . . ; v0n�

T,
such that the control law (12) apply to system (8) results in a closed-loop dynamics with €q ¼ v0. The objective
of control is to follow a given continuously differentiable and uniformly bounded trajectory in the joint space
qd and the tracking error e = q � qd should be kept as small as possible.

Define a sliding surface in the space of the error state vector S = Rn as

S ¼

s1ðe1Þ
..
.

snðenÞ

2
664

3
775 ¼

c1e1 þ _e1 þ k1

R t
0

e1 dt

..

.

cnen þ _en þ kn

R t
0

en dt

2
664

3
775 ð13Þ

where ei are the tracking error defined by ei = qi � qdi, qi and qdi are the joint and desired output trajectories
for each joint. The coefficients ci and ki should be chosen such that all the roots of the polynomial hi(s) = s2 +
cis + ki (i = 1, . . ., n) are in the open left-half plane. The tracking problem of the robot manipulator in the joint
space implies that the error states should stay on the sliding surface S = 0 as the time goes to infinity. A suf-
ficient condition to achieve this behavior is to select the control strategy such that

1

2

d

dt
ðsiÞ 6 �gDi

jsij; gDi
P 0 ð14Þ

If the sliding condition (14) is satisfied, the system is controlled in such a way that the trajectories of the closed-
loop system moves towards the sliding surface and hit it. In order to satisfy the sliding reachability condition,
the external input vector v 0 is defined as

v0ðq; _qÞ ¼

€qd1 � c1 _e1 � k1e1 � gD1
sgnðs1Þ

..

.

€qdn � cn _en � knen � gDn
sgnðsnÞ

2
664

3
775 ð15Þ

and sgn(Æ) is the usual sign function.
As described above, the plant uncertainties are neglected for the controller design. In order to eliminate the

influence due to the frictions and disturbance, the positive constant gDi
are replaced by g�i þ gDi

to guarantee
the existence of sliding condition. g�i is the upper bound of uncertainties, i.e. jDij 6 g�i . Hence, differentiate (13)
with respect to time, the dynamics of the system (9) can be rewritten in term of S as follows:

_S ¼
_s1

..

.

_sn

2
664

3
775 ¼

k1e1 þ c1 _e1 þ €e1

..

.

knen þ cn _en þ €en

2
664

3
775 ¼ F ðq; _qÞ þM�1ðqÞsþ D0 þ vðq; _qÞ ð16Þ

where

D0 ¼ M�1ðqÞðF vð _qÞ þ sdÞ ð17Þ
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and

vðq; _qÞ ¼

k1e1 þ c1 _e1 � €qd1

..

.

knen þ cn _en � €qdn

2
664

3
775 ð18Þ

If the dynamical model of the robot manipulator to be controlled and the bounded of uncertainties are known,
then we can use the control law (12) for the robotic dynamic. However, the dynamics of the robotic dynamic
are generally unknown in practice and there are system uncertainties. To solve these problems, the robust fuz-
zy control algorithm is proposed in Section 4.

4. Adaptive fuzzy control of robot manipulator

In Section 3, the dynamic model of the robot manipulator is assumed to be known, then we can use the
control law in (12) to linearize and control the robot dynamic system (9). However, the robotic model is
unknown and the control law is unrealizable. In this paper, we propose to use a fuzzy logic system to approx-
imate the unknown system dynamics. Moreover, we employ the integral sliding mode control to compensate
both the structured and the unstructured uncertainties. In order to take into account the unknown uncertain-
ties bounds, an adaptive term ĝ are provided to estimate these parameters online. If the robotic dynamic model
is unknown, this implies that the elements of the matrices F ðq; _qÞ and M(q) of (9) are also unknown:

F ðq; _qÞ ¼ ½fiðq; _qÞ� ð19Þ
MðqÞ ¼ ½mijðqÞ� ð20Þ

where i,j = 1, . . ., n. We shall propose the fuzzy logic system, described in Section 2 to model the unknown
function fiðq; _qÞ and mij(q), with fuzzy logic system f̂ iðq; _qjhiÞ and m̂ijðqjhijÞ for n-link robotic system defined
as

f̂ iðq; _qjhiÞ ¼ hT
fi
nðq; _qÞ ð21Þ

m̂ijðqjhijÞ ¼ hT
mij

nðqÞ ð22Þ

Hence, the control law (12) can be defined as

s ¼ M̂ðqÞ½�F̂ ðq; _qÞ þ v0� ð23Þ
where M̂ðqÞ and F̂ ðq; _qÞ

F̂ ðq; _qÞ ¼

f̂ 1ðq; _qjhf1
Þ

f̂ 2ðq; _qjhf2
Þ

..

.

f̂ nðq; _qjhfnÞ

2
666664

3
777775 ¼

hT
f1
nðq; _qÞ

hT
f2
nðq; _qÞ

..

.

hT
fn
nðq; _qÞ

2
666664

3
777775 ð24Þ

M̂ðqÞ ¼

m̂1ðqjhm1
Þ

m̂2ðqjhm2
Þ

..

.

m̂nðqjhmnÞ

2
66664

3
77775 ¼

hT
m1

nðqÞ
hT

m2
nðqÞ

..

.

hT
mn

nðqÞ

2
666664

3
777775 ð25Þ

where m̂i ¼ ½m̂1iðqjhmiÞ; . . . ; m̂niðqjhmiÞ�
T and hmi ¼ ½hm1i ; . . . ; hmni �

T.

Theorem 4.1. Consider the control problem of the robotic system (9). If the control law (23) is used, the nonlinear

functions fiðq; _qÞ, mij(q) are estimated by (21) and (22), the parameters vector ½hf1
; . . . ; hfn �

T, ½hm1
; . . . ; hmn �

T and

the uncertainties bound estimates p̂i are adjusted by the adaptive law (26)–(28), the closed-loop system signals will

be bounded and the tracking error will converge to zero asymptotically:



_hfi ¼ cfi
sinðq; _qÞ ð26Þ

_hmij ¼ cmij
sinðqÞsj ð27Þ

_̂pi ¼ cpi
jsij ð28Þ

i,j = 1, . . ., n

Proof. Define the optimal parameters vector h�fi
; h�mij

of fuzzy systems

h�fi
¼ arg min

hfi2Xfi

sup
q; _q2Rn

jf̂ iðq; _qjhfiÞ � fiðq; _qÞj
 !

ð29Þ

h�mij
¼ arg min

hmij2Xmij

sup
q2Rn
jm̂ijðqjhmijÞ � mijðqÞj

 !
ð30Þ

where Xfi and Xmij are constraint sets for hfi , hmij defined as

Xfi ¼ fhfi 2 Rnkhfi j 6 Mfig;Xmij ¼ fhmij 2 Rnkhmij j 6 Mmijg ð31Þ

where Mfi and Mmij are pre-specified parameters for estimated parameters bound. Assume that the fuzzy
parameter vectors hfi and hmij never reach the boundaries. Define the minimum approximation error:

xi ¼ fiðq; _qÞ � f̂ iðq; _qjh�fi
Þ þ ðmijðqÞ � m̂ijðqjh�mij

ÞÞsj ð32Þ

and assume the approximation errors are upper bounded by jxij < ximax. And define ~pi ¼ p�i � p̂i, where
p�i ¼ jD0i þ wijmax is the upper bounded of uncertainties. Then, we have

_S ¼ M�1ðqÞsþ F ðq; _qÞ þ D0 þ vðq; _qÞ

¼ ½M�1ðqÞ þ M̂�1ðqjhmijÞ � M̂�1ðqjhmijÞ� � ½M̂ðqjhmijÞð�F̂ ðq; _qjhfiÞ þ v0Þ� þ F ðq; _qÞ þ D0 þ vðq; _qÞ

¼ ½M�1ðqÞ � M̂�1ðqjhmijÞ� � M̂ðqjhmijÞ � ð�F̂ ðq; _qjhfiÞ þ v0Þ þ F ðq; _qÞ þ vðq; _qÞ � F̂ ðq; _qjhfiÞ þ v0 þ D0

¼ ½M�1ðqÞ � M̂�1ðqjhmijÞ�sþ F ðq; _qÞ � F̂ ðq; _qjhfiÞ þ vðq; _qÞ � ðp̂ þ gÞsgnðSÞ � vðq; _qÞ þ D0

¼ ½M�1ðqÞ � M̂�1ðqjhmijÞ�sþ F ðq; _qÞ � F̂ ðq; _qjhfiÞ � ðp̂ þ gÞsgnðSÞ þ D0

¼ ½M̂�1ðqjh�mij
Þ � M̂�1ðqjhmijÞ�sþ F ðq; _qjh�fi

Þ � F̂ ðq; _qjhfiÞ � ðp̂ þ gÞsgnðSÞ þ D0 þ x

¼ ~hT
fi
nðq; _qÞ þ ~hT

mij
nðqÞs� ðp̂ þ gÞsgnðSÞ þ D0 þ x ð33Þ

where ~hfi ¼ h�fi
� hfi ; hmij ¼ h�mij

� hmij ,p̂ ¼ ½p̂1p̂2 . . . p̂n�T; g ¼ ½gD1gD2 . . . gDn�
T
:

Now consider the Lyapunov candidate

V ¼
Xn

i¼1

V i ð34Þ

where

V i ¼
1

2
s2

i þ
1

2cfi

~hT
fi
~hþfi

Xn

j¼1

1

2cmij

~hT
mij

~hmij þ
1

2cpi

~pT
i ~pi ð35Þ

where cfi
; cmij

and cpi
are design positive constants parameters. The time derivative of V along the error trajec-

tory (33) is

_V i ¼ si _si þ
1

cfi

~hT
fi

_~hþfi

Xn

j¼1

1

cmij

~hT
mij

_~hmij þ
1

cpi

~pT
i

_~pi

¼ si
~hT

fi
nðq; _qÞ þ

Xn

j¼1

~hT
mij

nðq; _qÞuj � ðp̂i þ gDi
ÞsgnðsiÞ þ xi þ D0i

 !
þ 1

cfi

~hT
fi

_~hþfi

Xn

j¼1

1

cmij

~hT
mij

_~hmij þ
1

cpi

~pT
i

_~pi

806 H.F. Ho et al. / Simulation Modelling Practice and Theory 15 (2007) 801–816



H.F. Ho et al. / Simulation Modelling Practice and Theory 15 (2007) 801–816 807
¼ si
~hT

fi
nðq; _qÞ þ 1

cfi

~hT
fi

_~hþfi

Xn

j¼1

si
~hT

mij
nðq; _qÞuj þ

Xn

j¼1

1

cmij

~hT
mij

_~hmij � siðp̂i þ gDi
ÞsgnðsiÞ þ sixi þ siD0i þ

1

cpi

~pT
i

_~pi

6
1

cfi

~hT
fi
ðcfi

sinðq; _qÞ þ _~hÞfi
þ
Xn

j¼1

1

cmij

~hT
mij

cmij
sinðq; _qÞuj þ _~hmij

� �
þ sixi þ siD0i � jsijp�i

þ jsijðp�i � p̂iÞ � jsijgDi
þ 1

cpi

~pT
i

_~pi

6
1

cfi

~hT
fi
ðcfi

sinðq; _qÞ þ _~hfiÞ þ
Xn

j¼1

1

cmij

~hT
mij

cmij
sinðq; _qÞuj þ _~hmij

� �
þ 1

cpi

~pT
i ðcpi
jsij þ ~piÞ � jsijgDi

ð36Þ

where
_~hf1
¼ _hf1

and
_~hmij ¼ _hmij . Substitute (26)–(28) into (36), then we have

_V i 6 �gDijsij < 0 ð37Þ
To complete the proof and establish asymptotic convergence of the tracking error, we need to prove that
si! 0 as t!1. Integrating both sides of (37), we haveZ 1

0

jsijdt 6
1

gDi
ðV ð0Þ � V ð1ÞÞ <1 ð38Þ

Then, we have shown that si 2 L1, from (37), we know that si 2 L1, because we have proved that all the vari-
ables on the right-hand side of (36) are bounded, we have _si 2 L1. Using the Collary of Barbalet’s Lemma [24],
if si; _si 2 L1 and s 2 Lp, for some p 2 [1,1]. We have si! 0 as t!1, thus ei ! 0 as t!1. h

Remark 1. Since the control (23) contains the sign function, direct application of such control signals to the
robotic system (8) may result in chattering caused by the signal discontinuity. To overcome this problem, the
control law is smooth out within a thin boundary layer U [7] by replacing the sign function by a saturation
function defined as

sat
si

Ui

� �
¼

sgn si
Ui

� �
si
Ui

��� ��� > 1

si
Ui

si
Ui

��� ��� 6 1

8><
>: ð39Þ

The control law of (23) leads the output trajectory to move along the sliding surface and yields js(t)j 6 U.
From (13) and (39), it can be noted that the steady-state error due to the boundary layer can be removed
and there is no reaching phase problem. Consequently,

jsiðtÞj ¼ cieþ _ei þ ki

Z t

0

eidt

����
���� 6 Ui; i ¼ 1; . . . ; n ð40Þ

Taking the Laplace transform of both side of (40) yields

ci þ sþ ki

s

� �
eiðsÞ

����
���� 6 Ui

s
ð41Þ

Eq. (41) can be rewritten as

jeiðsÞj 6
Ui

s2 þ cisþ ki

����
���� ¼ Ui

ðsþ ai1Þðsþ ai2Þ

����
���� 6 Ui

jðsþ ai1Þkðsþ ai2Þj
ð42Þ

Consider aimin is the minimum characteristic root of (s + ai1)(s + ai2).

jeiðsÞj 6
Ui

jðsþ ai1Þkðsþ ai2Þj
6

Ui

jðsþ ai minÞj2
ð43Þ

Take the inverse Laplace transform of both sides of (43) and to fine the extreme value

jeiðtÞj 6 Ui � t � exp�amin�t ð44Þ



808 H.F. Ho et al. / Simulation Modelling Practice and Theory 15 (2007) 801–816
where exp is the exponential function and for all t P 0, we have

lim
t!1

Ui � t � exp�amin�t ¼ 0 ð45Þ

Therefore, limt!1jei(t)j = 0.

Remark 2. The above stability result is achieved under the assumption that all the parameter vectors are
within the constraint sets or on the boundaries of the constraint set but moving their interior ðjhfi j ¼ Mfi ,
jhmij j < MmijÞ. To guarantee the parameters are bounded. The adaptive laws (26) and (27) can be modified
by using the projection algorithm [18]. The modified adaptive laws are given as follows:

For hfi , we use

_hfi ¼

cfi
sinðq; _qÞ if ðjhfi j < MfiÞ or

ðjhfi j ¼ Mfi and sih
T
fi
nðq; _qÞP 0Þ

P fi ½cfi
sinðq; _qÞ� if ðjhfi j ¼ MfiÞ and

shT
fi
nðq; _qÞ < 0Þ

8>>>><
>>>>:

ð46Þ

For hmij , we use

_hmij ¼

cmij
sinðqÞuj if ðjhmij j < MmijÞ or

ðjhmij j ¼ Mmij and sih
T
mij

nðqÞuj P 0Þ
P mij ½cmij

sinðqÞuj� if ðjhmij j ¼ MmijÞ and

sih
T
mij

nðqÞuj < 0Þ

8>>>>><
>>>>>:

ð47Þ

where the projection operator, P fi ½�� and P mij ½�� are defined as

P fi ½cfi
sinðq; _qÞ� ¼ cfi

sinðq; _qÞ � cfi
si

hfih
T
fi
nðq; _qÞ
jhfi j

2
ð48Þ
Fig. 1. Overall scheme of the adaptive control system.
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P mij ½cmij
sinðqÞuj� ¼ cmij

sinðqÞuj � cmij
si

hmijh
T
mij

nðqÞuj

jhmij j
2

ð49Þ

Then, the overall adaptive fuzzy control scheme is shown in Fig. 1.

To summarize the above analysis, the step-by-step procedures for the adaptive fuzzy control of uncertain
robotic system is outlined as follows

Design Procedure:

Step 1. The design parameters Mfi , Mmij are specified based on practical constrains.
Step 2. Specify the desired coefficients c1, � � �, cn, k1, � � �, kn in (13).
1
q

2
q

1l

g
2m

1m

X

Y

2l

Fig. 2. Two degrees of freedom robot manipulator.
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Fig. 3. Membership function of input variables.
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Step 3. Select the learning coefficientscfi
, cmij

and cpi
.

Step 4. Define fuzzy sets Ai for linguistic variable q; _q and the membership functions lAi
is uniformly cover

the universe of discourse.
Step 5. Construct the fuzzy rule bases for the fuzzy system f̂ iðq; _qjhfiÞ and m̂ijðqjhmijÞ.
Step 6. Construct the fuzzy systems F̂ ðq; _qÞ ¼ hT

fi
nðq; _qÞ and M̂ðqÞ ¼ hT

mij
nðqÞ in (24) and (25).

Step 7. Construct the control law (23) with the adaptive law in (28), (46) and (47).
Step 8. Obtain the control and apply to the robot dynamic, then compute the adaptive law (46), (47) and (28)

to adjust the parameter vector hfi ,hmij and the estimate bound p̂i.
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Fig. 6. Simulation results of computed torque control: (a) desired position trajectory of joint 1 qd1
(solid line) and system output trajectory

q1 (dash line), (b) desired position trajectory of joint 2 qd2
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5. Simulation example

To verify the theoretical results, simulations were carried out in two degrees of freedom robot manipulator
as shown in Fig. 2 described by [25,26]:

MðqÞ€qþ Cðq; _qÞ _qþ GðqÞ ¼ s ð50Þ
where

MðqÞ ¼ ðm1 þ m2Þl2
1 þ m2l2

2 þ 2m2l1l2 cosðq2Þ m2l2
2 þ l1l2m2 cosðq2Þ

m2l2
2 þ l1l2m2 cosðq2Þ m2l2

2

" #

Cðq; _qÞ ¼
�m2l1l2 sinðq2Þ _q2

2 � 2m2l1l2 sinðq2Þ _q1 _q2

m2l1l2 sinðq2Þ _q2
1

" #

GðqÞ ¼
m2l2g cosðq1 þ q2Þ þ ðm1 þ m2Þl1g cosðq1Þ

m2l2g cosðq1 þ q2Þ

� �
The parameters of the robot used for simulation are l1 = 1 m, l2 = 0.8 m, m1 = m2 = 1 kg and g = 9.8 m/s2. The
unknown nonlinearities fiðq; _qÞ and mij(q), i,j = 1,2 are estimated using three triangular fuzzy sets for q and _q are
constructed as in Fig. 3. No prior knowledge is assumed in this simulation and the consequent parameters are
initialized to zero. Select Mfi ¼ 40 and Mmij ¼ 80. The controller parameters cfi

¼ 50, cmij
¼ 0:5 and cpi

¼ 0:1.
The width of the boundary layer Ui = 0.1, gDi = 0.01, i,j = 1,2 and the sliding surface coefficient c1 = 1.2,
c1 = 0.8, k1 = k2 = 0.5. The desired reference trajectory are chosen as qd1

¼ 1:0 sinðtÞ, qd2
¼ 0:8 cosðtÞ, respec-

tively. The initial conditions q1(0) = 0.5, q2(0) = �0.5, _q1ð0Þ ¼ _q2ð0Þ ¼ 0 and p̂1ð0Þ ¼ p̂2ð0Þ ¼ 0:2. In order to
verify the robustness of the controller in a pick and place environment, the mass profile were added as shown
in Figs. 4 and 5. For comparison, the conventional computed torque control s ¼ MðqÞð€qd þ kv _eþ kpeÞþ
Cðq; _qÞ _qþ GðqÞ under the same conditions is also demonstrated. The gains are chosen as kp = diag[50,50],
kv = diag [20, 20]. Fig. 6 shows the results with computed torque control. It can be seen the controller cannot
drive the joints to reach the desired positions and steady-state tracking error exist. Fig. 7 shows the results
for the proposed fuzzy controller. It is observed the tracking errors go to small values after some transient, which
is cause because of the initial choice of the consequent parameters. However, the tracking error decreases
quickly since of the on-line learning of fuzzy logic system, and the effect of uncertainties are successfully com-
pensated by the robust control term. The simulation results thus demonstrate the propose robust adaptive fuzzy
control can effectively control the rigid robot system with uncertainties.

6. Conclusions

In this paper, we have presented a robust fuzzy control algorithm for robotic manipulators. The method is
developed based on the fuzzy modeling technique with robust sliding mode control. The control scheme does
not require the robot dynamics to be exactly known. With the aid of fuzzy logic system has been used to imple-
ment an adaptive feedback control strategy with the boundary layer integral sliding control, which compen-
sate for unknown uncertainties with estimated bound. Both chattering and reaching phase problem can be
avoided. The design has been proved to guarantee the closed-loop stability in the sense of Lyapunov method.
Finally, the simulation results show that the proposed control algorithm is appropriate for practical control
design robotic manipulator with uncertainties.
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