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Abstract

On the premise of discrete simulation technology, the study developed a simulation approach to quantify firms’ business
operations and performances in a multi-tier supply chain. By careful simulation scenario design and statistical validation,
the simulation model was applied to understand one practical business problem, i.e., how to evaluate the business model
and its trade-off of implementing demand information sharing strategy. The results showed that with high demand vari-
ance, low demand correlation, and/or high demand covariance, the supply chain without the intermediate tier performed
better than that with the intermediary. However, bypassing the intermediate tier in the chain might cause companies less
responsive to demand variability. The simulation and analytical approaches presented in the paper can help firms make
better decision on business model design and inter-organizational collaboration in supply chains.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Supply chain management (SCM) is defined as a set of approaches utilized to efficiently integrate suppliers,
manufacturers, warehouses, and stores, so that merchandise is produced and distributed at the right quanti-
ties, to the right locations, and at the right time, in order to minimize system-wide costs while satisfying service
level requirements [24]. As SCM has drawn much attention in industrial and academic fields, various tech-
niques are developed to model, analyze, and solve complex decision problems in supply chains. Simulation
is one of the techniques, which allows the researcher to capture and experiment with the rules in real or pro-
posed systems. Oftentimes, there are some situations in which a problem cannot meet the assumptions set by
analytical modeling methods, especially when a problem exhibits significant uncertainty and is quite difficult to
be dealt with analytically [7].

Compute-based simulation, with its own strength on evaluating variations and interdependencies in a com-
plex system [33], is one of the promising methods. With simulation, it is possible for decision makers to examine
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the changes in the part of the chain and following consequences with less expense than field experiment which is
usually difficult to be carried out. For example, Kimbrough et al. [12] developed a multi-agent simulation sys-
tem and showed that with proper feedback control design, artificial intelligent could help tiers find an optimized
inventory policy to mitigate bullwhip effect. Minegishi and Thiel [21] simulated complex logistic behaviors of an
integrated food industry and proposed several managerial recommendations from simulation results.

Simulation models are broadly developed for studying supply chains, which generally had two main char-
acteristics to classify. First, they are either discrete or continuous systems to simulate operations in supply
chain. A discrete system is one in which the state variables change instantaneously at separated time points,
while a continuous system is one in which the state variables change continuously with respect to time [13].
Examples of discrete simulation system in supply chain studies include Wei and Krajewski [32] and Sivakumar
[25]. Examples of continuous simulation system include Homem-de-Mello et al. [11] and Tagaras and Vlachos
[28]. Since few cases in the real world are solely discrete or continuous system, the system classification largely
depends on researchers’ analytical perspective. Secondly, the models are either the event orientation, activity
scanning orientation or process orientation. These characteristics are helpful for researchers to simulate and to
monitor supply chain activities.

To help organizations understand and evaluate cost and benefit of supply chain practices, this study pro-
vided a simulation approach to quantify firms’ SCM decisions into business operations, including procure-
ment, storage and distribution, and to measure participant firms’ performance in multi-tier supply chains.
Furthermore, the study applied the simulation model to solve a practical supply chain problem, i.e., what
are the suitable business conditions for firms to consider demand information sharing strategy in supply chains
and how the market demand patterns and intermediate firms affect the strategy outcome. The simulation and
analytical approaches presented in the paper will help firms make better business model design and inter-orga-
nizational collaboration decision in supply chains.

2. Problem background in supply chain management

Due to increasing global competition and higher customer expectations, all business enterprises today are
seeking to increase their inter-organizational collaboration network and create smooth material, information
and financial flows along the supply chain. For example, the Efficient Consumer Response (ECR) report esti-
mated a potential $30 billion opportunity from streamlining the inefficiencies of the grocery supply chain [14].
To manage a supply chain efficiently and economically, matching supply with market demand is mainly con-
cerned in supply chain management [1].

Sharing market information has been recognized as an effective approach to reduce demand distortion and
improve supply chain performance [15]. Various studies used simulation to evaluate the value of information
sharing in supply chains. From system dynamics perspective, Towill et al. [29] found that supply chain inte-
gration with exchange of information was as beneficial as lead time reduction throughout the supply chain via
JIT. From a control theoretic approach, Dejonckheere et al. [5] examined the beneficial impact of information
sharing in multi-tier supply chains and discovered that information sharing helped to reduce the bullwhip
effect in the chains with different inventory policies. Using multi-agent simulation system, Li et al. [18] com-
pared three types of information sharing strategies in supply chain management.

Besides demand variability, lead time also draws much attention in demand-matching research. Research-
ers argued that lead time and its variability is another potential factor that would affect supply chain members’
responsiveness to market demand [14]. On this topic, Chatfield et al. [3] analyzed the influence of lead-time
variability on firm’s inventory management by a multi-agent simulation system, while Zhang et al. [34] studied
how information could reduce the influence of shipment uncertainty during the lead time by a discrete simu-
lation model. Most literature studies on lead time showed that longer lead time (or larger lead time variability)
had a negative effect on supply chain performance, implying that firms should reduce lead time between tiers.

Consider a three-tier supply chain where products are delivered from the producer to end-market customers
after passing through the distributor and the retailer. With demand information sharing (DIS) in a supply
chain, each tier is aware of end market demand for the products and uses such information to forecast the
future demand. In addition, the distributor works as the intermediary between the retailer and the supplier
in a chain and manages itself as a buffer between the retailer’s demand and the supplier’s supply. Reducing
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the intermediate tiers, i.e., the distributor in this case, may benefit to supply chains. First, the total amount of
stock along the supply chain can be reduced. Second, based on previous studies on demand distortion, reduc-
ing the numbers of tiers in a supply chain tends to be an intuitive solution to counter the bullwhip effect. With
less demand distortion along the chain, a more smooth material flow through the chain is expected. One suc-
cessful example of this business practice is Dell’s direct model. Founded on the simple business insight that the
company could bypass the dealer channel and build products to order in 1984 [20], Dell developed a US$21.7
billion business worldwide in 1999 [8] and its direct model is now regarded as exemplifying the principle that
companies should sell directly to customers and deal directly with suppliers without any unnecessary interfer-
ence of intermediaries in supply chains.

However, if we view intermediate tiers as stock buffers in the chain, bypassing the intermediate tier
means the company’s supply lead time increases and it may become less responsive to demand variability
from the end market. To counter this cost, one key initiative is information sharing between partners in a
supply chain. In Dell, it maintained continuous and close electronic links with suppliers, sometimes even
on an hourly basis [22]. On the other hand, research has shown that demand distortion cannot be com-
pletely eliminated by demand information sharing [4]. As a result, the direct model still takes its cost even
with information sharing.

In practice, we have observed different decisions by firms: some firms are actively moving their distribution
centers closer to target markets, but some others are centralizing their supply bases, which results in farther
supply to markets, while some others are removing intermediary tier in their chain. These conflicting trends
also motivate us to re-think the impact of lead time from a new perspective, i.e., the role of intermediate tier
in supply chains.

Therefore, it is valuable to discover when reducing an intermediate tier is beneficial and how the system
parameters, such as demand patterns and lead time, influence the whole supply chain. By simulation experi-
ments, the study can provide useful managerial insight for companies to choose a suitable business model in
their specific business environment.
3. Simulation model

In this paper, we employed a simulation approach to quantify the benefit of demand information sharing in
a three-tier supply chain model. The simulation process followed Evans and Olson [7]’s five essential stages.

Our system in this study is a discrete one since tiers’ supply chain activities, such as order fulfillment, inven-
tory replenishment and product delivery, are either triggered by customers’ orders or arrival shipments from
suppliers at points of time. Therefore, these activities can be viewed as discrete events.

There are multi-agent modeling technologies existing in simulation studies, e.g., Yung and Yang [31],
Swaminathan et al. [27], Lin and Pai [19] and Chatfield et al. [3]. However, the study’ focus is to help orga-
nizations understand and evaluate cost–benefit of demand information sharing strategy in supply chain.
Therefore, tiers in the research design act in a sequential order along the chain and follow determined inven-
tory policy without intelligent optimizations. Therefore, discrete simulation is suitable to this study.

3.1. Simulation mechanism

We model the entities in a supply chain network consisting of three different roles: retailer, distributor, and
supplier. Each of the entities performs tasks including receiving orders, receiving shipment from its supplier,
fulfilling orders, calculating inventories and backlogs, forecasting demands, placing orders to its supplier and
expecting shipments to arrive in the future. The combination behavior of each entity composed a complex
environment.

The mechanism of order fulfillment process in the supply chain can be described as follows:

(a) Customers come to retailer and make their purchases.
(b) Retailer sells goods to its customer and places new order with its distributor based on its inventory man-

agement policy and forecast on future demand to ensure continuous selling.
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(c) Distributor ships its stock to the retailer after receiving retailer’s order and forecasts on retailer’s future
demand to ensure a continuous fulfillment to retailer, and then it places order on products to its
upstream supplier.

(d) After receiving the distributor’s order, the supplier will ship out goods to the distributor and place order
to its supplier.

(e) At the end of each cycle, every tier summaries its cost and service performances and updates information
about demand and shipment for future usage.

Fig. 1 shows a three-tier supply chain activities and the simulation mechanism.

3.2. Simulation tool: GPSS/world

GPSS, the General Purpose Simulation System, is one popular language in computer simulation, firstly
developed by Geoffrey Gordon at IBM in the early 1960s. It provides a rich basis for modern simulation envi-
ronments. Moreover, GPSS deeply influences many other simulation languages that now rely on derivations
of GPSS concepts.

GPSS/World, maintained by Minuteman Software, is a direct descendent of GPSS/PC, an early implemen-
tation of GPSS for personal computers which was introduced in 1984. GPSS/World is primarily intended to
be an extension of simulation environment for GPSS/PC users, enhanced by an embedded programming lan-
guage PLUS, Programming Language Under Simulation. It brings all the simulation primitives up to the user
interface, and makes it easier to visualize and manipulate simulations. As a result, simulations can be devel-
oped, tested, and understood more quickly than ever before in GPSS/World environment. All transactions in
the simulation can be saved at any time in any state, with detailed descriptive statistics. Its nature allows the
internal mechanisms of models to be revealed and captured. Its interactivity allows one to explore and manip-
ulate simulations. Its pre-developed simulation validity technology makes experiment convenient to be
warmed-up and repeated. Its built-in data analysis facility can calculate confidence intervals and analysis of
variance easily.

3.3. Statistical analysis for model validity

Since GPSS is a stable simulation system that provides detailed transaction reports for post analysis, we
focus our internal validation on whether the simulation model correctly represents the supply chain. Consid-
ering the three-tier linear supply chain structure which consists of a retailer (R), a distributor (D) and a sup-
plier (S), if we set the safety stock factor at upper tiers, i.e., D and S, extremely high in the chain, say 8, then D

can be viewed as an ultimately source to R which has unlimited supplying capability. As a result, R reverts to a
basic single-stage case in operations research. It can be calculated that when z > 7, the tier’s expected stock-out
probability, i.e., 1 � U(z) where U(Æ) is the standardized normal cumulative distribution, is below 1E � 12
which can be safely ignored. Since such inventory management case that has been well studied in operations
research, we can compare the simulation result with theoretic values under such situation.

We evaluated the fill rate and the inventory level of each product at retailer’s side while varying demand
variance and lead-time between the retailer and its supplier. Other indexes, such as inventory cost, can be
inferred from these two indexes. The theoretic values are shown in Table 1, where (x,y) indicates the combi-
nation of demand standard deviation STD(r) and lead time value LT(L). For example, (10, 3) stands for the
situation: STD as 10% of the mean and lead time in between as 3 periods.

The simulation ran 2000 periods for each condition and the average value of these indexes, shown as XiYi,
was calculated. If one computer period simulated 1 h (or 1 day) in the real world, the whole 2000 would
represent 1-year (or 8-year) activities in a supply chain. Therefore, a 2000-period running should be enough
Fig. 1. The diagram of supply chain activities and simulation mechanism.



Table 1
Theoretical value of service level and inventory level at the retailer’s side

Condition (STD, LT) Fill rate Average inventory

(10,3) 0.996 28.5
(10,6) 0.994 40.4
(10,9) 0.993 49.5
(30,3) 0.989 85.7
(30,6) 0.984 121.2
(30,9) 0.981 148.5
(50,3) 0.981 142.8
(50,6) 0.974 202.0
(50,9) 0.968 247.5

36 C. Zhang, C. Zhang / Simulation Modelling Practice and Theory 15 (2007) 32–46
to provide the stable performance of a supply chain. We got a data set of these indexes: (X1. . .X15), (Y1 . . .Y15)
for each condition, with 15 replication, with each replication using a different random seed. The replication
here was designed to provide the statistical significance of the simulation results. Then t-test, via SPSS [26]
was used to evaluate whether the simulation results fit with theoretic values. The confidence interval was
95% and H 0 : EðX iÞ ¼ �X ;EðY iÞ ¼ �Y . The significances are shown in Table 2.

From the result, we could not find statistical difference between simulation result and theoretic values based
on 5% significance test. Meanwhile, 95% confidence intervals of the difference of the data, i.e., the confidence
interval of ðEðX iÞ � �X Þ, all covered zero.

3.4. Statistical analysis for steady-state parameters

To promise a stable simulation result, we designed two simulation processes to examine whether total
repeat time and running length of each time would influence the simulation result. Design1 was to repeat
the scenario 15, 25, and 35 times, each time the simulation continuously ran 2000 periods with a unique ran-
dom number seed; Design2 was to vary the running period of each scenario, i.e., the scenario ran for 2000,
3000, and 4000 periods (increasing by 1000 periods each time), respectively, with a unique random number
seed and each run repeated 15 times We employed an ANOVA (analysis of variance) test to examine whether
these different treatments made system performances different in the simulation given a 95% confidence. If not,
we inferred that performance had become steady in the treatment of 15-repeat-of-2000-period and no need to
increase simulation length or replication number. In this statistic test, the fill rate and the inventory level of
products or components at each tier were chosen as the measurement. The result indicated that neither a
longer simulation length nor more replications significantly changed the result from a 2000-period and
15-repeat scenario, shown in Table 3.

We also used the Replication/Deletion approach to improve the estimates of the steady-state mean of the
performances. We divided 2000 periods into 20 intervals, each containing 100 periods. The replication time
was 15. We calculated the system performances in three ways: calculating the number based on all time periods
during the simulation (d = 0); deleting the first 100-period simulation data and calculating the number based
on the remaining 1900 periods (d = 1); and ignoring the first 200-period data in the calculation (d = 2) and
Table 2
Significances between the simulation result and theocratic result

Condition (STD, LT) Sig. test of service level Sig. test of AVG inventory

(10,3) 0.172 0.260
(10,6) 0.186 0.346
(10,9) 0.726 0.611
(30,3) 0.801 0.706
(30,6) 0.128 0.265
(30,9) 0.126 0.233
(50,3) 0.663 0.801
(50,6) 0.275 0.086
(50,9) 0.341 0.296



Table 4
ANOVA test of simulation scenarios with different ‘‘warm-up’’ period under a 95% confidence

Tier Service level Inventory level

Retailer 0.920 0.462
Distributor 0.975 0.943
Supplier 0.945 0.973

Service level/inventory level: ANOVA significance of the simulated service level/inventory level of product · under different ‘‘warm-up’’
period.

Table 3
ANOVA test of different simulation scenarios under a 95% confidence

Tier Design 1 Design 2

Fill rate Inventory level Fill rate Inventory level

Retailer 0.254 0.900 0.755 0.588
Distributor 0.172 0.316 0.472 0.947
Supplier 0.966 0.948 0.951 0.914

Service level/inventory level: ANOVA test for comparing the simulated service level/inventory level of product · under different simulation
scenario: different replications (Design 1) and cycle length (Design 2).
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went on if necessary. ANOVA test was carried out with 95% confidence level in SPSS to examine whether
measurements were different significantly under such three treatments. In this way, we could determine
whether the ‘‘warm-up’’ period has significant impact to the simulation output. Result, shown in Table 4, indi-
cated that there were no significant difference under different treatments when d = 0, d = 1, and d = 2, which
meant that the system quickly became steady. The reason might be that the initial stock setting in simulation
was close to the order-up-to level and the running period of simulation was quite long. Therefore the effect of
‘‘warm-up’’ period in this scenario was not significant.

4. Simulation scenario

4.1. Supply chain structure and settings

The simulated supply chain contains three tiers: two retailers that sell same product in distinct regions, a
distributor that delivers products to these regional retailers, and a supplier that provides the product to the
distributor. In the first design (DIS1) the retailers’ order is placed with the distributor and the distributor
places its order with the supplier. In the direct model (DIS2), retailers order directly from the supplier, with
the distributor acting essentially as an allocation center. As a result, the whole supply chain can be viewed as
being two-tier. No information sharing (NIS), where no other information is received by the supplier except
for orders from immediately downstream, is used as a benchmark. We do not assume that the retailer knows
the exact form of the customer demand process. Instead, the retailer uses a standard forecasting technique to
estimate certain parameters of the demand process.

Each tier in the supply chain sets the same service level, a = 95%,1 i.e., the probability of running out stock
in a replenishment cycle, to manage two products. Previous backlogs are prior to fulfill in the future. The ulti-
mate supplier, i.e., the supplier’s supplier, has an infinite capacity to supply whatever its customer orders.

The market demand process follows a general auto-correlated AR(1) process without seasonality, i.e.,
dt = u + qdt�1 + et, where u > 0, jqj < 1 and et is normally distributed (0,r2) (subscript t denotes the variable
in period t). Initially we set the demand parameters of two markets both at u = 100, r = 30, and q = 0. As a
result, two demand processes degenerate to be independent and normally distributed. Later we study the
demand trend and covariance using sensitivity analysis. These demands could represent a collection of
demands aggregated from numerous individual consumers or from a group of industrial customers.
1 Please refer to notation table in appendix for details.
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Each tier in the supply chain employs the commonly used moving average method [2] to forecast future
demand. With demand information available, the formula at each tier can be expressed as d̂ t ¼

Pn
j¼1dt�j=n,

where n is the number of demand observations used as a base. When demand information is not available,
upper tiers (i.e., all except the retailer), use d̂ t ¼

Pn
j¼1ot�j=n to forecast future demand where ot is the order

placed by the downstream entity with its supplier at period t. Chen et al. [4] argued that the variance of
the orders, placed by the downstream to its supplier, satisfies a lower bound as 1þ 2L

n þ 2L2

n2

� �
ð1� qnÞ, where

L is the lead time between two tiers. In this study, we assume that each tier set a forecasting window size 10
times greater than the lead time between itself and its customers (n/L = 10) to reduce demand distortion to a
certain extent. The lead time between tiers is deterministic.

Eppen and Scharage [6] showed that when using linear inventory holding and backlog costs and under
fairly moderate assumptions, the order-up-to inventory policy had a satisfying performance. Therefore in this
study we assumed that all chain members used order-up-to periodic-review inventory policies. The order-up-to
level is given by St ¼ Ld̂t þ zr̂t

ffiffiffi
L
p

, where z = U�1[b/(b + h)], U(Æ) is the standardized normal cumulative distri-
bution, b the unit backorder cost per period, and h the unit inventory holding cost per period. Setting h = 1
and b = 19, we get 95% target service level and z = 1.65. Initially the lead time between each tier was the same
and we set it as 6 periods which could represent 6 days or 6 weeks of transportation. Since this study focuses
on the trend of system change with lead time varying, we believe the number initially set in the simulation will
not significantly affect the conclusion. d̂ t and r̂t is the estimated mean demand and estimated standard devi-
ation of demand, respectively, at period t. Note that under different information circumstances, the optimal
inventory policy might not be the same. However, to facilitate comparison and to focus on the impact of
‘‘changing a given’’ [23] rather than on optimizing inventory policy, we fixed the inventory policy to be the
same in all cases of this study.
4.2. Scenario design

The scenario consisted of two processes: the initialization stage and the periodic ongoing stage. The initial
stage was carried out only once, to set system parameters and to initialize randomness. The periodic running
process contained all the activities in a supply chain, including demand forecasting, product ordering, storing
and shipping, and performance statistics collecting. In the periodic running stage, system parameters were
independently varied from a lower value to a higher value respectively to perform sensitivity analysis. The pro-
cess ran for 2000 computer-simulated periods to simulate daily (or weekly) operations of each tier in a supply
chain. Each 2000-period scenario required 15 replications to gain enough statistical significance.

Recall the supply chain model in this work. It is clear that there are two sets of system parameters that
determine supply chain behavior: the first set is the independent parameters of the market demand. There
are three parameters influencing the demand process: the demand variance r, the demand correlation over
time q, and the demand covariance cov. The second set of parameter is from the supply side. The critical
parameter influencing the supply is the lead time Ld, i.e., the distributor location in chain, which influences
the order, inventory and shipment quantities. These four parameters are meaningful and important in prac-
tical business situations: r indicates the degree of demand fluctuation, q indicates the trend of demand, cov

indicates the relation of demand processes, such as the relation of product sales in different regions or different
product models in the same product family, while Ld indicates the supply delay from inventory to market. We
include these four parameters in the sensitivity analysis, summarized in Table 5.
Table 5
Summary of scenario settings employed in the sensitivity analysis

System parameters Value in basic case Values in sensitive scenario Number of sensitive scenario

r 30 Low (10), high (50) 2
q 0 Negative (�0.5), positive (0.5) 2
Cov 0 Negative (�0.5), positive (0.5) 2
Ld 6–6 Forward (3–9), postponed (9–3) 2
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There were actually five factors, including the style of information sharing, being investigated in the sim-
ulation. A full factorial study would consist of 243 scenarios. In the study, however, we used partial factorial
analytical method, i.e., when analyzing one factor, we kept other factors unchanged. Though the design might
limit our observation on the complicated situations, we could simplify the analyses and concentrate on factors’
impact compared to the basic case. In this way, the analytical work could still provide plentiful insights to us.
Therefore, we only ran 27 scenarios for partial factorial analysis purpose.

Also note that there are three supply lead times for the three tiers in the chain. In this study we were
more interested in the lead time changes between the retailer tier and the supply tier, i.e., the location of
the distributor in the channel. Initially we placed the distributor midway between the supplier and the
retailer, giving a 6–6 units of time away from each one. However the distributor might move closer to
the supplier or to the market. In this study, we used x � y to indicate the location of the distributor
in the channel.

4.3. Algorithm logic in the simulation

This subsection lists the algorithm describing supply chain activities, including demand forecasting, product
ordering, storing and shipping, and performance statistics collecting, in the simulation.

1. Initial stage
• Importing configuration file of scenario settings.
• Setting system variables with proper values in the scenario.
• Initializing random number generators.
• Warming up the system to store enough historic data for demand forecasting and order-up-to level

calculation.
2. Periodic activities in a supply chain.

• At each tier from retailer to first tier supplier

• Receiving product orders from its customers.
• Receiving shipments from its supplier.
• Fulfilling orders and any accumulated backlogs.
• Forecasting future demand and estimating its demand variance of products.
• Calculating the order-up-to level.
• Determining the order quantity and placing the order with its supplier.
• Summarizing its service and cost performances at this period.

5. Results and analyses

ANOVA tests using a 5% significance level were performed in SPSS to examine significant performance
changes among various cases. If such significance was found, i.e., the overall F-test demonstrated that at least
one difference existed, a multiple comparison procedure was used to assess which groups’ data differed signif-
icantly from the others. (Prior to the multiple comparison procedure, Levene’s test of homogeneity of variance
[17] with a 5% significance level is employed to examine whether the dependent variables, i.e., the performance
indices, have the same variance in each group). Tukey’s honestly significant difference (HSD) test [30] was used
when the assumption of the homogeneity of variance was met and Games–Howell [10] method was used when
the assumption was not met.

5.1. Results from basic experiments

The performance changes, including service level (SL), inventory cost (IC), backlog cost (BC), and total
cost (TC), in the supply chain were studied, as shown in Table 6. In the basic case, it is clear that the supply
chain without the distributor achieved a lower total cost than the other two cases, but it also had the lowest



Table 6
95% confidence of the mean difference of supply chain performance among No-IS and Demand-IS

Supply chain performance Service level Inventory cost Backlog cost Total cost

Experimental settings

Basic case N,D1 > D2 N > D1 > D2 D2 > N,D1 N > D1 > D2
Sensitivity analysis

Demand variance Low N,D1 > D2 N > D1 > D2 D2 > N,D1 D2,N > D1
High N,D1 > D2 N > D1 > D2 D2 > N,D1 N > D1 > D2

Demand correlation over time Negative 0 N > D1 > D2 0 N > D1 > D2
Positive N,D1 > D2 N > D1 > D2 D2 > D1 > N D2 > N > D1

Demand covariance Negative N,D1 > D2 N > D1 > D2 D2 > N,D1 N > D2 > D1
Positive N,D1 > D2 N > D1 > D2 D2 > N,D1 N > D1 > D2

Location of distributor in Chain Forward N,D1 > D2 N > D1 > D2 D2 > N,D1 N > D1,D2
Postponed N,D1 > D2 N > D1 > D2 D2 > N,D1 N > D1 > D2

N: No-IS; D1: Demand-IS Case 1; D2: demand-IS Case 2 (D1 > N means the performance value under the Demand-IS Case 1 is
significantly larger than that under Traditional-IS. D1 > D2 > N implies D1 > D2, D1 > N and D2 > N, while D1 > D2,N equals D1 > D2,
and D1 > N only; 0 means no such significant mean difference).
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service level. By eliminating the stock at the distributor tier, the two-tier supply chain had 42.4% and 32.1%
lower inventory cost than the other two cases respectively. However, as the retailers’ supply lead time
increased and the buffer stocks held at the intermediary were removed, retailers became less responsive to cus-
tomer’s fluctuating orders. As a result, retailer’s service level dropped, causing its backlog cost to increase.
However, the benefit from inventory reduction compensated for the cost from increased backlogs. Overall,
the two-tier supply chain, i.e., DIS2, performed the best with a 20.1% and 8.0% total cost reduction compared
with the other two cases respectively. These improvements could be compared with a 13.2% reduction in total
cost when information sharing was included in a three-tier supply chain, i.e., DIS1. When demand correlation
was negative, the service level and backlog cost became insignificantly different among three cases.

5.2. Analysis of demand variance

We first studied the situation when demand variance fluctuates and found that the significant change in
total supply chain cost arose from the inventory cost for all tiers. DIS2 reduced 24.9% of supply chain’ total
cost in the numerical result, while DIS1 reduced 14.0%, when the demand variance was high. This result is
quite natural: as demand fluctuations increase, more forecast error on future demand and demand distortion
occurs. Therefore the improvement of forecast accuracy enabled by information sharing, along with subse-
quent benefits, increases. Our results confirm that cost savings from information sharing can be substantial
when demand variance is large [16].

On the other hand, when demand variance was low, the total cost in DIS2 approached the case without
information sharing, indicating that the impact of faster response from shorter lead time overcame the impact
of information value when demand was stable. As demand fluctuation decreased, less forecasting error and
demand distortion was generated in the supply chain. Therefore the value of information sharing declined.
In this situation, the benefit from information might become less to cover the loss of responsiveness to cus-
tomer orders, so the performance of DIS2 in the direct model was less than DIS1. As shown in Fig. 2, with
low demand variance, the total cost in DIS1 was 12% and 18.5% significantly less than the other two cases,
respectively.

5.3. Analysis of demand trend

Next we studied the impact of demand trend on the supply chain performance. When demand trend chan-
ged to negative 0.5 and positive 0.5, the average demand became 67% and 200% of the initial demand, respec-
tively (see Appendix for proof). Fig. 3 shows that when the demand had no such trend, information sharing
reduced 13.2% of the supply chain’s total cost in DIS1 and 20.1% in DIS2, comparing with that without infor-
mation sharing. When the demand trend was negative, information sharing reduced 8.7% of the supply chain’s



Demand
Variance

NIS DIS Case1 DIS Case2

10 276 238 292
30 813 706 649
50 1324 1165 994

Fig. 2. Supply chain total cost in no information sharing, demand information sharing Case 1 and demand information Case 2 as a
function of demand variance.

Demand
Correlation

NIS DIS Case1 DIS Case2

-0.5 763 696 628
0 813 706 649

0.5 2160 1921 2279

Fig. 3. Supply chain total cost in no information sharing, demand information sharing Case 1 and demand information Case 2 as a
function of demand correlation over time.
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cost in DIS1 and 17.7% in DIS2, which meant that using the direct model was more beneficial to the supply
chain.

However, when the demand trend was positive, the supply chain cost in DIS2 increased 5.5% while the cost
in DIS1 decreased 11.1%, comparing with that without information sharing. As demand increased, higher
quantities should be ordered, but the supply lead time delayed the match between demand and supply.
Although retailers hold some safety stock to meet demand fluctuations, increased demand accumulated during
the lead time might exceed the buffer capability of safety stock. Because the supply chain in DIS2 applied a
direct model that bypassed the distributor between the retailers and the supplier, a longer lead time was
required for retailers’ order fulfillment. Consequently, retailers had less capability to counter the increasing
demand. While demand information helped the supply chain to adapt to the changed demand, the benefit
was insufficient to counter the slower match between demand and supply during the longer supply lead time.
With insufficient stock, the supply chain in DIS2 performed worse than the other two cases. In DIS1 retailers
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obtained shipments faster from the distributor and were thus more able to meet the changed demand before
accumulated demand exceeded their safety stock. With available demand information, upper tiers could
respond faster to the changing demand, resulted the lowest total cost in DIS1.

5.4. Analysis of demand correlation

Sometimes the demand processes are correlated. For example, a product being sold well in one region may
have its sales promoted in another region, while a better sale of one product model may reduce another mod-
el’s sales when the total market demand is constant. Studying the impact of demand covariance provides a
better understanding of the value of intermediaries in a supply chain with information sharing. As shown
in Fig. 4, when demand covariance was negative, the total supply chain cost in DIS1 and DIS2 reduced by
11.8% and 3.7%, respectively, comparing with that without information sharing. In this situation the three-tier
structure performed better than the other two cases: when the demand covariance was negative, the sum of
two demand processes neutralized the demand variability greatly. Because of demand pooling at the distrib-
utor tier, the demand at upper tiers became more stable and demand distortion was reduced. Consequently the
supply chain cost reduced. This result also showed that the supply chain’s benefit from negative demand
covariance reduced the benefit of information sharing: comparing with the situation with zero demand covari-
ance, the cost reduction ratio enabled by information sharing decreased when the covariance was negative.
When demand covariance was positive, the cost reduction ratio enabled by information sharing in DIS1
and DIS2 increased to 14.0% and 30.2%, respectively. We also found that the benefit in DIS2 was superior
to that in DIS1 when demand covariance became positive, indicating that the direct model was more suitable
in the situation when the demand processes were positively correlated.

5.5. Analysis of distribution location

The last factor we studied was the location of the distributor in the supply chain: the distributor could be
arranged close to the retailers or close to the supplier. This location change would consequently affect a retai-
ler’s responsiveness to demand fluctuation and the supply chain’s ability to match demand with supply in a
three-tier supply chain. However, in DIS2 the distributor’s location did not affect the supply chain perfor-
Demand
Covariance

NIS DIS Case1 DIS Case2

-0.5 674 594 649
0 813 706 649

0.5 928 798 647

Fig. 4. Supply chain total cost in no information sharing, demand information sharing Case 1 and demand information Case 2 as a
function of demand covariance.



Distributor
Location

NIS DIS Case1 DIS Case2

3-9 782 676 649
6-6 813 706 649
9-3 791 719 649

Fig. 5. Supply chain total cost in no information sharing, demand information sharing Case 1 and demand information Case 2 as a
function of the changes of distributor’s location.
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mance since it did not hold inventory or place orders. As shown in Fig. 5, when the distributor located further
down the chain, the total cost reduced. With demand information available, the supply chain’s total cost in
DIS1 and DIS2 reduced 13.6% and 17.0%, respectively. However, from Table 6, these two reductions did
not show a statistical significant difference by ANOVA which meant that the three-tier supply chain performed
equally well as two-tier one with information available: as the distributor moved close to the retailers, the sup-
ply chain could react more quickly to the market demand with less backlog cost and this benefit became equiv-
alent to the benefit of inventory cost reduction at the distributor in DIS2. However, when the distributor
moved towards the supplier, the cost saving in DIS1 and DIS2 was 9.1% and 17.9%, respectively. Such saving
became significantly different by ANOVA: the supply chain applying the direct model with information shar-
ing performed better than the other two cases.

In summary, the supply chain applying the direct model performed better with high demand fluctuation,
decreasing demand trend, and positive correlation of demand processes. However, when demand variance
was low, when the demand tended to increase, and when the correlation of demand processes was negative,
the supply chain with an intermediate tier could perform better than the direct model. Furthermore, when
the distributor was located close to the market, the supply chain with an intermediary might perform equiv-
alently to the direct model.

5.6. Bullwhip effect in supply chains

To obtain an insight into demand distortions in the supply chain, we analyzed the Bullwhip effect (BWE),
which is also named as dynamic effect [9], occurring in the chain. BWE is defined as the ratio of order variation
generated by a member to the demand variation received by the member. In this study, the supply chain’s
BWE is expressed as: Bullwhip effect ¼ supplier’s order variance

retailer’s demand variance from its customer
when BWE > 1, the demand volatility

increases as it passes up through the supply chain. As shown in Table 7, demand distortion in the supply chain
was significantly reduced by information sharing in most environments. Furthermore, with information avail-
able, reducing the intermediary efficiently decreased the demand distortion of the whole supply chain. How-
ever, by jointly analyzing the supply chain’s behaviour in Table 6, we found that BWE could not be used to
directly measure the supply chain’s service and cost performance, i.e., although the supply chain performance
became better when BWE decreased, a greater reduction in BWE did not promise a better service level or
lower costs. Therefore, BWE may not be a suitable independent measurement to evaluate supply chain per-
formance although it is good to demonstrate the demand distortion process along supply chains.



Table 7
Supply chain’s dynamics in No-IS and Demand-IS

Supply chain performance NIS DIS Case 1 DIS Case 2

Experimental settings

Basic case 6.6 6.0 3.3

Sensitivity analysis Demand variance Low 7.0 6.1 3.3
High 7.3 5.8 3.2

Demand correlation over time Negative 4.2 3.9 2.9
Positive 26.1 21.6 7.7

Demand covariance Negative 3.3 3.3 1.7
Positive 10.0 9.4 4.9

Location of distributor in chain Forward 6.1 4.8 3.3
Postponed 6.0 4.8 3.3
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6. Conclusion

On the premise of discrete simulation technology, the study developed a simulation approach to quantify
firms’ SCM decisions into business operations and measure participant firms’ performance in multi-tier supply
chains. By careful simulation scenario design and statistical validation, the simulation model was applied to
understand one practical business problem, i.e., how to evaluate business conditions and trade-offs to imple-
ment demand information sharing strategy.

The success of Dell’s direct model shows that reducing unnecessary intermediaries benefits supply chains.
However, bypassing the intermediate tiers simultaneously loses their buffer functions in the material flow. As a
cost of the direct model, the supply lead time between the company and its supplier increases and the company
may become less responsive to demand variability in the end market. Such cost exists with demand informa-
tion sharing because sharing information cannot eliminate but only reduce the demand distortion in the sup-
ply chain. Therefore it is valuable to discover when intermediary tiers are beneficial to a supply chain, when
they are not, and how system parameters influence the whole supply chain.

In this work, the simulation model systematically examined the impact of demand parameters and lead time
on supply chains with and without the intermediate tier. The simulation scenario considered four variable
changes in a supply chain selling two products: demand variance, demand correlation, demand covariance,
and distributor location in the supply chain. The results showed that when demand variance was high, when
the demand trend was low, and when the correlation of demand processes was high, the supply chain that
reduced the intermediate tier performed better than that with the intermediary. In those cases that the market
demand was growing and that the products’ demands were complementary, e.g., demands of products in the
same product family, the supply chain with an intermediate tier could perform better than the direct model.
When the intermediate tier moved close enough to the market, two types of supply chains performed equiv-
alently well, which gives a theoretic proof of Dell’s strategic advantage of requiring manufactories to build
stock near its assemble line.

This cost–benefit analysis provides useful implications for companies seeking suitable business models in
their supply chains. For example, the result showed that eliminating the intermediary generates a cost as sup-
ply lead time increases. Although organizations can anticipate great supply chain benefit from information
sharing, there are some situations that the supply chain using direct model cannot perform as well as using
other models. Therefore, whether to bypass the intermediate tiers is a critical task for supply chain managers
and requires systematic consideration about specific environmental parameters in their own business, such as
the expected demand patterns in the market and order cycle time in supply.

The supply chain in this study is decentralized, i.e., the tiers in the chain manage their own inventory and
make order decisions separately. However, a multi-tier chain can be managed in another way: centralized con-
trol, where the decision on how much and when to produce/deliver is made centrally based on material and
demand status of the entire system. Quantifying supply chain behavior with the centralized control and



C. Zhang, C. Zhang / Simulation Modelling Practice and Theory 15 (2007) 32–46 45
comparing it to that in decentralized control could provide further insights on how to design the channel struc-
ture of supply chains.
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Appendix. Notation table

t subscript t denotes the variable in period t

a s
ervice level

q d
emand correlation over time

dt = u +qdt�1 + et a
uto- correlated AR(1) process, where u > 0, jqj < 1 and et is normally distributed (0,r2)

ðd̂ t; r̂tÞ e
stimated mean demand and estimated standard deviation of demand, respectively,

at period t
ot t
he order placed by the downstream entity with its supplier at period t
L t
he lead time between two successive tiers in the chain
St ¼ Ld̂t þ zr̂t

ffiffiffi
L
p o
rder-up-to inventory level, where z is the safety stock factor
b u
nit backorder cost per period,

h t
he unit inventory holding cost per period

n t
he number of demand observations in forecast

cov d
emand covariance

Ld lo
cation of distribution in the supply chain
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